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Abstract— We describe how a virtual node abstraction layer
can be used to coordinate the motion of real mobile nodes
in a region of 2-space. In particular, we consider how nodes
in a mobile ad hoc network can arrange themselves along a
predetermined curve in the plane, and can maintain themselves
in such a configuration in the presence of changes in the
underlying mobile ad hoc network, specifically, when nodes may
join or leave the system or may fail. Our strategy is to allow the
mobile nodes to implement a virtual layer consisting of mobile
client nodes, stationary Virtual Nodes (VNs) for predetermined
zones in the plane, and local broadcast communication. The
VNs coordinate among themselves to distribute the client nodes
between zones based on the length of the curve through those
zones, while each VN directs its zone’s local client nodes to move
themselves to equally spaced locations on the local portion of
the target curve.

Index Terms— Motion coordination, virtual nodes, hybrid
systems, hybrid I/O automata.

I. INTRODUCTION

Motion coordination is the general problem of achiev-
ing some global spatial pattern of movement in a set of
autonomous agents. An important motivation for studying
distributed motion coordination, that is, coordination among
agents with only local communication ability and therefore
limited knowledge about the state of the entire system,
stems from the developments in the field of mobile sensor
networks. Previous work in this area includes different co-
ordination goals, for example: flocking [9], rendezvous [1],
[10], [13], deployment [2], pattern formation [15], and ag-
gregation [7]. Owing to the intrinsic decentralized nature
of sensor network applications like surveillance, search and
rescue, monitoring, and exploration, centralized or leader
based approaches are ruled out. However, the lack of central
control makes the programming task quite difficult.

In prior work [3], [5], [6], [4], we have developed a notion
of “virtual nodes” for mobile ad hoc networks. A virtual
node is an abstract, relatively well-behaved active node that
is implemented using less well-behaved real nodes. Virtual
nodes can be used to solve problems such as providing
atomic memory [5], geographic routing [3], and point-to-
point routing [4].

In this paper, we explore a framework for using virtual
nodes to solve motion coordination problems. We consider
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virtual nodes associated with predetermined, well-distributed
locations in the plane, communicating among themselves and
with mobile “client nodes” using local broadcast. Roughly
speaking, each virtual node is designated a certain zone in the
plane—disjoint from the zones of the other virtual nodes—
and is emulated by all the mobile nodes that are present
in its zone. The VN abstraction makes programming easier
by providing a centralized controller with reliable storage (a
virtual node) for each disjoint zone in the plane.

In this paper we describe a framework for using vir-
tual nodes to solve a simple motion coordination prob-
lem, namely, uniformly positioning the mobile nodes on
a known differentiable curve. The framework can be used
to implement distributed algorithms for more complicated
motion coordination problems as well. Using the virtual
node abstraction for solving a coordination problem reduces
to achieving coordination among stationary centralized con-
trollers with a priori known locations. Further, writing the
coordination algorithm for the virtual nodes amounts to
“plugging in” control functions in the virtual node programs.

In addition to describing the framework for using virtual
nodes to solve coordination problems, we alsobriefly describe
one way of implementing virtual nodes using the real mobile
nodes. We use the Hybrid I/O Automata (HIOA) mathemat-
ical framework [12] for describing the components in our
systems.

The paper is organized as follows: Section II describes the
underlying mobile network. Section III describes our virtual
node layer. Section IV defines the motion coordination
problem we consider. Section V describes an algorithm for
solving this motion coordination problem using the virtual
node layer. Section VI gives the proofs of correctness of the
algorithm. Section VII presents simulation results for our
algorithm. Section VIII outlines one way to implement the
virtual node layer, and Section IX concludes.

II. THE PHYSICAL LAYER

Our physical model of the system consists of a finite
but unknown number of communicating physical nodes in
a bounded square B in R2. We assume that each node has a
unique identifier from a set I. Formally, our physical layer
model consists of three types of HIOA (see Figure 1): (1)
automata PN i to model physical nodes with identifiers i ∈
I, (2) a LBcast automaton that models the local broadcast
communication service between the physical nodes, and (3) a



“real world” automaton RW to model the physical locations
of all the nodes and the real time.
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Fig. 1. The Physical Layer: PN automata communicate with each other
through an LBcast service and receive time and location information
continuously from RW .

Figure 2 shows the required components of each automa-
ton PN i; it may have other internal variables (initially set
to unique initial values) and actions, which are not specified
here. PN i continuously receives from RW the current time
as the input variable realtime and its position as the input
variable xi, and communicates its velocity to RW through
the output variable vi. The speed of PN i is bounded by vc.
The trajectories of the continuous variable vi and the effects
of the send and receive actions are unspecified. At each
point PN i is either in active or inactive mode; we assume
that, initially, finitely many nodes are active. The faili input
action sets the mode to inactive and all internal variables
to their initial values, and the recoveri input action sets the
mode to active. In inactive mode, all internal and output
actions are disabled, no input action except recoveri affects
the internal or output variables, and during trajectories, the
locally-controlled variables remain constant and the velocity
vi remains zero. Thus, we assume that, in inactive mode,
PN i stops moving. We model the departure of a node from
B as a failure. For convenience, we assume that transitions
are instantaneous.

The PN s communicate using a local broadcast service,
LBcast, which is a generic local broadcast service param-
eterized by a radius Rp and a maximum message delay
dp. The LBcast(Rp, dp) service guarantees that when PN i

performs a send(m)i action at some time t, the message
is delivered within the interval [t, t + dp], by a receive(m)j

action, to every PN j that remains in active mode and within
Rp distance of PN i for the entire interval [t, t + dp].

The RW automaton (see Figure 3) erves to model realtime
and locations of all the nodes. It reads the velocity output vi

from each PN i, i ∈ I, and computes the position xi from
the velocity vi for PN i and the LBcast automaton. LBcast

requires the node position information because it guarantees
delivery only between “nearby” nodes. RW also produces

Signature: Transitions:
Input Input faili

receive(m)i Effect
faili vi ← 0
recoveri mode ← inactive

Output Other internal variables ← initial
send(m)i

Input recoveri
Variables: Effect

Input mode ← active
xi ∈ B
realtime ∈ R≥0

Output
vi ∈ R2 , |vi| ≤ vc

Internal
mode ∈ {active, inactive}
Finite set of other variables, initially set to unique initial values.

Fig. 2. Hybrid I/O Automaton PN i.

Variables:
Input

vi ∈ R2 , for each i ∈ I
Output

xi ∈ B, for each i ∈ I
realtime ∈ R≥0

Internal
x̄i ∈ B, for each i ∈ I, initially arbitrary
clock ∈ R≥0, initially 0

Trajectories:
Invariant

x̄i ∈ B, for each i ∈ I
Evolve

xi = x̄i, for each i ∈ I
d(x̄i) = vi, for each i ∈ I
realtime = clock
d(clock) = 1

Fig. 3. RW automaton.

realtime for all physical layer components.

III. THE VIRTUAL NODE LAYER

The bounded square B is partitioned into a finite set of
zones Bh, h ∈ H. For simplicity we assume B is a m × m
square grid, with each grid square corresponding to a zone
and having sides of length b. Each boundary point of a square
is unambiguously assigned to one zone. The index set H is
the set of coordinates of the centers of all squares. For each
Bh, the set Nbrsh contains the zone identifiers of the north,
south, east, and west neighboring grid squares.

Our virtual layer abstraction (see Figure 4) consists of:
(1) client node automata CN i with identifiers i ∈ I, (2)
one stationary virtual node automaton VN h for each h ∈
H, located at the center oh of the square Bh, (3) a virtual
communication service, VLBcast = LBcast(Rv , dv), for the
VN s and the CN s, and (4) an automaton RW to model the
physical locations of all the CN s and the real time.

A client node automaton CN i, i ∈ I, is a portion of a
PN i automaton that has the input variables realtime and
xi from the RW automaton and an output variable vi to the
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Fig. 4. Virtual Node Layer: VN s and CN s communicate using the
V LBcast service.

RW automaton. With respect to failures, an automaton CN i

behaves the same as PN i. CN i also has send and receive
actions for interacting with the V LBcast service.

A virtual node automaton VN h, h ∈ H, is an MMT
automaton [11], [14] parameterized by a time upper bound,
dMMT ; it has no realtime clock variable. MMT automata are
discrete I/O automata that have a “task” structure, which is an
equivalence relation on the set of locally-controlled actions,
such that from a point in an execution where a task becomes
enabled, within at most time dMMT , some action in that
task must occur. VNh can experience a failh input, disabling
internal and output actions, preventing any inputs other than
recoverh from resulting in state changes, and setting the
automaton to an initial state. If a recoverh occurs at a failed
VN , the VN actions become enabled with all tasks restarted.
If VN h is failed and a CN is in Bh and remains active in
the zone for dr time, then a recoverh occurs within that dr

time. VN h communicates with other VN s and CN s using
the VLBcast service through sendh and receiveh actions.

VLBcast is an LBcast service (as described in the phys-
ical layer) for the virtual layer, parameterized by radius Rv

and maximum message delay dv, where Rv ≥ b. It allows
VN h to communicate with each VN g such that g ∈ Nbrsh,
and with CN s that are located in Bh. It does not allow CN

automata to communicate with one another.
The RW automaton in the virtual layer is similar to the

one in the physical layer, but here it communicates (through
the realtime and x variables) only with the CN automata
and the VLBcast automaton, and not the VN automata.

This virtual layer will be used in Section V to implement
a solution to the distributed motion coordination problem.
Details of how this virtual layer can be implemented using
the physical layer are in Section VIII. There we further
discuss the relation between the parameters dMMT , dr, dv,
and Rp, the physical layer broadcast radius.

IV. THE MOTION COORDINATION PROBLEM

A differentiable parameterized curve Γ is a differentiable
map P → B, where the domain set P of parameter values is
an interval in the real line. The curve Γ is regular if for every
p ∈ P , |Γ′(p)| 6= 0. For a, b ∈ P , the arc length of a regular
curve Γ from a to b, is given by s(Γ, a, b) =

∫ b

a
|Γ′(p)|dp.

Γ is said to be parameterized by arc length if for every
p ∈ P , |Γ′(p)| = 1. For a curve parameterized by arc length,
s(Γ, a, b) = b − a.

For a given point x ∈ B, if there exists p ∈ P such that
Γ(p) = x, then we say that the point x is on the curve Γ;
abusing the notation, we write this as x ∈ Γ. We say that Γ is
a simple curve provided for every x ∈ Γ, Γ−1(x) is unique.
A sequence x1, . . . ,xn of points in B are said to be evenly
spaced on a curve Γ if there exists a sequence of parameter
values p1 < p2 . . . < pn, such that for each i, 1 ≤ i ≤ n,
Γ(pi) = xi, and for each i, 1 < i < n, pi−pi−1 = pi+1−pi.

In this paper we fix Γ to be a simple, differentiable curve
that is parameterized by arc length. Let Ph = {p ∈ P :
Γ(p) ∈ Bh} be the domain of Γ in zone Bh ⊆ B. The local
part of the curve Γ in zone Bh is the restriction Γh : Ph →
Bh. We assume that Ph is convex for every zone Bh ⊆ B; it
may be empty for some Bh. We write |Ph| for the length of
the curve Γh. We define the quantization of a real number
x with quantization constant σ > 0 as qσ(x) = dx

σ
eσ. For

the remainder of the paper we fix σ and write qh as an
abbreviation for qσ(|Ph|). We write qmin for the minimum
nonzero qh, and qmax for the maximum qh.

Our goal is to design an algorithm that runs on the physical
nodes such that, if there are no failures or recoveries of
physical nodes after a certain point in time, then: (1) within
finite time the set of nodes in each zone Bh, h ∈ H, becomes
fixed, and the size of the set is “approximately” proportional
to the quantized length qh, (2) within finite time all physical
nodes in Bh for which qh 6= 0 are located on Γh, and (3) in
the limit all the nodes in each Bh are evenly spaced on Γh.

V. SOLUTION USING VIRTUAL NODE LAYER

The Virtual Node abstraction is used as a means to
coordinate the movement of client nodes in a zone. A VN

controls the motion of the CN s in its zone by setting and
broadcasting target waypoints for the CN s: VN h, h ∈ H,
periodically receives information from clients in its zone,
exchanges information with its neighbors, and sends out a
message containing a calculated target point for each client
node “assigned” to zone Bh. Informally, VN h performs two
tasks when setting the target points: (1) it re-assigns some of
the CN s that are assigned to itself to neighboring VN s, and
(2) it sends a target position on Γ to each CN that is assigned
to itself. The objective of (1) is to prevent neighboring VN s
from getting depleted of CN s and to achieve a distribution of
CN s over the zones that is proportional to the length of Γ in
each zone. The objective of (2) is to space the nodes evenly
on Γ within each zone. A CN , in turn, receives its current
position information from RW and its target location from a
VN , and continuously computes a velocity vector that will
take it to its latest received target point.



In our algorithm each virtual node VN h uses only in-
formation about the portions of the target curve Γ in zone
Bh and the neighboring zones. For convenience, we assume
that all client nodes know the complete curve Γ; we could
instead model the client nodes in Bh as receiving inputs from
another automaton about the nature of the curve in zone Bh

and neighboring zones only.

A. Client Node Algorithm

The algorithm for the client node CN (δ)i, i ∈ I, appears
in Figure 5. The client node follows a round structure, where
rounds begin at times that are multiples of δ. Recall that
VN automata do not have access to realtime whereas CN

automata do. To help VN s follow the round structure, the
CN s send “trigger” messages to prompt the VN s to perform
transitions.

At the beginning of each round, a CN sends a cn-update
message to its local VN (that is, the VN in whose zone
the CN currently resides). The cn-update message tells the
local VN the CN ’s id, its current location in B, and current
round number.

The CN then sends an exchange-trigger message dv + ε
later to its local VN . An additional dMMT + 2dv + ε time
later, the CN sends a target-trigger message to its local
VN . Both these messages are trigger messages that include
the CN ’s current location and the current round number,
used by the local VN to determine whether the CN is in its
zone and what the current round number is.

CN i processes only one kind of message, target-update
messages sent by its assigned VN . Each such message
describes the new target location x

∗
i for CN i, and possibly an

assignment to a different VN . CN i continuously computes
its velocity vector vi, based on its current position xi and its
target position x

∗
i , as vi = vc(xi − x

∗
i )/||xi − x

∗
i ||, moving

it with maximum velocity towards the target.

B. Round structure

The VN h, h ∈ H, algorithm follows the CN s’ round
structure. However, VN s do not have access to the realtime
variable and must instead rely on trigger messages from
CN s to determine when enough time has elapsed to perform
required actions. Here we explain how we implement the
round structure for a VN .

Recall that at the beginning of a round, each CN sends
a cn-update message to its local VN . The CN s then send
exchange-trigger messages dv + ε after the beginning of
the round, enough time that the cn-update messages have
already been delivered, signaling to the VN that it has
received all cn-update messages that were transmitted at
the beginning of the round in its zone. The VN waits before
using information from the cn-update messages until it
receives one of the CN s’ exchange-trigger messages. The
VN then sends vn-update messages to its neighbors.

Each CN sends a target-trigger message to its local
VN an additional dMMT + 2dv + ε time after it sends an
exchange-trigger message. This additional time is enough
for all the following to have happened: (1) each neighboring

Signature:
2Input

receive(m)i, m ∈ ({target-update} × B)
4Output

send(m)i, m ∈ ({cn-update} × I × B × N)
6∪ ({exchange-trigger, target-trigger} × B × N)

Internal
8initi

10Variables:
Input

12xi ∈ B
realtime ∈ R≥0

14Output
vi ∈ R2 , velocity vector

16Internal
x
∗ ∈ B ∪ {⊥}, target point, initially ⊥

18round, next-exch, next-target ∈ N ∪ {⊥}, initially ⊥

20Transitions:
Internal initi

22Precondition
round = ⊥

24Effect
round, next-exch, next-target ← drealtime/δe

26x
∗ ← xi

28Input receive(〈target-update, target〉)i

Effect
30if target(i) 6= null then

x
∗ ← target(i)

32

Output send(〈cn-update, i, xi, round〉)i

34Precondition
realtime = round · δ

36Effect
round ← round + 1

38

Output send(〈exchange-trigger, xi, next-exch〉)i

40Precondition
realtime = next-exch · δ + dv + ε

42Effect
next-exch ← next-exch + 1

44

Output send(〈target-trigger, xi, next-target〉)i

46Precondition
realtime = next-target · δ + dMMT + 3dv + 2ε

48Effect
next-target ← next-target + 1

50

Trajectories:
52Evolve

if (xi = x
∗ or x

∗ = ⊥) then vi = 0

54else vi = vc · (x∗ − xi)/||x∗ − x||
Stop when

56round = ⊥ or realtime = round · δ
or next-exch·δ + dv + ε or next-target·δ + dMMT + 3dv + 2ε

Fig. 5. Client node CN (δ)i automaton.



VN has received an exchange-trigger message from a
CN in its zone (dv time), (2) each neighboring VN has
performed a vn-update transmission to its neighboring VN s,
including this one (dMMT time), and (3) the neighboring
VN vn-update messages have arrived (dv time). When a
VN first receives a target-trigger message for a particular
round from any CN in its region, it knows it has received any
vn-update messages from neighboring VN s for the round.
The VN then performs some computation and transmits a
target-update message to CN s local to it.

A target-update message might not be received by a CN

until dMMT +2dv time after the CN sent the target-trigger
message. This accounts for: (1) the time it can take for the
target-trigger message to be received by the VN (dv), (2)
the time it can take for the VN to perform the target-update
broadcast (dMMT ), and (3) the time for the broadcast to
be delivered at the CN (dv). Given the maximum distance
between a point in one zone and the center of a neighboring
zone,

√
2.5b =

√

(3b/2)2 + (b/2)2, and a constant speed of
vc for each client node, it can take up to

√
2.5b
vc

time for the
CN to reach its target. Also, after the CN just arrives in the
zone it was assigned to, up to

√
10b/3 =

√
2.5b · 2

3 distance
from where it started, it could find that the local VN is failed,
in which case it could take up to the dr VN -startup time for
the VN to recover.

To ensure a round is long enough for a client node to
send the cn-update, exchange-trigger, and target-trigger
messages, receive a target-update message, arrive at its new
assigned target location, and be sure a virtual node is alive in
its zone before a new round begins, we require that δ satisfy
δ > 2dMMT + 5dv + 2ε + max(

√
2.5b/vc,

√
10b/3vc + dr).

C. VN algorithm

The algorithm for virtual node VN (e, ρ1, ρ2)h, h ∈ H,
appears in Figure 6, where e ∈ Z+ and ρ1, ρ2 ∈ (0, 1)
are parameters of the automaton. VN h collects cn-update
messages sent at the beginning of the round from CN s
located in its zone, aggregating the location and round
information from the message in a table, M . When VN h

first receives an exchange-trigger message for a particular
round from any CN in its zone, VN h tallies and computes
from its table M the number of client nodes assigned to it
that it has heard from in the round, and sends this information
in a vn-update message to all of its neighbors.

When VH h receives a vn-update message from a neigh-
boring VN , it stores the CN population and round number
information from the message in a table, V . When VN h

first receives a target-trigger message for a particular round
from any CN in its region, VN h uses the information in its
tables M and V about the number of CN s in its zone and its
neighbors’ zones to calculate how many of the CN s assigned
to itself should be reassigned and to which neighboring VN s.
This is done through the assign function (see Figure 7)
which calculates a partial function assign mapping CN

identifiers to zones that they are assigned to. If the number
of CN s y(h) assigned to VN h exceeds the minimum critical

Signature:
2Input

receive(m)h, m ∈ ({cn-update} × I × B × N)
4∪ ({exchange-trigger, target-trigger} × B × N)

∪ ({vn-update} × H × N × N)
6Output

send(m)h

8

Constants:
10In = {g ∈ Nbrs: qg 6= 0}

12State variables:
M : I → B × N, partial map from CN ids to current location and

14round number, initially ∅. Accessors: loc, round.
V : H → N× N, partial map from VN ids to the number of CN s, and

16round number, initially {〈g, 〈0, 0〉〉} for each g ∈ Nbrs ∪ {h}.
Accessors: num, round.

18send-buffer, queue of messages, initially ∅.
vn-done, target-done ∈ Z, initially 0.

20

Derived variables:
22locM = λ(i ∈ id(M)). loc(M(i))

y = λ(g ∈ Nbrs ∪ {h}). num(V(g))
24

Transitions:
26Input receive(〈cn-update, id, loc, round〉)h

Effect
28if loc ∈ Bh then

M ← M ∪ {〈id, 〈loc, round〉〉}
30

Input receive(〈exchange-trigger, loc, round〉)h

32Effect
if (loc ∈ Bh ∧ vn-done 6= round) then

34for each i ∈ id(M)
if round(M(i)) 6= round then

36M ← M \ {〈i, M(i)〉}
send-buffer ← send-buffer ∪ {〈vn-update, h, |M|, round〉}

38vn-done ← round

40Input receive(〈vn-update, id, n, round〉)h

Effect
42if id ∈ Nbrs then

V(id) ← 〈n, round〉
44

Input receive(〈target-trigger, loc, round〉)h

46Effect
if (loc ∈ Bh ∧ target-done 6= round) then

48V(h) ← 〈|M|, round〉
for each g ∈ Nbrs

50if round(V(g)) 6= round then
V(g) ← 〈0, 0〉

52let target = calctarget(assign(id(M), y), locM)
send-buffer ← send-buffer ∪ {〈target-update, target〉}

54target-done ← round

56Output send(m)h

Precondition
58send-buffer 6= ∅ ∧m = head(send-buffer)

Effect
60send-buffer ← tail(send-buffer)

62Tasks and bounds:
{send(m)h}, bounds [0, dMMT ]

Fig. 6. VN (e, ρ1, ρ2)h IOA signature, variables, transitions, and tasks,
implementing motion coordination algorithm with parameters: safety e, and
damping ρ1, ρ2.



Functions:
2 function assign(assignedM: 2I , y: Nbrs ∪{h} → N): I → H =

assign: I → H, initially {〈i, h〉} for each i ∈ assignedM
4 n: N, initially y(h)

ra: N, initially 0
6 if y(h) > e then

if qh 6= 0 then
8 let lower = {g ∈ In: qg

qh
y(h) > y(g)}

for each g ∈ lower
10 ra ← min(bρ2 · [

qg

qh
y(h) − y(g)]/2(|lower|+1)c, n− e)

update assign by reassigning ra nodes from h to g
12 n ← n− ra

else if In = ∅ then
14 let lower = {g ∈ Nbrs : y(h) > y(g)}

for each g ∈ lower
16 ra ← min(bρ2 · [y(h)− y(g)]/2(|lower|+1)c, n− e)

update assign by reassigning ra nodes from h to g
18 n ← n− ra

else
20 ra← b(y(h) − e)/|In|c

for each g ∈ In
22 update assign by reassigning ra nodes from h to g

return assign
24

function calctarget(assign: I → H, locM: I → B): I → B =
26 seq, indexed list of pairs in P × I, initially the list, for each i ∈ I :

assign(i)= h ∧ locM(i) ∈ Γh, of 〈p, i〉 where p= Γ−1

h
(locM(i)),

28 sorted by p, then i
for each i ∈ I : assign(i) 6= null

30 if assign(i) = g 6= h then
locM(i) ← og

32 else if locM(i) /∈ Γh then
locM(i) ← choose {minx∈Γh

{dist(x, locM(i))}}

34 else let p = Γ−1

h
(locM(i)), seq(k) = 〈p, i〉

if k = first(seq) then locM(i) ← Γh(inf(Ph))
36 else if k = last(seq) then locM(i) ← Γh(sup(Ph))

else let seq(k − 1) = 〈pk−1, ik−1〉, seq(k + 1) = 〈pk+1, ik+1〉

38 locM(i) ← Γh(p + ρ1 · (
pk−1+pk+1

2
− p))

return locM

Fig. 7. VN (e, ρ1, ρ2)h IOA functions.

number e, then the assign function reassigns some of the
CN s to neighbors of VN h.

Let Inh denote the set of neighboring VN s of VN h that
are on the curve Γ and yh(g), g ∈ Nbrsh ∪ {h}, denote
the number num(Vh(g)) of CN s assigned to VN g . If qh 6=
0, meaning VN h is on the curve (lines 7–11), then we let
lowerh denote the subset of Nbrsh that are on the curve and
have fewer assigned CN s than VN h has after normalizing
with qg

qh
. For each g ∈ lowerh, VN h reassigns the smaller

of the following two quantities of CN s to VN g: (1) ra =
ρ2 · [ qg

qh
yh(h) − yh(g)]/2(|lowerh| + 1), where ρ2 < 1 is a

damping factor, and (2) the remaining number of CN s over
e still assigned to VN h.

If qh = 0, meaning VN h is not on the curve, and VN h has
no neighbors on the curve (lines 13–17), then we let lowerh

denote the subset of Nbrsh with fewer assigned CN s than
VN h. For each g ∈ lowerh, VN h reassigns the smaller of
the following two quantities of CN s: (1) ra = ρ2 · [yh(h)−
yh(g)]/2(|lowerh| + 1) and (2) the remaining number of
CN s over e still assigned to VN h.

VN h is on a boundary if qh = 0, but there is a g ∈ Nbrsh

with qg 6= 0. In this case, yh(h) − e of VN h’s CN s are
assigned equally to neighbors in Inh (lines 19–22).

The client assignments are then used to calculate new
target points for local CN s through the calctarget function
(see Figure 7). This function assigns to every CN i assigned
to VN h a target point locMh(i) ∈ Bg , g ∈ Nbrsh ∪ {h}, to
move to. The target point locMh(i) is computed as follows:
If CN i is assigned to VN g , g 6= h, then its target is set
to the center og of Bg (lines 30–31); if CN i is assigned to
VN h but is not located on the curve Γh then its target is
set to the nearest point on the curve, nondeterministically
choosing one if there are several (lines 32–33); if CN i is
either the first or last client node on Γh then its target is set
to the corresponding endpoint of Γh (lines 35–36); if CN i

is on the curve but is not the first or last client node then
its target is moved to the mid-point of the locations of the
preceding and succeeding CN s on the curve (line 38). For
the last two computations a sequence seq of nodes on the
curve sorted by curve location is used (line 27).

VN h finally broadcasts the new target waypoints for the
round through a target-update message to its CN s.

VI. CORRECTNESS OF ALGORITHM

We say CN i, i ∈ I, is active in round t if its mode is
active for the duration of round t. A VN h, h ∈ H, is active
in round t if there is some active CN i with xi ∈ Bh for the
duration of rounds t − 1 and t. Thus, none of the VN s is
active in the starting round. We use the following notation:
In(t) is the set of ids h ∈ H of VN s that are active in round
t and for which qh 6= 0. Out(t) is the set of ids h ∈ H of
VN s that are active in round t and for which qh = 0. C(t)
is the set of active CN s at round t, and Cin(t) and Cout(t)
are the sets of active CN s located in zones with ids in In(t)
and Out(t), respectively, at the beginning of round t.

For any pair of neighboring zones Bg and Bh, and for any
round t, we use yg(h)(t) to refer to the value of yg(h) at
the point in time in round t when VN g finishes processing
the first target-trigger message of round t it receives. For
any f, g ∈ Nbrsh ∪ {h}, in the absence of failures and
recoveries of CN s in round t, yf (h)(t) = yg(h)(t); we write
this simply as yh(t). We present a sequence of lemmas that
together establish the following theorem:

Theorem 1: If there are no failures or recoveries of client
nodes at or after some round t0, then within a finite number
of rounds after t0:
(1) the set of CN s assigned to each VN h, h ∈ H, becomes
fixed, and the size of the set is proportional to the quantized
length qh within a constant additive term 10(2m−1)

qminρ2
, and

(2) all client nodes in Bh for which qh 6= 0 are located on
Γh and evenly spaced on Γh in the limit.

For the rest of this section we fix a particular round number
t0 and assume that no failures or recoveries of CN s occurs
at or after round t0. The first lemma states some basic facts
about the assign function (see Figure 7):

Lemma 1: In every round t ≥ t0: (1) If yh(t) ≥ e for
some h ∈ H, then yh(t + 1) ≥ e, (2) In(t) ⊆ In(t + 1),



(3) Out(t) ⊆ Out(t + 1), (4) Cin(t) ⊆ Cin(t + 1), and (5)
Cout(t + 1) ⊆ Cout(t).

Proof: We fix round t ≥ t0. (1) From line 6 of the
assign function (Figure 7) it is clear that VN h, h ∈ H,
reassigns some of its CN s in round t only if yh(t) > e.

(2) For any VN h, h ∈ In(t), if yh(t) < e then VN h

does assign CN s, and yh(t + 1) = yh(t), otherwise, from
line 16 of Figure 7 it follows that yh(t + 1) ≥ e. In both
cases h ∈ In(t + 1).

(3) Same as (2).
(4) Consider CN i, i ∈ Cin(t), such that CN i is assigned

to VN h, h ∈ In(t). From lines 7–11 of Figure 7 we see
that CN i is assigned to some VN g , g ∈ Inh ∪ {h}. Since
Inh ∪ {h} ⊆ In(t + 1), the result follows.

(5) As there are no failures and recoveries of CN s, C(t) =
C(t + 1). By definition, Cin(t) ∪ Cout(t) = C(t), Cin(t) ∩
Cout(t) = ∅, and Cin(t + 1) ∪ Cout(t + 1) = C(t + 1),
Cin(t + 1) ∩ Cout(t + 1) = ∅. The result follows from part
(4).

The next lemma states a key property of the assign func-
tion after round t0: VN g, g ∈ Out(t), is never assigned a
larger number of CN s in round t+1 than the largest number
of CN s that were assigned to any of VN g’s neighbors in
round t. Similarly, VN g , g ∈ In(t), never gets a density
yg(t+1)

qg
of CN s CN s in round t + 1 that is greater than the

highest density of its neighbors in round t.

Lemma 2: In every round t ≥ t0, for g, h ∈ H and h ∈
Nbrsg : (1) If g, h ∈ Out(t), yh(t) = maxf∈Nbrsg

yf (t),
and yg(t) < yh(t), then yg(t + 1) ≤ yh(t) − 1, and
(2) If g, h ∈ In(t), yh(t)

qh
= maxf∈Nbrsg

yf (t)
qf

, and yg(t)
qg

<
yh(t)

qh
, then yg(t+1)

qg
≤ yh(t)

qh
− σ

q2
max

.
Proof: (1) Fix g, h and t, as in the statement of

the lemma. Since yh(t) > yg(t) and g, h ∈ Out(t),
we see from line 16 of Figure 7 that the number of
CN s that VN g is assigned from VN h in round t is at
most ρ2(yh(t) − yg(t))/2(|lowerh(t)| + 1). This is at most
ρ2(yh(t) − yg(t))/4, because yh(t) > yg(t) implies that
lowerh(t) ≥ 1. Then, the total number of CN s assigned
to VN g in round t by all four of its neighbors is at most
ρ2(yh(t)−yg(t)). Therefore, yg(t+1) ≤ yg(t)+ρ2(yh(t)−
yg(t)) = ρ2yh(t) + (1 − ρ2)yg(t). As ρ2 < 1, we have
yg(t + 1) < yh(t). The result follows from integrality of
yg(t + 1) and yh(t).

(2) As in part 1, fix g, h and t. Here yh(t)
qh

>
yg(t)

qg
and

g, h ∈ In(t). From line 10 of Figure 7, it follows that the
number of CN s that VN g is assigned from VN h in round t
is at most ρ2(

qg

qh
yh(t)−yg(t))/2(|lowerh(t)|+1). This is at

most ρ2(
qg

qh
yh(t)−yg(t))/4. Then, the total number of CN s

assigned to VN g in round t by all four of its neighbors is
at most ρ2(

qg

qh
yh(t) − yg(t)). Therefore, yg(t + 1) ≤ (1 −

ρ2)yg(t) + ρ2
qg

qh
yh(t), that is yg(t+1)

qg
≤ (1 − ρ2)

yg(t)
qg

+

ρ2
yh(t)

qh
. As ρ2 < 1, we have yg(t+1)

qg
< yh(t)

qh
. A simple

calculation shows that if yh(t)
qh

6= yg(t)
qg

, then yh(t)
qh

− yg(t)
qg

≥
σ

q2
max

.

The next lemma states that there exists a round Tout that
is reached within a finite number of rounds after t0, such
that in every round t ≥ Tout, the set of CN s assigned to
VN h, h ∈ Out(t), does not change.

Lemma 3: There exists a round Tout ≥ t0 such that in
any round t ≥ Tout, the set of CN s assigned to VN h, h ∈
Out(t), is unchanged.

Proof: First, we show that the number of CN s assigned
to VN h, h ∈ Out(t), remains unchanged, that is yh(t+1) =
yh(t). Let Nout be the total number of h ∈ H such that
qh = 0. For any k, 1 ≤ k ≤ Nout, we define maxk(t) to
be the kth largest number of CN s that are assigned to any
VN h, h ∈ Out(t), at the beginning of round t ≥ t0:

maxk(t)
∆

=







max{yh(t) : h ∈ Out(t)}, if k = 1
max{yh(t) : h ∈ Out(t) ∧

yh(t) < maxk−1(t)}, otherwise.

Let maxvnsk(t) be the set of VN ids that have maxk(t)
CN s assigned to them. If there exists an l, 1 ≤ l ≤ Nout,
such that ∀h ∈ Out(t) : maxl(t) ≥ yh(t), then for all k,
l < k ≤ Nout, maxk(t) = 0 and maxvnsk(t) = ∅.

Let E(t) = (|Cout(t)|, max1(t), |maxvns1(t)|, . . .,
maxNout

(t), |maxvnxNout
(t)|). Let w be the minimum

yh(t0) for any h ∈ Out(t0), and S = {h ∈ Out(t0) :
yh(t0) = w}. Observe that if w < e, then Emin =
(w|S|, w, |S|, 0, 0 . . . , 0, 0) is a minimum value for E(t),
otherwise Emin = (e|S|, e, |S|, 0, 0 . . . , 0, 0) is a minimum
value. It suffices to show that for any round t ≥ t0, either
E(t + 1) = E(t), that is, t = Tout, or E(t + 1) is less
than E(t) by some constant amount, meaning there is a
k, 1 ≤ k ≤ Nout, such that for every l, 1 ≤ l < k, the
lth component of E(t + 1) is equal to the lth component of
E(t), and the kth component of E(t + 1) is less than the
kth component of E(t) by at least 1.

Consider any round t after t0. From Lemma 1 we know
that |Cout(t + 1)| ≤ |Cout(t)|. If |Cout(t + 1)| < |Cout(t)|,
then the first component of E(t+1) is less than that of E(t)
by at least 1. Otherwise, |Cout(t + 1)| = |Cout(t)|. If for
every h ∈ Out(t), ra = 0 for all g ∈ lowerh(t) (see line 16
of Figure 7), then none of the CN s in Cout(t) are reassigned
in round t+1, and E(t+1) = E(t). Setting Tout = t, we are
done. Otherwise, there exists a nonempty set of VN s with
ids in Out(t) that reassign some CN s to a neighboring VN .
We select the nonempty set A of such VN s with the highest
number of assigned CN s. Let A ⊆ maxvnsk(t), for some
k, 1 ≤ k ≤ Nout.

For any g ∈ Out(t) with yg(t) < maxk(t), the maximum
value of yh(t) for any h ∈ Nbrsg such that VN g gets some
CN s from VN h in round t is at most maxk(t). From Part(1)
of Lemma 2 it follows that yg(t + 1) ≤ maxk(t) − 1.

For any VN h, h ∈ A, since no VN with y >
maxk(t) assigns any CN s to VN h, yh(t + 1) = yh(t) −
∑

g∈lowerh(t) rag(t), where rag is the number of CN s VN h

assigns to its neighbor VN g in round t. We have shown
above that for any g ∈ Out(t), if yg(t) < maxk(t) then
yg(t + 1) ≤ maxk(t)− 1. There are two possible cases: (1)



if maxvnsk(t) = A, then the kth max decreases, maxk(t+
1) ≤ maxk(t) − 1. That is, the (2k + 1)st component of
E decreases by at least 1, and (2) if A ⊂ maxvnsk(t),
then maxk(t + 1) = maxk(t) and |maxvnsk(t + 1)| =
|maxvnsk(t)| − |A|. That is, the (2k + 2)nd component
of E decreases by at least 1. This implies that there exists
Tout, such that the number of CN s assigned to each VN h,
h ∈ Out(t), t ≥ Tout, remains unchanged.

Now suppose the set of CN s assigned to VN h changes
in some round t ≥ Tout. Since yh(t + 1) = yh(t) for all
h ∈ Out(t). Summing, |Cout(t + 1)| = |Cout(t)| and using
Lemma 1 we get Cout(t+1) = Cout(t). The only way the set
of CN s assigned to VN h could change, without changing
yh and the set Cout, is if there existed a cyclic sequence of
VN s with ids in Out(t) in which each VN gives up c > 0
CN s to its successor VN in the sequence, and receives c
CN s from its predecessor. However, such a cycle of VN s
cannot exist because the lower set imposes a strict partial
ordering on the VN s.

For the rest of the section we fix Tout to be the first round
after t0, at which the property stated by Lemma 3 holds.
Lemma 3 implies that in every round t ≥ Tout, In(t) =
In(Tout), Out(t) = Out(Tout), Cin(t) = Cin(Tout),
and Cout(t) = Cout(Tout); we denote these simply as
In, Out, Cin, and Cout. The next lemma states a property
similar to that of Lemma 3 for VN h, h ∈ In, and its proof
is similar to the proofs of Lemma 3, and uses part (2) of
Lemma 2.

Lemma 4: There exists a round Tstab ≥ Tout such that in
every round t ≥ Tstab, the set of CN s assigned to VN h,
h ∈ In, is unchanged.

The following lemma bounds the total number of CN s
located in zones with ids in Out to be O(m3).

Lemma 5: In every round t ≥ Tout, |Cout(t)| = O(m3).

Proof: From Lemma 3, the set of CN s assigned to each
VN h, h ∈ Out(t), is unchanged in every round t ≥ Tout.
This implies that in any round t ≥ Tout, the number of CN s
assigned by VN h to any of its neighbors is 0. Therefore,
from line 20 of Figure 7, for any boundary VN g, (yg(t) −
e)/|Ing| < 1. Ing is the (constant) set of h ∈ Nbrsg with
qh 6= 0. Since |Ing| ≤ 4, yg(t) < 4 + e. From line 16
of Figure 7, for any non-boundary VN g, g ∈ Out(t), that
is 1-hop away from a boundary VN h, ρ2(yg(t)−yh(t))

2(|lowerg(t)|+1) < 1.
Since |lowerg(t)| ≤ 4, yg(t) ≤ 10

ρ2
+ 4 + e. Inducting on the

number of hops, the maximum number of CN s assigned to
a VN g , g ∈ Out(t), at l hops from the boundary is at most
10l
ρ2

+ e+4. Since for any l, 1 ≤ l ≤ 2m−1, there can be at
most m VN s at l-hop distance from the boundary, summing
gives |Cout| ≤ (e + 4)(2m − 1)m + 10m2(2m−1)

ρ2
= O(m3).

For the rest of the section we fix Tstab to be the first round
after Tout, at which the property stated by Lemma 4 holds.
The next lemma states that the number of CN s assigned to
each VN h, h ∈ In, in the stable assignment after Tstab is

proportional to qh within a constant additive term.

Lemma 6: In every round t ≥ Tstab, for g, h ∈ In(t):
∣

∣

∣

∣

yh(t)

qh

− yg(t)

qg

∣

∣

∣

∣

≤
[

10(2m− 1)

qminρ2

]

.

Proof: Consider a pair of VN s for neighboring zones
Bg and Bh, g, h ∈ In. Assume w.l.o.g. yh(t) ≥ yg(t). From
line 10 of Figure 7, it follows that ρ2(

qg

qh
yh(t) − yg(t)) ≤

2(|lowerh(t)|+ 1). Since |lowerh(t)| ≤ 4, | yh(t)
qh

− yg(t)
qg

| ≤
10

qgρ2
≤ 10

qminρ2
. By induction on the number of hops from 1

to 2m − 1 between any two VN s, the result follows.

From line 33 of Figure 7, it follows immediately that by
the beginning of round Tstab +2, all CN s in Cin are located
on the curve Γ. This establishes that the VN algorithm
satisfies our second goal. The next lemma states that the
locations of the CN s in each zone Bh, h ∈ In, are evenly
spaced on Γh in the limit.

Lemma 7: Consider a sequence of rounds t1 =
Tstab, . . . , tn. As n → ∞, the locations of CN s in Bh,
h ∈ In, are evenly spaced on Γh.

Proof: From Lemma 4 we know that the set of CN s
assigned to each VN h, h ∈ In, remains unchanged. Then,
at the beginning of round t2, every CN assigned to VN h is
located in Bh and is on the curve Γh. Assume w.l.o.g. that
VN h is assigned at least two CN s. Then, at the beginning
of round t3, one CN is positioned at each endpoint of Γh,
namely at Γh(inf(Ph)) and Γh(sup(Ph)). From lines 35–
36 of Figure 7, we see that the target points for these
endpoint CN s are not changed in successive rounds. Let
seqh(t2) = 〈p0, i(0)〉, . . . , 〈pn+1, i(n+1)〉, where yh = n + 2,
p0 = inf(Ph), and pn+1 = sup(Ph). From line 38 of
Figure 7, for any i, 1 < i < n, the ith element in seqh

at round tk, k > 2, is given by:

pi(tk+1) = pi(tk) + ρ1

(

pi−1(tk) + pi+1(tk)

2
− pi(tk)

)

.

For the endpoints, pi(tk+1) = pi(tk). Let the ith evenly
spaced point on the curve Γh between the two endpoints be
x̄i. The parameter value p̄i corresponding to x̄i is given by
p̄i = p0 + i

n+1 (pn+1−p0). In what follows, we show that as
n → ∞, the pi converge to p̄i for every i, 0 < i < n+1, that
is, the location of the non-endpoint CN s are evenly spaced
on Γh. The rest of this proof is exactly the same as the proof
of Theorem 3 in [8] in which the authors prove convergence
of points on a straight line with even spacing.

Observe that p̄i = 1
2 (p̄i−1+p̄i+1) = (1−ρ1)p̄i+

ρ1

2 (p̄i−1+
p̄i+1). Define error at step k, k > 2, as ei(k) = pi(tk) −
p̄i. Therefore, for each i, 2 ≤ i ≤ n − 1, ei(k + 1) =
pi(tk+1) − p̄i = (1 − ρ1)ei(k) + ρ1

2 (ei−1(k) + ei+1(k)),
e1(k + 1) = (1 − ρ1)e1(k) + ρ1

2 e2(k), and en(k + 1) =
(1−ρ1)en(k)+ ρ1

2 en−1(k). The matrix for this can be written



as: e(k + 1) = Te(k), where T is an n × n matrix:












1 − ρ1 ρ1/2 0 0 . . . 0
ρ1/2 1 − ρ1 ρ1/2 0 . . . 0
· · · · · ·
0 . . . 0 ρ1/2 1 − ρ1 ρ1/2
0 . . . 0 0 1 − ρ1 ρ1/2













.

Using symmetry of T , ρ1 ≤ 1, and some standard theorems
from control theory, it follows that the largest eigenvalue of
T is less than 1. This implies limk→∞T k = 0, which implies
limk→∞e(k) = 0.

VII. SIMULATION RESULTS

In this section we briefly describe the performance of the
algorithm as observed in Matlab simulations. In particular
we study the stabilization time Tstab, that is, the number of
rounds required to achieve a stable distribution of PN s over
zones in H, for different types of target curves. The inputs
to the Matlab function that models the assign function of
our algorithm are: (1) a value of the parameter e of the
algorithm, and (2) two m × m matrices corresponding to
the initial and the target distribution of PN s respectively.
We have performed simulations for different values of m
and for different target distributions. In all the experiments,
we fix the value of e to be 5, the number of participating
PN s to be 105, and the initial locations of all PN s to be the
lower right corner of B.

The bar charts in in Figure 8 show the distribution of
the PN s (dark bars) at different stages in a typical run of
the algorithm, and the target distribution (light bars). From
top to bottom, the charts show the distribution of the PN s
after the first round, at the end of round Tout, and the stable
distribution attained at round Tstab, respectively.

The plots in Figure 9 show the values of Tout and Tstab

for values of m ranging from 10 to 20, and for three different
curves. C1 covers a rectangular region at the lower-right
corner of B, C2 covers a rectangular region at the top-left
corner of B, and C3 is an annular ring at the center of B.
From these plots we observe that if the curve is located far
from the initial position of the PN s, as in the case of C2,
then the stabilization time Tstab is dominated by Tout.

VIII. IMPLEMENTING THE VIRTUAL NODE LAYER

In addition to client CN i, a physical node PN i, i ∈ I, in
zone Bh runs a TOBcast i,h service and a VNE i,h, h ∈ H,
algorithm (see Figure 10) to help implement each virtual
node VN h and the VLBcast service of the virtual layer.

In this section we present a sketch of our implementation
of the virtual layer by the physical layer. Our implementation
is an adaptation of techniques from [4] to emulate a virtual
mobile node. The only substantive changes made in our
current implementation are: (1) the changing of virtual node
locations to be stationary, (2) the replacement of a periodic
location update with a continuous real-time location update,
and (3) the restart of a virtual node as soon as a physical
node discovers it is in a failed virtual node’s zone. The
virtual nodes we implement here are also modeled differently Fig. 8. Simulation results show the actual (dark) and target (light)

distribution of PN s over H, at the end of various rounds: the first round
(top), at Tout (middle), and at Tstab (bottom).
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from those in [4], as MMT automata, rather than simple I/O
automata.

We use a standard replicated state machine approach to
implement robust virtual nodes that takes advantage of a
TOBcast service to ensure that all VNEs in a zone receive
the same messages in the same order. Using the LBcast

service of the physical nodes and common knowledge about
realtime, the totally ordered broadcast service TOBcast

for a zone can be implemented as follows: At the time of
sending, a message is tagged with the sender’s identifier,
zone id, a sequence number, and a timestamp, which is the
current value of realtime. The tags define a total order on
sent messages, used in delivery. Before delivering a message

TOBcast i,h waits until dp + ε time has elapsed since it
was sent, ensuring that earlier messages were received. It
then delivers the messages for the timestamp in order of
sender id and sequence number. (As a technical detail, we
actually order all join-req messages (described shortly) after
any other messages for a particular time.) TOBcast i,h only
processes messages tagged for zone Bh.

Each VNE i,h independently maintains the state of VN h

and simulates performing actions of the VN on that state. In
order to keep the state replication consistent across different
VNE s running on different physical nodes in the same
zone, when VNE i,h wants to simulate an action of the VN

(such as that of receiving a message at the VN that was
actually received by VNE i,h), it broadcasts a suggestion to
perform the action to the other VNEs of the zone using the
TOBcast service. When an action suggestion is received by
VNE i,h, it is saved in a pending-action queue. Actions are
removed from a pending-action queue in order by VNE i,h

and simulated on VNE i,h’s local version of the VN state.
A completed action is then moved into a completed-action

queue, referenced by VNE i,h to prevent reprocessing of
completed actions.

When a VNE enters a zone, it executes a join protocol to
get the zone’s VN state. The join protocol begins by using
TOBcast to send a join-req message. Whenever a VNE

receives its own join-req message, it starts saving messages
to process in its pending-action queue. If a VNE that has
already joined receives the join-req, it uses TOBcast to send
a join-ack containing a copy of its version of the VN state.
When the joining VNE receives the join-ack, it copies the
included VN state and starts processing the actions in its
pending-action queue. If a VNE ’s join-req is not answered
in 3dp +3ε time, indicating the VN is failed, the VNE will
reset the VN ε time later by using TOBcast to send a reset
message. When a VNE receives a reset message, it sets the
VN state to its initial state, clears the pending-action queue,
and starts simulating the VN .

Theorem 2: Assuming Rp ≥
√

5b, the TOBcast i,h,
VNE i,h, i ∈ I, h ∈ H, and trivial client implementation
correctly implement the Virtual Node abstraction with VN

task upper time bound dMMT = 2dp + 2ε, VN -startup time
dr = 4dp + 5ε, VLBcast broadcast radius Rv ≥ b, and
VLBcast maximum message delay dv = 2dp + ε.

Proof: The correctness of the implementation of the
Virtual Node layer largely follows from the proof of cor-
rectness for the implementation of the VMN layer in [4].
We here discuss the correctness of the implementation with
respect to: (1) the task upper bound, (2) the VN -startup time,
and (3) the requirements for LBcast and VLBcast .

(1) Once one of an abstract VN h’s output or internal tran-
sitions is enabled, the precondition for sending a suggestion
to simulate the action through TOBcast is satisfied at all
VNE i,h for PN i in Bh, and the broadcast occurs. It takes
at most dp + ε time for the message to be delivered at other
VNE i,h for PN i in Bh, after which the action is simulated.
However, it is possible for all active VNE s to fail right after



sending a join-ack to a new VNE and before proposing
an enabled action, leaving the new VNE to broadcast the
simulation proposal dp+ε later, when it receives the join-ack.
Given that PN transitions are assumed to be instantaneous,
dMMT = 2dp + 2ε.

(2) If PN i enters a zone Bh with a failed VN , its
VNE i,h’s join-req will not be answered in 3dp + 3ε time,
and the VNE will send a reset message an additional ε later.
It takes the VNE at most dp + ε time to receive the reset
message and restart the VN . The total time 4dp + 5ε for a
joining node to succeed in restarting a VN is dr.

(3) As in [4], dv = 2dp + ε since the underlying LBcast

service used to implement VLBcast takes up to dp time
to deliver a transmitted message from a VN or CN , after
which TOBcast takes an additional dp+ε time to redeliver a
message at a receiving VN . Also similarly to [4], we require
that Rp ≥

√
5b, in order to guarantee that Rv ≥ b, allowing

a CN i in Bh, i ∈ I, h ∈ H, and VN h to communicate, and
a VN h (located at oh) and each of its neighboring zones’
VN g , g ∈ Nbrs(h), (located at og) to communicate. This is
because a VNE emulating a zone Bh can be as far away as
√

(2b)2 + b2 from a VNE emulating the VN of neighboring
zone Bg . To guarantee the two can communicate while
emulating their respective VN s, the broadcast radius Rp of
the physical LBcast service must be be at least

√
5b. Unlike

[4], however, we do not require an additional tolerance factor
to account for periodic location updates from the RW ; here,
the RW automaton is assumed to continually update the
VNE of its current location.

IX. FUTURE WORK AND EXTENSIONS

We believe the framework introduced in this paper can
be useful in simplifying the coordination of mobile nodes
to solve a variety of other, more complex, problems. One
promising avenue of future work would be to employ our
framework for some of those problems. As one example, in
the control algorithm presented in this paper, each virtual
node VN uses only local information about the target curve
Γ. This use of only local information should adapt well to a
problem extension where the curve is dynamically changing.
The curve (or point, even) could be moving targets being
tracked. In this case, the framework for coordination of nodes
we present here is useful for two reasons: (1) maintaining
alive VN s to detect targets and (2) guiding physical nodes
to the moving targets.

Also of interest is an in-depth analysis of the stability
of the control algorithm employed in this paper in the
face of some regular rate of physical node addition and
removal. While there has been a paucity of work in this
area, such analyses are extremely important in the evaluation
of solutions to most any control algorithms for dynamic
systems.
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APPENDIX

Signature:
Input

receive(m)i,h, m a client message
TOBcast-rcv(m)i,h , m a TOBcast message

Output
send(m)i,h, m a client message
TOBcast(m)i,h m a TOBcast message

Internal
zone-updatei,h

joini,h

restarti,h
init-action(act)i,h , act ∈ VNh.sig \ inputs
simulate-action(act)i,h, act ∈ VNh.sig
ack-joini,h

Variables:
Input

xi ∈ B, current location of mobile node
realtime ∈ R≥0

Internal
status ∈ {joining, listening, active}, initially active
h ∈ H ∪ {⊥}, zone id, initially ⊥
val ∈ VNh.states, state of VN h, initially V Nh.start
pending-join, max id of pending join reqs, initially 0
completed-join, max id of answered join reqs, initially 0
join-id, time of join-req, initially 0
pending-actions, queue of V Nh.actions to be simulated, initially ∅
completed-actions, queue of V Nh.actions simulated, initially ∅
TOBcast-out, queue of outgoing TOBcast msgs, initially ∅
local-out, queue of outgoing client messages, initially ∅

Trajectories:
Stop when any Precondition is satisfied

Fig. 11. Signature, variables, trajectories of VNE i,h algorithm imple-
menting VNh.

Input receive(m)i,h

Effect
TOBcast-out ← TOBcast-out ∪ {〈simulate, 〈receive, m〉, ⊥〉}

Output send(m)i,h

Precondition
local-out 6= ∅ ∧m = head(local-out)

Effect
local-out ← tail(local-out)

Internal init-action(act)i,h

Precondition
status = active ∧ x ∈ Bh ∧ δ(val, act) 6= ⊥

Effect
TOBcast-out ← TOBcast-out ∪ {〈simulate, act, 〈realtime, i〉〉}

Internal joini,h

Precondition
status = idle ∧x ∈ Bh

Effect
status ← joining
join-id ← realtime
TOBcast-out ← TOBcast-out ∪ {〈join-req, ⊥, join-id〉}

Internal restarti,h
Precondition

status = listening ∧x ∈ Bh ∧ realtime = join-id + 3dp + 4ε
Effect

TOBcast-out ← TOBcast-out ∪ {〈reset〉}

Internal zone-updatei,h

Precondition
x /∈ Bh

Effect
status ← idle
h ← id of zone h′ such that x ∈ Bh′

val ← VNh.start
pending-actions ← ∅

Internal simulate-action(act)i,h

Precondition
status = active ∧x ∈ Bh ∧head(pending-actions) = 〈simulate, act, oid〉

Effect
dequeue(pending-actions)
if (〈simulate, act, oid〉 /∈ completed-actions ∧ δ(val, act) 6= ⊥) then

val ← δ(val, act)
if act = 〈send, m〉 then

local-out ← local-out ∪ {m}
completed-actions ← completed-actions ∪ {〈simulate, act, oid〉}

Internal ack-joini,h

Precondition
status = active ∧ x ∈ Bh ∧ pending-join > completed-join
pending-actions = ∅ ∧ ∀act ∈ VNh.sig \ inputs: δ(val, act)= ⊥

Effect
TOBcast-out ← TOBcast-out ∪ {〈join-ack,〈val, completed-actions〉, pending-join〉}
completed-join ← pending-join

Input TOBcast-rcv(〈optype, param, oid〉)i,h

Effect
if optype = simulate then

if status = listening or active then
enqueue(pending-actions, 〈simulate, param, oid〉)

if optype = join-req then
pending-join ← max(pending-join, oid)
if (status = joining ∧ oid = join-id) then

status ← listening
if optype = join-ack then

completed-join ← max(completed-join, oid)
if (status = listening and oid ≥ join-id) then

status ← active
〈val, completed-actions〉 ← param

if optype = reset then
status ← active
pending-actions ← ∅

Output TOBcast(m)i,h

Precondition
TOBcast-out 6= ∅ ∧m = head(TOBcast-out)

Effect
TOBcast-out ← tail(TOBcast-out)

Fig. 12. Transitions of VNE i,h algorithm.


