MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

4)
MIT/LCS/RSS-27

Advanced Algorithms

Michel X. Goemans

December, 1994

This document has been made available free of charge via ftp from the
MIT Laboratory for Computer Science.

. J

545 TECHNOLOGY SQUARE; CAMBRIDGE, MASSACHUSETTS 02139 (617) 253-5851

Preface

This document consists of the lecture notes for 6.85/J/18.415J Advanced
Algorithms as it was taught by Michel Goemans in the Fall 1994. The notes
are for the most part based on notes scribed by students during the last four
years, with help from the teaching assistants, Marios Papaefthymiou (Fall
1990), Michael Klugerman (Fall 1991 and 1992), Esther Jesurum (Fall 1993)
and Matthew Andrews (Fall 1994). The notes are not meant to be in polished
form, and they probably contain several errors and omissions. Rather, they are
intended to be an aid in teaching and/or studying a few advanced topics in the
design and analysis of algorithms. Part of these notes have not been covered
in class, but have been included for completeness. Also, some topics which
have been covered in the past but not this year (such as basis reduction for
lattices) have been omitted. The topics covered this year are online algorithms,
randomized algorithms, linear programming, network flow, and approximation
algorithms. A few new results have been covered for the first time this year,
such as the result of Koutsoupias and Papadimitriou on the competitiveness of
the work function algorithm for the k-server problem, and the approximation
algorithm of Linial, London and Rabinovich and Aumann and Rabani for the
multicommodity cut problem using embeddings of metrics.

Help from the following (certainly incomplete) list of scribes is acknowl-
edged: M. Andrews, R. Blumofe. C. Celebiler, A. Chou, L. Feeney, F. Garcia,
L. Girod, D. Gupta, J. Huang, J. Kleinberg, M. Klugerman, M. Kiwi, J.
Kuéan, J. Leo, X. Luo, Y. Ma, P. McCorquodale, R. Ostrovsky, S. Raghavan,
K. Randall, A. Russell, I. Saias, R. Sidney, E. Soylemez, R. Sundaram, S.
Toledo, L. Tucker-Kellogg D. Wald, D. Williamson, D. Wilson, E. Wolf and
Y. Yin.

Contents

Lectures

Online Algorithms
1 Introductiono
1.1 Investment Problem L oL
1.2 Ski Rental Problem oo
Paging Problem
An Optimal Off-Line Algorithm for Paging
A Lower Bound on the (Deterministic) Competitive Ratio for the Paging Problem
Randomized On-Line Algorithms 0oL
Analysis of the MARKING Algorithm
6.1 The expected cost of a stale request within a phase
6.2 Bounding the total cost of M onaphase.
6.3 Bounding the total cost of any offline algorithm M on a phase
6.4 Establishing the Competitive Factorof M
7 Lower Bound for any Randomized Algorithm
7.1 A useful technique
7.2 Applying the general method to the Paging problem
8 Types of Adversaries

S O = W N

9 Some Results about Competitiveness against Various Types of Adversaries
10 Analysis of RANDOM
11 The k—Server Problem
11.1 Special Cases of the k—Server Problem
11.2 Summary of known results oo
12 The Randomized Algorithm, HARMONIC
12.1 Analysis of HARMONIC e
13 A k-competitive, deterministic algorithm for trees
13.1 Proof of k-competitiveness
13.2 Paging as a case of k-serveronatree. L.
14 Electric Network Theory
14.1 The Algorithm: RWALK
15 The work function algorithm 0oL
15.1 Definition of the work function
15.2 Definition of the work function algorithm
15.3 Definition of the potential function

Randomized Algorithms

1 Introduction L

2 Randomized Algorithm for Bipartite Matching
2.1 Constructing a Perfect Matching 0.
Markov Chains L
Ergodicity and time reversibilityo
Counting problems Lo
Conductance of Markov chains (Jerrum-Sinclair)
Evaluation of Conductance of Markov Chains
Approximation by samplingo
Approximating the permanento

WO oo =~ O O = W

11

Online-1

Online-1

Online-1

Online-2

Online-5

Online-6

Online-7

Online-8

Online-10
Online-10
Online-11
Online-11
Online-12
Online-12
Online-13
Online-15
Online-16
Online-19
Online-22
Online-23
Online-24
Online-25
Online-26
Online-33
Online-34
Online-36
Online-38
Online-40
Online-44
Online-44
Online-46
Online-49

Random-1

Random-4

Random-8

Random-10
Random-12
Random-14
Random-18
Random-18
Random-22
Random-23

Linear Programming

1 An Introduction to Linear Programming LP-1

2 Basic Terminology LP-2

3 Equivalent Forms LP-2

4 Example LP-3

5 The Geometry of LP L LP-4

6 Bases . . . oL LP-7

7 The Simplex Method LP-8

8 When is a Linear Program Feasible 7o .00 LP-11

9 Duality LP-14
9.1 Rules for Taking Dual Problems LP-16

10 Complementary Slackness LP-17

11 Size of a Linear Program L L o LP-18
11.1 Size of the Input LP-18
11.2 Size of the OQutput LP-21

12 Complexity of linear programming LP-21

13 Solving a Liner Program in Polynomial Time LP-22
13.1 Ye’s Interior Point Algorithm o LP-25

14 Description of Ye’s Interior Point Algorithm LP-29

15 Analysis of the Potential Function LP-33

16 Bit Complexity LP-35

A Transformation for the Interior Point Algorithm LP-36

Network Flow

1 Single Source Shortest Path Problem 000000 Flow-1

2 The Maximum Flow Problem Flow-2

3 Minimum Cost Circulation Problem Flow-3
3.1 The Maximum Flow Problem Flow-6
3.2 Bipartite Matching o oL Flow-6
3.3 Shortest paths Flow-8

4 Some Important Notions Flow-8
4.1 Residual Graph Flow-8
4.2 Potentials Flow-8

5 When 1s a circulation Optimal? oo Flow-9

6 Klein’s Cycle Canceling Algorithm Flow-10

7 The Goldberg-Tarjan Algorithm 0. Flow-12

8 Analysis of the Goldberg-Tarjan Algorithm Flow-13

9 A Faster Cycle-Canceling Algorithm Flow-15

10 Alternative Analysis: A Strongly Polynomial Bound Flow-16

Approximation Algorithms

1 Introduction Approx-1

2 Negative Results Approx-2
2.1 MAX-SNP Complete Problems Approx-4

3 The Design of Approximation Algorithms Approx-6
3.1 Relating to Optimum Directly Approx-6
3.2 Using Lower Bounds Approx-7
3.3 An LP Relaxation for Minimum Weight Vertex Cover (VC) Approx-7
3.4 How to use Relaxations Approx-8

4 The Min-Cost Perfect Matching Problem Approx-10
4.1 A linear programming formulation00 Approx-10

v

4.2 From forest to perfect matching Approx-12

4.3 The algorithm Approx-13
4.4 Analysis of the algorithm 00 Approx-14
4.5 A simulated run of the algorithm Approx-16
4.6 Final Steps of Algorithm and Proof of Correctness Approx-17
4.7 Some implementation detailso Approx-20
Approximating MAX-CUT Approx-21
5.1 Randomized 0.878 Algorithm Approx-23
5.2 Choosing a good set of vectorso Approx-25
5.3 The Algorithm Approx-25
5.4 Solving (P) . .« o o i e Approx-26
5.5 Remarks L Approx-27
Bin Packing and P || Crar - -« o o o o oo e Approx-28
6.1 Approximation algorithm for P||Cpae - - - - -« o . o o oo Approx-29
Randomized Rounding for Multicommodity Flows Approx-33
7.1 Reformulating the problem L. Approx-34
7.2 The algorithm Approx-35
7.3 Chernoff bound Approx-35
7.4 Analysis of the R-T algorithm Approx-36
7.5 Derandomization L Approx-37
Multicommodity Flow Approx-38
8.1 Reducing multicommodity flow/cut questions to embedding questions Approx-41
8.2 Embedding metrics into 1o Approx-44

vi

18.415/6.854 Advanced Algorithms September 1994

On-Line Algorithms
Lecturer: Michel X. Goemans

1 Introduction

The first topic we will cover in this course is on-line algorithms. The concept of on-
line algorithms has been around for quite some time (it was for example present in
the seventies in the bin packing literature, see [13, 20]), but it has been a fairly hot
research area since the publication of the landmark paper by Sleator and Tarjan [19]
in 1985.

Typically when we solve problems and design algorithms we assume that we know
all the data a priori. However in many practical situations this may not be true and
rather than have the input in advance it may be presented to us as we proceed. We
give below some examples to motivate the topic of on-line algorithms.

1.1 Investment Problem

Consider an investor with a given sum of money which he wishes to invest so as to
maximize his gain at the end of a specified period of time. He has a variety of options:
he may keep funds in a money market account, he may buy certificates of deposit
or he may invest in the stock market. He can keep a mixed portfolio and he can
reallocate his assets during the course of the investment period. Now in the offline
case he has full information about the behaviour of the various financial and capital
markets and so can compute an optimal strategy to maximize his profit. An on-line
algorithm, however, is a strategy which at each point in time decides what portfolio
to maintain based only on past information and with no knowledge whatsoever about
the future. The profit generated is a determinant of the quality of the on-line strategy.
We will see later how exactly to quantify this quality by introducing the notion of
competitive analysis.

1.2 Ski Rental Problem

Consider the following scenario: you are a skier and, each day, need to either rent
skis for $1 or buy a pair of skis for $7" which will last for the rest of the season.
Unfortunately, you do not know when the ski season will end. If you knew a priori
the length of the season (this is the offline case) say L then it is obvious that you
should rent if . < T and buy if L > T'. On the other hand, an on-line strategy for

Online-1

this problem would first fix an integer k, and then rent for £ days and buy on day
k+ 1 (if it has the opportunity).

At this point we must pause and decide how to evaluate the performance of on-line
algorithms? One way to analyze such algorithms is to assume that the input is given
according to a certain probability distribution, and compute the expected behavior of
the algorithm based on this distribution. However we wish to avoid making assump-
tions about input distributions. The analytic machinery we present will not demand
that the inputs come from some known distribution, but instead will compare the
performance of the on-line algorithm with that of the best offline algorithm. This
notion of comparison is called competitive analysis and was introduced by Sleator

and Tarjan [19].

Definition 1 An on-line algorithm A is a-competitive if for all input sequences o,
Ca(o) < aCuin(o), where Ca(o) is the cost of the on-line strategy A for o and
Cwyin(o) is the cost of the optimal offline algorithm for o.

Let us now reconsider the ski rental problem in the light of the above definition.
One strategy is to buy on the first day. This strategy is T-competitive and the worst
input sequence is obtained when . = 1. Another on-line strategy is to rent for the
first T'— 1 days and then buy. If L < T the cost of the on-line and optimal offline
strategy is the same. If L > T the cost of the on-line strategy is 27" — 1 and the cost
of the optimal offline strategy is T'. Hence this algorithm is (2 — 1/T')-competitive
and it is fairly easy to show that it is the optimal on-line algorithm.

In many cases, the definition of competitiveness is slightly relaxed by imposing
that Cx(0) < aCwmin(o) + ¢ for some constant ¢ independent of o.

2 Paging Problem

This is a problem which arises in system software. We have a two level memory divided
into pages of fixed size. There are k pages in fast memory while the remaining pages
are in slow memory. The input sequence o in this problem are requests to pages
< 01,09,03 --- >. If the request for a page o; is in fast memory then we need not do
anything, otherwise we have a page fault and are faced with the problem of deciding
which page in the fast memory to swap with ;. Our cost in this case is the number of
page faults. An on-line algorithm for this problem decides in the case of a page fault
which page to remove from fast memory without any information of the subsequent
page requests. For example, here are some possible on-line strategies:

LIFO (Last-In-First-Out): remove the page most recently placed in fast memory.
FIFO (First-In-First-Out): remove the page that has been in memory longest.

LRU (Least-Recently-Used): replace the page whose most recent access is earliest.

Online-2

LFU (Least-Frequently-Used): replace the page that has been accessed the least.

FWEF (Flush-When-Full): remove any unmarked page and mark the requested page.
Whenever all pages in fast memory are marked, unmark them all.

Let us consider the LIFO strategy for the paging problem. Consider an input
sequence of two pages p and ¢ repeatedly requested one after the other. It is easy to
see that LIFO is not a-competitive for any a. We say that LIFO is not competitive.
A similar comment can be made about LFU.

In the theorem to follow we will show that there exist k-competitive strategies
(where k is the size of the fast memory). Later, we shall show that this is the best
possible and we shall also characterize MIN - the optimal offline algorithm.

Theorem 1 LRU is k-competitive.

Proof:

Note that by definition of our problem, both LRU and MIN have the same initial
configuration in fast memory (i.e. the same k pages in fast memory.) We must show
that for any & initial pages in fast memory, and for all o, Crru(o) < k- Cyun(o).

Let us examine actions of LRU for any particular fixed o. Let us divide the input
sequence into phases:

C=01,...y Oi L|0Gsys 0506410,

~——
first page fault

phase 1 phase 2
where each phase contains exactly &k page faults, ending with a page fault. For
example, the first phase ends with o; where

J =min{t : LRU has k page faults in o(iy1),... ,0¢}

Let us consider a cost of a single phase for both LRU and MIN. By definition,
LRU makes k faults. We argue that MIN must make at least one page fault on each
phase. Let us consider two different cases.

Case 1: during the same phase, LRU faults twice on some page p. Thus, the phase
looks likes this:

all k pages in fast memory have been requested before second request to p

N o TE T Opy =D 5eee s Opy = D) e Oy
——
first page fault p the second page fault of p

Notice that after the first page fault to page p, p is brought into fast memory
and is later replaced (by some other page) only if p becomes the least recently
used page in fast memory (by definition of LRU.) Hence, if there is another
page fault to p, it means that all other & pages that are resident in fast memory
just before o, came after the first page fault to p but before the second request
to p. Thus, in this case, k 4+ 1 different pages have been requested in a phase.
This, however, forces MIN to make at least one page fault in every phase , i.e.
Cwmin > 1 for every phase.

Online-3

Case 2: LRU faults on k different pages. Here, we consider two sub-cases, depending
on the last page-fault (say on p) which occurred before the beginning of current

phase:
g;=1p 7[U(i+1)7"' 7Uj]7
last page fault before current phase current phase

Case 2a: In a current phase, there is a page-fault to page p.

g, =p 7[0-(i+1)7--'7p7"'70-j]7
N——
last page fault before current phase current phase

This case is very similar to case 1. In particular, before the second page
fault to p occurs, there must have been k requests to pages other then p,
to force p to be swapped out. Thus, during the current phase there are a
total of k + 1 different page requests. Thus Cyin(phase) > 1.

Case 2b: In a current phase, there is no page-fault to page p.

g;=p, [U(i+1)7"' 70-1]
current phase with no page fault on p
Let us consider MIN’s behavior. Before the phase starts it must have p
in its fast memory, and other k& — 1 locations which we don’t care about.
Notice, however, that during current phase, k different requests arrive,
none of them are p. Thus, to accommodate all of them, MIN must get rid
of p, hence Cyin(phase) > 1 as well.

Thus, for every phase, MIN must pay at least one page fault, wile LRU pays k faults.
However, what about the very first page fault, before the beginning of the first phase?
Observe that both LRU and MIN start in the same configuration. Hence, the first
time there is a request to page which in not in memory, it is in fact not in memory

for both LRU and MIN. Hence they both must do a page fault. O

Remark 1 Notice that essentially the same argument goes for FIFO in order to
show that FIFO s also k-competitive.

The above theorem was proved by Sleator and Tarjan [19]. Notice that in the above
proof we have not used explicitly what is the optimal offline strategy MIN. We have
only related the cost of the on-line algorithm under consideration to a lower bound
on the cost of any on-line algorithm. This observation might seem elementary but
comparing to a lower bound is a very typical technique in the analysis of algorithms
(not just on-line algorithms but also, as we shall see later in the class, approximation
algorithms).

The moral of the above proof-technique could be summarized as follows: we can
view competitiveness as a game between A’s strategy and an adversary who comes

Online-4

up with very bad inputs to A, knowing ahead of time A’s strategy. That is, we can
view it as a “game” between a player A, and an adversary. The adversary make the
first move by selecting o1 and then the player has to process this request. Then the
adversary selects (as his second move) oy and the player processes o3 and so on. Of
course, the adversary knowing A’s strategy in advance can simulate the game and
therefore can find (ahead of time) and play the most nasty sequence for A.

3 An Optimal Off-Line Algorithm for Paging

In this section, we determine an optimal off-line paging algorithm. We consider an
off-line algorithm which we call longest forward distance or LFD. When LFD must
service a page fault it removes the page, among the pages currently in memory, whose
next request comes last.

Theorem 2 (Belady [1]) LFD is an optimal off-line algorithm for paging.

Proof:

By contradiction: assume that there is an algorithm MIN superior to LED. Let
0 = 0103...0, be a sequence so that Crpp(o) > Cyin(o). At some point in the
sequence the two algorithms diverge. Let o; be the page request which initiates this
divergence. Before processing o; the two algorithms have the same pages in memory
so that o; must be a fault for both. Since they diverge at o;, they discard different
pages to service g;. Let g be the page that LFD discards and p the page that MIN
discards. Let ¢t be the first time after ¢ that MIN discards ¢q. We will alter MIN’s
behavior between o; and o; to create a new algorithm MIN*. MIN* will service o;
the same way that LED does (by removal of ¢) and will satisfy Cyins« (o) < Cyvin(0o).

By the definition of LFD, the next request to p, say o,, comes before the next
request to ¢, say oy, so that

0C=01...0;...0,=Pp...0p =¢q...0p

MIN* services o; by discarding ¢ (as does LED). After processing o;, then, MIN*
and MIN share exactly £ — 1 pages of memory. As we describe the behavior of MIN*
we will argue that, until MIN and MIN* converge, they share exactly k — 1 pages of
memory. MIN* behaves as follows:

CASE 1: ¢ <t < b. We describe how MIN* services a page request o; for i < [< {.
By induction on [, we will show that MIN and MIN* share exactly k —1 pages
of memory. This implies that there is a unique page e which MIN* has in fast
memory but MIN does not. Initially, i.e. for [= ¢4 1, this page € is p.

o1 # e: When o, # e, MIN faults exactly when MIN* faults. When there is a
fault, MIN* discards the same page that MIN does (recall that MIN does

Online-5

not discard ¢ until time ¢ so that MIN* can always do this). If MIN and
MIN* shared k& — 1 pages before the request of o; then they share & — 1
pages afterwards.

or=e: When o, = e, MIN faults but MIN* does not. In this case, MIN
replaces some page with e. Again, if MIN and MIN* shared & — 1 pages
before the request of o; then they share & — 1 pages afterwards.

Finally, to service oy, which is a fault for both, MIN* discards e. Since MIN
(by definition) discards ¢, MIN and MIN* again have converged. From the
above descriptions, it is clear that Cying(o) < Cyvin(o).

CASE 2: t > b. In this case, MIN* follows the same strategy as above for o; where
¢ < | < b. Notice that the same analysis is applicable and, upon arrival at
oy = ¢, MIN and MIN* have exactly k — 1 pages in common. Further notice
that, since p is requested before ¢, the events described in the (o; = €) portion of
the above discussion have taken place at least once so that Cyine(o1 ... 0p-1) <
Cyin(oy ... op—1). By definition, MIN does not fault on o, = ¢. MIN* does and
replaces e (the unique page which it has in memory that MIN does not) with g¢.
MIN* and MIN then have the same pages in memory after servicing o,. MIN*
then behaves as MIN does for the remainder of o. Since Cyini(oy ... 0p-1) <
CMIN(UI ce O'b_l), CMIN*(U) S CMIN(O'), as desired.

We conclude that Crpp(or...0;) < Cuming(oq...0;), an optimal strategy, and by
induction that Crpp(o) < Cuvin(o). O

4 A Lower Bound on the (Deterministic) Compet-
itive Ratio for the Paging Problem

We show a lower bound of k for the competitive ratio of any deterministic on-line
algorithm for the paging problem. We conclude that LRU is an optimal deterministic
on-line algorithm for this problem.

Theorem 3 For all on-line algorithms A there is a sequence of requests o =

ol .. oA so that Cp(o™) > k- Crpp(o?). This sequence o™ can in fact be chosen

from a universe of only k 4+ 1 pages.

Proof:
Given A, let o be the (unique) page excluded from the k-page memory of A after
servicing ot ... o® . With this sequence A faults on every request. Then, assuming

that the memory of A begins in some full initial state, we have that for all prefixes o
of 04, Cx(0) = |o|. For LFD, however, we have:

Online-6

Lemma 4 For all finite sequences o chosen from a universe of k+1 pages Crpp(o) <

lo|

o
Proof of Lemma:

Suppose that o; induces a page fault for LED. We show that LFD incurs no page
faults on any of o;41,...,0,4x-1. Let p be the page which LFD discards to service
o;. Since there are exactly k£ 4+ 1 pages, the next fault of LFD must be made on a
request to p. Notice that every other page in memory (before the service of o;) must
be requested before p is next requested (p is, by definition, requested last among these
pages). Hence at least k — 1 requests separate o; from the next fault, as desired. O

Let o be a prefix of o of length kl. Then Ca(0) = kl > k- CrLpp(o) so that A is,
at best, k-competitive. O

Remark 2 FIFO is also a k-competitive on-line algorithm for the paging problem
and so is also optimal.

5 Randomized On-Line Algorithms

The on-line algorithms we have discussed up to this point have been deterministic.
One shortcoming of such algorithms is that an adversary can always exactly determine
the behavior of the algorithm for an input o. This leads to diabolical inputs like
that crafted in the previous theorem. This motivates the introduction of the class
of randomized on-line algorithms which will have better behavior in this respect.
Informally, a randomized on-line algorithm is simply an on-line algorithm that has
access to a random coin. Formally,

Definition 2 A randomized on-line algorithm A is a probability distribution {A,}
on a space of deterministic on-line algorithms.

Notice that when we talk about randomized on-line algorithms, we must decide
what information the adversary is allowed to have. If we wish to say that the adversary
does not see any coin-flips of the algorithm (or, equivalently, that the adversary must
select his “nasty” sequence in advance, when he has no knowledge of the actual pages
removed from memory) then we define

Definition 3 An oblivious adversary knows the distribution on the deterministic on-
line algorithms induced by A, but has no access to its coin-tosses.

The above definition also implies that the adversary can not inspect which pages
A holds in his fast memory. Equivalently, this means that the oblivious adversary
must construct his nasty sequence o before the game between him and randomized
A starts. Thus, notice that against an oblivious adversary, randomization is useful
in order to hide the status of the on-line algorithm. The notion of competitiveness is
now defined as follows:

Online-7

Definition 4 A randomized on-line algorithm A distributed over deterministic on-
line algorithms {A,} has a competitive ratio of o against any oblivious adversary

of
de, Vo, Exp[Ca,(0)] < aCyin(o) + c.

The additional constant ¢ is introduced to account for possible differences in the initial
configuration of the on-line algorithm and the adversary.
We introduce two randomized on-line paging algorithms:

RANDOM: RANDOM services page faults by discarding a random page, i.e. a page
selected uniformly from the pages in fast memory.

MARKING: Initially, all pages are marked. When a page p is requested,

1. If p is not in memory then

o If all pages in memory are marked then unmark all pages

e Swap p with a uniformly selected unmarked page in memory.

2. Mark page p in memory.

We will first focus on MARKING. We will show that

e By using randomization, MARKING achieves a competitive ratio of 2H}, against
an oblivious adversary, where H, = 1+ % +.. .—I—% is the k-th harmonic number.

o MARKING’s competitive ratio is nearly optimal in that no randomized algorithm
has competitiveratio better than Hy. In proving this, we will introduce a general
method of proving lower bounds for randomized competitive algorithms against
an oblivious adversary.

Both results are due to Fiat et al. [9].

6 Analysis of the MARKING Algorithm

Theorem 5 MARKING is a 2H-competitive paging algorithm against any oblivious

adversary, where Hy, = S5 % is the kth harmonic number.

In other words, we need to show that
\V/O', EXp[CM(O')] S QHkCMIN(O'),

where M for conciseness denotes MARKING. This implicitly assumes that M and
MIN have initially the same pages in fast memory (otherwise, we would have an
additional constant ¢). To prove this competitiveness, we need to prove an upper
bound on the LHS and a lower bound on the RHS, and show that the inequality still
holds.

We begin by fixing the input sequence o and by then dividing it into phases as
follows.

Online-8

e The first phase begins on the first page fault.
o The 7 4 1-st phase starts on the request following the last request of phase 2.

o If phase p starts on o;, then it ends on o;,,,_y where [{oy,,... 00} =k+1
but {oi,,... ,0i,,-1} = k.

Thus, in a phase, exactly k distinct pages are requested.

Notice that the initial portion before the first phase costs nothing. Hence the cost
of M on o is the sum of the costs of M on all phases of o.

Before we go any further let us understand the dynamics of a phase by the following
remarks. Let us denote by 5; the set of pages that were in memory just before phase
¢ begins.

Remark 1: Once a page has been accessed in a phase it is marked and hence
will remain in memory till the end of the phase. Thus we may pay a price of 1 for a
page ¢ only if this is is the first time ¢ is accessed during this phase and if ¢ is not in
memory.

Remark 2: We claim that at the end (or the beginning) of every phase the k
pages in fast memory are all marked and correspond to the k distinct pages requested
during that phase. This can easily be shown by induction. At the beginning of the
first phase all pages in fast memory are marked (since no page fault has yet occurred).
By induction, one can thus assume that the first request in a phase will cause a page
fault (this is true for phase 1 and, for later phases, this follows by induction from the
claim applied to the previous phase). Then, during the phase, the k distinct pages
requested will be marked and will remain in fast memory until the end of the phase,
proving the inductive statement.

Remark 3: Obviously, the definition of a phase does not depend on the coin-
tosses of M but only on the input sequence. In other words, the same input sequence
will always be divided in exactly the same way into phases regardless of the coin-tosses
of M. The coin-tosses only affect the dynamics of M’s behavior within a phase. Also
(see remark 2), S; does not depend on the coin-tosses — S; is simply the & distinct
requested pages in phase ¢ — 1.

By these remarks we can focus on the £ distinct pages accessed in phase ¢; for
each such page, we only concentrate on the first time this page is accessed since only
such first-time requests can cost us anything. We divide such first time requests into
two categories.

o Clean Requests: These are requests to pages that did not belong to 5;. We
have to pay a price of 1 for each such request regardless of the coin-tosses.

o Stale Requests: These are requests to pages that belonged to set S; at the
beginning of the phase. Unfortunately, such a page may have been ejected to
make room for a clean page. If it is still around, we pay 0 or else we pay 1.
Thus our first major task is to find the expected cost of a stale request.

Online-9

Since a phase consists of requests to exactly k distinct pages, if there are [clean
requests then there must be k — [stale requests.

6.1 The expected cost of a stale request within a phase

Consider a typical stale request o; to page p within phase ;. Assume there have been
s stale requests and ¢ clean requests so far in the phase. We wish to find the expected
cost of this request in terms of ¢ and s. To do so, we need the probability that page
p is still in memory after s stale and ¢ clean requests. Notice that since this is the
first time we are accessing p, p is unmarked.

Now what do we know? We know that the pages requested by the s stale requests
are in 9;, by definition of a stale request. Furthermore, since requested pages are
marked, the stale pages will not be removed until the end of the phase, therefore they
are in fast memory at time 5 — 1. This means that both fast memory at time j — 1
and 5; contain all of these s stale pages. Therefore, the ¢ clean requests now occupy ¢
uniformly distributed slots from the remaining k— s slots. Now we can easily compute
the expected cost of a stale request. It is the probability that the requested page is
one of the ¢ pages which is no longer in fast memory due to the clean requests. There
are k — s candidates for these pages. Hence:

Exp[Cn(a;)] =

c

E—s

6.2 Bounding the total cost of M on a phase
We summarize the last section as follows:

Lemma 6 The expected cost of the s + 1-st stale request in a phase is equal to =
where ¢ is the number of preceding clean requests in this phase.

Suppose we know that there are [; clean requests within phase . Recall that [; is
defined purely in terms of the input sequence (see Remark 3) and does not depend
on the coin-tosses.

Then there must be k — [; stale requests within this phase. Clearly the number of
clean requests preceding any stale request is no more than /;. Using this and the last
lemma and summing over all & — [; stale requests the expected cost of all the stale
requests on the phase is no more than D where

l; l; l;
D = k—l_k—l—l_'”—l_k—(k—li—l)'

Also the cost of all all clean requests is exactly /; since each clean request costs 1.
Hence the total expected cost of M on phase ¢ is no more than D + [;. Now

1 1
oS,
it Tt S

D+ =041+

In summary:

Online-10

Lemma 7 The expected cost of M on phase i of o is no more than [;Hy, where Hy =

1+ % + ...+ % is the k — th Harmonic number.

6.3 Bounding the total cost of any offline algorithm M on a
phase

Consider any offline algorithm A. Let us simulate A and M on the same input se-
quence o. As before we can divide ¢ into phases defined by the execution of M. Let
us define a potential function ®; which is the number of pages in A’s memory that
are not in M’s memory just before Phase 2 begins. Notice that this potential function
is well-defined because the pages in M’s memory at the start of Phase ¢ is determined
by o and not by the coin-tosses of M. (see Remark 3 again!).

We know that M receives [; clean requests in phase . By the definition of clean
requests these were not in M’s memory at the start of Phase 7. Hence at least [; — ®;
of these pages are also not in A’s memory at the start of Phase . Thus if we let

Ci(A) be the cost of A during phase 7 we have
Lemma 8 C;(A) >, — ®,.

Next, by definition A has ®,,; pages at the end of Phase ¢ that are not in M’s
memory. Thus M has a set P; of ®,41 pages at the end of Phase ¢ that are not in A’s
memory. But each page in M’s memory at the end of Phase ¢ was accessed in Phase
i. Thus all pages in P; must have been in A’s memory at some time during Phase ¢
but they have been ejected by the end of the phase. Each ejection costs 1 and thus
C:(A) must be at least |P;| = ®;41. Thus:

Lemma 9 C;(A) > ®,44.

We can easily combine Lemmas 8 and 9 to get the more useful bound of C;(A) >
%(Zi — @, + &,41). If we now amortize this bound over the first n phases, we see that

1
C(A) > 5(11_(I)l—I_q)Z—I_ZZ_q)Z—I_(I)S---—I_ln_q)n—I_(I)n-I—l)
1 n
= 5(2 li — &1+ Dpiq).
=1
Since ®,,1 > 0 and we assume that &, = 0, we derive:

Lemma 10 C(A) > 137 [

6.4 Establishing the Competitive Factor of M

From Lemma 7 the total expected cost of M on input o is at most Hy >, {;. Also from
Lemma 10 the total cost of any offline algorithm A on input o is at least 0.5%; [;.
Thus M is 2H), competitive.

Online-11

7 Lower Bound for any Randomized Algorithm

7.1 A useful technique

How do we prove a lower bound on the competitive factor o (even if we allow an
additional constant) of a randomized algorithm against an oblivious adversary? We
do so by picking a distribution D of input sequences and evaluating the expected
cost of the best on-line algorithm and the expected cost of MIN (i.e. the best offline
algorithm) on distribution D. We now develop this method.

Any randomized algorithm can be considered as a distribution A over all possible
deterministic on-line algorithms A,. Let Cy(c) be the cost of deterministic algorithm
H on input o. Thus when we say that A is a-competitive we mean that for all o,

E?P[CAI(U)] < aCyn(o) + c.

Let us use o7 to denote the first j elements in sequence o. Assume we have a distri-
bution D over the input sequences o. Fix a j. We can take expectation (over input
sequences of length j using distribution D) over both sides of the last equation to get

EgP[Eﬁp[CAE(UZ)H <a E?P[CMIN(UZ;)] +c.

We can use Fubini’s theorem to exchange the two expectation quantifiers on the LHS
and derive:

Egp[Egp[CAm(Ui)]] <a E?P[CMIN(UZ;)] +c.

Let m; = Ming(Exp,[Cu(c])]) where the minimum s taken over deterministic on-line
algorithms H. In other words m; is the expected cost of the best on-line deterministic
algorithm on input sequences distributed according to D. Using this definition in the
last equation we have:

m; < OéEifp[CMIN(UZ/)] +c
and thus

my C

S et N
Exp, [Cviv(oy)] Exp, [Cviv ()]

Suppose D is chosen so that lim;_.. Expy[CMIN(Ui)] is co. Then:

m;

lim — <
i=e Exp, [Cvin(oy)]
What is this equation saying? It says that the competitive ratio of any randomized
algorithm against an oblivious adversary is at least as big as the ratio of the expected
cost of the best deterministic on-line algorithm to the expected cost of the best offline
algorithm when evaluated using distribution D over “large enough” input sequences.
Notice that we are free to choose D to maximize this ratio.

Online-12

7.2 Applying the general method to the Paging problem

We will prove the following result using our general method.

Theorem 11 For the paging problem, if A is a randomized on-line a-competitive
algorithm against an oblivious adversary then o > Hy, even if there are only a total
of k+ 1 pages that can be requested.

Proof:

In order to have the inequality m; < Expx[Expy[CAm(ai)]] as tight as possible, we
choose D such that any deterministic on-line algorithm performs equally badly (in
expected cost). In our case this can be obtained by choosing o; uniformly among all
k + 1 pages and independent of all previous requests. Since the fast memory only
contains k pages, any deterministic algorithm will pay an expected cost of ﬁ for
serving o; resulting in an expected cost of k]? Thus m; = 2

Our lower bound technique therefore implies that

J
k+1°

: J
a > lim —.
J—00 (k + 1) EXpy[CMIN(O'y)]

Using this, we can restate the claim of our theorem as

, J
' Jim — = (k4 1)H,.
(1) i=eo Bxp, [Cyvin(0)] (-

To prove this claim, we need to study the behavior of MIN. We divide ¢ into
stochastic phases. Phase ¢, > 0 consists of the requests indexed in [X;, X; +
L,..., Xix1—1] where Xg =1 and X,y = min{t: {ox,,0x,41,-..,00} ={1,... , k+
1}}.

Notice that the X; are random variables since o is distributed according to D
(which in our case is the uniform distribution.) A phase contains requests to only k
pages and hence if MIN has a page fault in some phase, the next page fault cannot
occur before the next phase. Thus the number of page faults incurred by MIN on o
is at most the number of phases that occur up to time j. And hence the expected
cost incurred by MIN is at most the expected number of phases that can occur up to
time j5. Hence

EXp[CMIN(UZ/)] <1+ Exp[max{p: X, <j}].
y

To compute the LHS of (1) we use some results from the theory of stochastic
processes. Since the random variables {Y;} = {X;41 — X, : ¢ > 0} are independent and
identically distributed, they form a so-called “renewal process” and by the elementary

Online-13

renewal theorem we have that

| ; | j

! =}

s Exp[max{p : X, <j}] = Explmax{p : X, < j}]
= Expllength of phase]

= Exp[X; — 1] = Exp[X;] — 1.

Intuitively, this says that the expected number of phases is asymptotically equal
to the length of the sequence divided by the expected length of a phase. Removing
the “expected” this makes perfect sense.

We have therefore shown that

Exp[Xi] -1
o> ——
- kE+1
We now need to compute Exp[X;]. By definition, X7 = min{t : {oy,... 0} =

{1,...,k+ 1}}. Each o; is uniformly distributed among the k£ 4+ 1 pages and is
independent of o; for any j # ¢. Computing Exp[X;] under these circumstances is
called the “coupon collector problem”: Given a collection of k& + 1 distinct coupons
(say baseball cards), Exp[Xi] represents the expected number of independently and
uniformly selected coupons a collector has to acquire before obtaining the complete set
of distinct coupons. In order to solve this problem, we introduce the random variables
Zifor 1 <1 < k+1, where Z; = min{t : |{o1,... ,o¢}| =i} for e =1,... k+ 1.
Thus Z; = 1 and Zp1; = X;. Note that between Z; and Z;1q, the probability

of getting a new page is k;':_? at each step. So waiting for a new page between
Z; and Z;y1 is a Bernoulli process and the expected waiting time is kﬁ_"{il Hence
Exp[Zis1 — 7)) = kﬁjl—z Thus
Exp[Xi] = Exp[Zip] = B, (Exp[Zipa] — Exp[Z]) + Exp[Z)]
k
= (O Exp[Ziy1— Zi])+1
i=1
11 1
= k+1D)(1+=-4+=-+...+-)+1
(-I-)(—|-2—|-3—|- +k)+
= (k+1)Hy + 1.
So o > WEHDHHI=L _ f - Thig completes the proof of Theorem 11. O

]
From Theorem 11, we see that MARKING is optimal up to a factor of 2. An

optimal (i.e. with competitive ration Hy) randomized on-line algorithm against any
oblivious adversary has been obtained by McGeoch and Sleator [17].

Online-14

8 Types of Adversaries

In this section, we discuss various types of adversaries for on-line algorithms and their
relative power. The definitions and results in this and the following section are due
to Ben-David, Borodin, Karp, Tardos, and Wigderson [2].

So far, we have analyzed the performance of a randomized on-line algorithm A
against an oblivious adversary Q. Q knows the distribution over deterministic algo-
rithms that A is using, but must generate a request sequence o without knowledge
of the results of A’s coin tosses. We have analyzed A’s performance in terms of a
“game” between A and (). Before the beginning of the game, () selects a number n
to be the number of requests oy,03,...,0, which it will make. Then Q begins to
make requests and A begins to process them on-line with “answers” ay,as, ... ,a,. If
A is a randomized algorithm, then we think of A as making coin tosses in order to
choose each a;. But Q must make each request o; with no knowledge of the previous
answers aj,...,a;—1. Thus, the “game” is not really very interesting — Q may as
well choose all the o; right at the beginning. In order to make the game genuinely
interactive, we consider stronger types of adversaries, which have access to the coin
tosses of A.

Definition 5 An adaptive adversary, Q, against a randomized algorithm, A, is
an adversary which has access to A’s previous coin tosses. That is, when Q selects
request o; it has knowledge of A’s responses ay,aq, ..., a;_1.

For an adaptive adversary, QQ, however, we give Q) the task of processing the same
requests 01,09, ... ,0, given the same resources and initial conditions as A. Thus Q
incurs a cost, Cq(A), which is the sum of the costs of Q’s responses ¢1,¢2,... ,¢n,
even as A’s cost, which we now call CA(Q), is the sum of the cost of A’s responses
ai, s, ... a,. We wish to define two distinct types of adaptive adversaries based
on the way in which they process these requests and the resulting difference in their
incurred cost, Cq(A).

Definition 6 An adaptive offline adversary, Q, against an algorithm, A, is an
adversary which makes a request and then gets back A’s response before making its
next request. After A has responded to all the requests o1,04,... ,0,, then Q will
process these same requests using the optimal offline strategy, MIN. Thus Cq(A) =
Cyin(o), where o is the sequence of requests which QQ makes.

Definition 7 An adaptive on-line adversary, Q, against an algorithm, A, is an
adversary for which both A and Q must respond to each request before QQ decides
what the next request will be. The adversary, Q, learns of A’s response, a;, to each
request, o;, only after it has made its own response, q;, but before it has to decide
which request 0,41 to make next.

Online-15

Remark 1: MIN is at least as good as any on-line strategy, so for any adaptive
on-line adversary, there is an adaptive offline adversary which does at least as well.
Thus the concept of an adaptive offline adversary is stronger than that of an adaptive
on-line adversary.

Remark 2: The concept of an adaptive on-line adversary is stronger than that
of an oblivious adversary.

Consider the case in which A is a randomized algorithm. Then ay,as, ... ,a, are
random variables to be determined by A’s coin tosses. Since ¢, ¢s,... ,q, depend on
the a;’s which precede them, they too are random variables. Similarly, the costs asso-
clated with each of these responses ay,as,... ,d,,q2,q3,... ¢, are random variables.
Finally, the costs CA(Q) and Cq(A) are random variables, since they are formed by
summing the costs of the a;’s and ¢;’s (including ¢1), respectively. Thus in considering
how effective A is we want to consider the expectations of these quantities, E[C(Q)]

and E[Cq(A)].

Definition 8 A randomized algorithm, A, is a-competitive against an adaptive ad-

versary, Q, if
E[CA(Q)] < aE[Cq(A)].

Remark 3: If A is deterministic, there is no difference between oblivious, adaptive
offline, and adaptive on-line adversaries.

9 Some Results about Competitiveness against Var-
ious Types of Adversaries

An adaptive offline adversary is so strong that an algorithm which must confront an
adaptive offline adversary is not helped by making use of randomization.

Theorem 12 If there is a randomized on-line algorithm A which is a-competitive
against any adaptive offline adversary, then there is an a-competitive deterministic
on-line algorithm G.

Proof:
Let A be distributed over deterministic on-line algorithms A .. So for any adaptive
off-line adversary Q,
LR [Ca(Q)] — aliu[Cq(As)] < 0.

Again, note the use of expectation in the second term. Qs cost is a random variable
as well, based on A’s coin tosses.

We now show how to construct a deterministic on-line algorithm G so that
Ca(o) < aCyin(o), for any o. Assume that the first request to A is oy; we can

Online-16

restrict our attention to adversaries that start with ;. Maximizing over such adver-
saries, we obtain:

Mazq{E;[Ca,(Q)] — ab:[Cq(As)]} < 0.
We can now condition values on the answer ay:
Eoy [Mazq{E:[C4,(Q) | a1] — aEs[Cq(As) | aa]}] 0.

Since this expectation is non-positive, there must exist some specific a] for which the
value of the expression inside the brackets is non-positive. That is,

Maz{E,[Cs.(Q) | a}] — aE.[Co(A,) | a}]} < 0.

So our deterministic algorithm G will be one that plays a] on request oy. Now Q
plays oq; again, we restrict our attention to adversaries that play this way. Condi-
tioning now on the choice of a,,

Eo, [Mazq{E;[Cx,(Q) | a7,] — aEy[Cq(As) | a7, a5]}] < 0.
So there must be some answer a for which
Maro{E:[Ca,(Q) | dia3] — aE[Co(As) | dias]} <0,

the maximum being taken over the adversaries playing oy first and playing o3 when
the answer to oy is aj. The algorithm G will play a3.
Proceeding in this way, we obtain a sequence of answers a3, ... ,af for which

Mazo{E,[Ca,(Q) | a7 ---aj] — aBu[Cq(As) | a]---af]} <0

until request 0,41 is the special “STOP” request. At this point, the first term is
the cost of our deterministic algorithm G on ¢ = oy --- 0,41, and the second term is
Cyin(o), since Q can answer the request sequence off-line.

Thus, by always playing an answer which makes the expectation non-positive, G
will be a-competitive. O

Remark 4: This is merely a proof that G exists. It does not tell us how we might
construct G, but the proof can be made somewhat constructive. We won’t go into
the details here.

Theorem 13 If G is an a-competitive randomized on-line algorithm against any
adaptive on-line adversary and there is a 3-competitive randomized on-line algorithm,
H, against any oblivious adversary, then G is an af-competitive randomized on-line
algorithm against any adaptive offline adversary.

Online-17

Proof:

Let Q be any adaptive off-line adversary, and G,, H, denote the two randomized
on-line algorithms with their associated probability distributions. We will also use
the notation (), to emphasize that the behavior of) depends on the coin tosses of
G. We show a pair of inequalities which together will prove the theorem.

Consider first that (Q is playing G,. The algorithm H, watches from a distance
and plays along. Then Q is simply an oblivious adversary with respect to H,, so for
all x,

Ey[Cn, (Qz)] < 5C0.(Ga).

Thus we have the first of our inequalities:

(2) BBy O, (Qo)] < BE[Cq,(Go)].

Now consider the case in which) and H join forces to play against G. That
is, we form an adaptive on-line adversary ()’ which generates requests according to
the strategy of Q and uses the answers hy, ho,... of H. The cost of Q against G,
is Cy,(Qz), since Hy is being used to provide the answers; meanwhile, the cost of
G, against Q’ is simply Cq,(Q), since Q’ uses Q to generate the requests. G is
a-competitive against any adaptive on-line adversary, so for all y,

E:[Ca, (Qu)] < aBu[Ch, (Q.)]
EyEy[Ca, (Qe)] < akby By Cn, (Qu)]-

The left-hand side is independent of y, and we can swap the order of the expectations
on this right-hand side, obtaining the second inequality:

Combining these two inequalities,

E[C6,(Qo)] < afEe[Co,(Ge)l,
completing the proof that G is af-competitive against Q. g

Corollary 14 Under the same assumptions, there is a deterministic «/3-competitive
on-line algorithm.

Example:

For paging, there is a lower bound of k& on the competitive ratio of
a deterministic on-line algorithm, but there is also an Hji-competitive
randomized on-line algorithm against any oblivious adversary. So by the
contrapositive of the corollary, there is a lower bound of Hik on the compet-
itive ratio of a randomized on-line algorithm against any adaptive on-line
adversary.

Online-18

Corollary 15 If G is an a-competitive randomized on-line algorithm against any

2

adaptive on-line adversary, then there is an a’-competitive deterministic on-line al-

gorithm.

The corollary is true because if G is a-competitive against any adaptive on-line
adversary, then G is a-competitive against any oblivious adversary, and the corollary
then follows from the theorem.

This last corollary is quite striking; it says that to show the existence of a compet-
itive deterministic algorithm, we need only construct a randomized algorithm which
is competitive against an adaptive on-line adversary.

10 Analysis of RANDOM

In previous sections, we’ve seen MARKING used as a competitive algorithm against an
oblivious adversary. An even simpler randomized algorithm is RANDOM, which, when
needed, removes a uniformly selected page from the main algorithm’s fast memory.

We'll show

Theorem 16 (Raghavan and Snir [18]) RaNDOM (R) is k-competitive against
any adaptive on-line adversary Q.

The proot of the theorem uses a potential function argument, which is a funda-
mental technique in establishing competitive ratios.
Proof:

The proof is based on the idea of a potential function ® which measures the
similarity between the k pages in Q’s fast memory and the k£ pages in R’s fast memory.

More precisely, let (); be the set of pages in Q’s memory just after servicing
request o;, and similarly for R;. Then let ®; = |R; N @], the size of the intersection
between (Q’s memory and R’s.

Now, let X; = Cr(0;) — kCq(0;) — k(®; — ®,_1). The first thing to notice is that,

for a sequence of requests oy, ..., 0y,

iXi = Cr(Q) — kCq(R) — k(®; — ®y).

If we assume that all algorithms start with the same set of pages in fast memory, then
Oy = k. Since no ®; can be greater than k, we have

X > Cr(Q) — kCo(R).

=1
from which, by the linearity of expectations,
J
> BIXi] = E[Cr(Q)] — kE[Cq(R)].

=1

Online-19

Jgp ... Oy .. O ... Oy

Qi1

Figure 1: Pages of memory.

Thus, if we can establish that Y7_, F[X;] < 0 then we will have shown that R is
k-competitive.

Claim 17 E[X;] <0 for all X;.

It is sufficient to show that the claim holds for any given pair of states

Qi_1 and R;_q:
ElX; | Qiz1, Ri1] <0 for all states Q;_1 and R;_4.

We will establish this by cases, considering where o; lies relative to ();_1,
R;_y and their intersection. For illustration, see Figure 1.

L. o€ (QiziNR;_y)
The case is that of o, in Figure 1. Here there is no cost for either
Q or R, since the page is already in both of their memories, so

Cr(oi) = Cqlo;) = 0. Since neither algorithm alters its memory,
®;, = d,_1, 50 X; =0, and thus

EIX; | Qiz1, Rizq]) = 0.

2. 07 € (Qic1 \ Rizq)
This is like o in Figure 1. In this case only R needs to do any
work, so Cq(o;) = 0 and Cgr(o;) = 1. When R chooses the page
to eliminate from fast memory it chooses it uniformly, choosing a
page in ();_; with probability ®;_;/k. If the chosen page is in ();_y
then one page will be eliminated from),y N R;_; and one added,
so &, = &,_1. If not, then &; = &,y + 1, since no page has been
eliminated from the intersection. Thus

U

k 2

E®; — 0| Qis1, Risq] =1—
SO
o4
k

Since there was at least one page (0;) not in Q;—1 N R;—1 we know
that ®,_; < &, so

E[Xi|Qi—laRi—1]:1—0—k<1—)zl_k_q)i_l‘

EIX; | Qiz1, Rizq] <0.

Online-20

3. 0, € (Rizy \ Qiz1)
This is like o. in Figure 1. Since only) needs to do any work,
Cqo(o;) = 1 and Cgr(o;) = 0. Now, whatever Q does in this case,
the potential ®; will not decrease; as in the previous case, it will

either stay the same or increase by one, so ®; — ®;_; > 0. Thus

X, <0—-k—Fk(0)<0,so
E[XZ | Qi—laRi—l] < 0.

4. o; @é (Ri—l U Qi—l)
This is the case of o4 in Figure 1. Since both Q and R must pull o;
into fast memory, Cq(0;) = Cgr(o;) = 1. Unlike the previous cases,
®; may here either stay the same, go up by one, or go down by one.
Now, let’s calculate the probability that ®; decreases by one. We
have

Pr[®; — @,y > 0| Qi—1, Ricq] > %

To see this, fix the page that) chooses to discard. If the page is not
in (Q;—1 N R;—1) then, with probability 1, ®; does not decrease. If
the page is in (();—1 N R;—1) then R will choose to discard the same
page with probability 1/k. Thus the probability in both cases is at
least 1/k. This gives us

1
Pl"[q)z’ —¢,, <0 | Qi—l,Ri—l] <1- x
SO

E®; — ;1 | Qim1, Risa] > (—1)(1 — +).

T =

This is enough to give us

EIX: | Qrry Rioa] < 1= k(1) = k(=1) (1 _ %) _0.

Since F[X; | Qi—1, Ri—1] <0 for all Q;—; and R;_q, E[X;] <0, so
J
0> E[X] > Cr(Q) — kCqy(R)
=1

which proves the theorem. O

Note that we have assumed for this analysis that the adversary doesn’t change its
memory when it doesn’t have to. Though we don’t prove it here, it can be shown
that this type of lazy adversary is at least as strong as any other, so the assumption
is harmless.

Online-21

11 The k—Server Problem

So far, we have been dealing with various concepts related to on-line algorithms, as
well as the paging problem. In this and subsequent sections, we consider another
famous problem for its apparent simplicity, the k-server problem. However, as it will
appear, much less is known for the k-server problem than for the paging problem,
although it has been extensively studied in the last few years.

The following is a practical analogy for the k—server problem. Suppose we have a
city with a set of k police cars. When an emergency occurs somewhere in the city, one
police car is chosen and dispatched to the site. We ignore the length of time for the
car to travel to the site, ignore the length of time for the emergency to be handled,
and count only the distance the police car must travel. Another emergency occurs and
some car, maybe the same one, is chosen to travel to the next site. The emergencies
must be attended to in order, and the dispatcher does not know in advance how many
emergencies will occur where. Again, the cost function (to be minimized) is simply
the sum of distances that the cars must travel, over all the emergencies. To formally
analyze the k—server problem, we need to define a metric space.

Definition 9 A metric space is a set of points V along with a distance function

d:(VxV)eRsuchthat
d(u,v) >0, Yu,ve V.
0iff u=o

=d(v,u), Yu,v eV

u,v

)
d(u,v) =
d(u,v)
d(u,v) + d(v,w) > d(u,w), Yu,v,we V.

u,v

Y

In other words, d is nonnegative, strictly positive between different points, satisfies
the triangle inequality, and is symmetric. Often for purposes of this problem V' is
finite, but this is not obligatory.

Definition 10 (The k-server problem) The input is a metric space V, a set of k
“servers” located at points in 'V, and a stream of requests 01,09, ..., each of which
is a point in V. For each request, one at a time, you must move some server from
its present location to the requested point. The goal is to minimize the total distance
travelled by all servers over the course of the stream of requests.

In general, the optimal solution to a k—server problem can be computed off-line
by dynamic programming. (Dynamic programming can be done in polynomial time.)
Another possible approach is to construct a graph such that the n requests and the
k servers correspond to n + k distinct vertices. For those familiar with the theory of
network flows, the off-line problem can be solved as a minimum-cost flow problem on
n copies of the graph. One must construct appropriate weighted edges. The class is
invited to think about this as an exercise.

Online-22

Claim 18 For any stream of requests, on-line or off-line, only one server needs to be
moved at each request.

To show a contradiction, assume otherwise. In response to some request, o;, in your
stream, you move server j to point o; and, in order to minimize the overall cost, you
also move server k to some other location, perhaps to “cover ground” because of j’s
move. If server k is never again used, then the extra move is a waste, so assume server
k is used for some subsequent request o0,,. However, by the triangle inequality (see
the definition of a metric space), server k could have gone directly from its original
location to the point o, at no more cost than stopping at the intermediate position
after request o;.

We might, in general, consider algorithms which move more than one server at
a time. While we will sometimes do this for purposes of analysis, we can in general
ignore such algorithms thanks to the triangle inequality.

11.1 Special Cases of the k—Server Problem

1. Paging.
The paging problem is a special case of the k-server problem, in which the k
servers are the k slots of fast memory, V' is the set of pages and d(u,v) = 1
for u # v. In other words, paging is just the k—server problem but with a
uniform distance metric.

2. Two-headed Disk.
You have a disk with concentric tracks. Two disk-heads can be moved linearly
from track to track. The two heads are never moved to the same location and

==

Figure 2: Two-headed disk.

need never cross. The metric is the sum of the linear distances the two heads
have to move to service all the disk’s I/O requests. Note that the two heads
move exclusively on the line that is half the circumference and the disk spins to
give access to the full area.

Online-23

11.2 Summary of known results

We already have results about paging that can be used for the k—server problem.
Positive results about paging can’t be generalized, but since paging is a case of the
k—server problem, the lower bound for paging also applies in general.

Theorem 19 (Manasse-McGeoch-Sleator [16]) For no metric spaces is there a
deterministic a-competitive algorithm for the k-server problem such that o < k.

The general proof is similar to the previous proof with a uniform distance metric.
However, in the case of paging we actually have a k-competitive deterministic on-line
algorithm.

Open Problem: Whether or not there exists a k—competitive deterministic al-
gorithm for the general k—server problem. In fact, for some time it was unknown
whether there exists a f(k)-competitive algorithm, where f(k) is a function of k.

Theorem 20 Fiat, Rabani and Ravid [10] proved by induction on k that there is an

f(k)-competitive algorithm for the general k—server problem, where f(k) = ¢©*losh),

Very recently, it was shown by Koutsoupias and Papadimitriou [15] that the so-
called work-function algorithm of Chrobak and Larmore [7] is 2k — 1-competitive. It
is an open problem whether the same algorithm is in fact k-competitive.

11.2.1 Results for specific &

k =1 This case is trivial, since there is never any choice about which server to send.
Thus any reasonable algorithm is 1-competitive.

k = 2 There is a 2-competitive deterministic algorithm for this case, due to Manasse,
McGeoch and Sleator [16]. Even with this small k, the algorithm is nontrivial
and would make a challenging exercise. The work function algorithm is also
known to be 2-competitive [7]. There has also been work on developing com-
petitive algorithms for 2 servers which are “fast” in the sense that they perform
only a constant amount of work per request [12, 4, 14].

k=|V|—1 . Then the algorithm BALANCE, described later, is k-competitive [16].
A variation of BALANCE is also known to be 10-competitive for the case k = 2
(Irani and Rubinfeld [12]).

11.2.2 Results for specific metric spaces

paging For paging, we've already seen a k-competitive algorithm.

line, tree For these configurations, there is a k-competitive deterministic algorithm
[5].

circle For points on the circle, there is a deterministic &3-competitive algorithm.

Online-24

11.2.3 Greedy

The most obvious on-line algorithm for the k-server problem is GREEDY, in which
a given request is serviced by whichever server is closest at the time. The following
example, however, shows the major flaw in this algorithm:

Consider two servers 1 and 2 and two additional points A and b, positioned as
follows (assume something like a Euclidean metric):

o o2 o o

Now take a sequence of requests ababab.... GREEDY will attempt to service all
requests with server 2, since 2 will always be closest to both A and b, whereas an
algorithm which moves 1 to A and 2 to b, or vice versa, will suffer no cost beyond
that initial movement. Thus GREEDY can’t be a-competitive for any a.

11.2.4 The BALANCE Algorithm

We now describe the BALANCE algorithm mentioned above. At all times, we keep
track of the total distance travelled so far by each server, D,.,..,, and try to “even out”
the workload among the servers. When request ¢ arrives, it is serviced by whichever
server, ¥, minimizes the quantity D, + d(x,¢), where D, is the distance travelled so
far by server x, and d(x,?) is the distance & would have to travel to service request
i. BALANCE is k-competitive when |V| = k 4+ 1. However, it is not even competitive
for £ = 2. Consider indeed the following instance suggested by Jon Kleinberg. The
metric space corresponds to a rectangle abed where d(a,b) = d(¢,d) = « is much
smaller than d(b,¢) = d(a,d) = . If the sequence of requests is abedabed. .., the
cost of BALANCE is (3 per request, while the cost of MIN is a per request.

A slight variation of BALANCE in which one minimizes D, + 2d(x,7) can be shown
to be 10-competitive for k = 2 [12].

12 The Randomized Algorithm, HARMONIC

While GREEDY doesn’t work very well on its own, the intuition of sending the closest
server can be useful if we randomize it slightly. Instead of sending the closest server
every time, we can send a given server with probability inversely proportional to its
distance from the request.

Thus for a request A we can try sending a server at @ with probability 1/(Nd(z,a))
for some N. Since, if On is the set of on-line servers we want

1
1= ey
er(;n Nd(z,a)
we set .
N =
er(;n d(z,a)

Online-25

This algorithm is known as the HARMONIC algorithm (H). Note, once again, that in
the special case of paging this is identical to RANDOM.
HARMONIC is competitive as stated below.

Theorem 21 (Grove [11]) HARMONIC is (k2% &2k)-competitive against an adap-
tive on-line adversary.

Before this fairly recent result, HARMONIC was only known to be 3!7°%-competitive
for k = 3 [3] and 3-competitive for 2 servers [6].

There is a known lower bound for this algorithm. Specifically, for some adaptive
on-line adversary Q, we know that Cy(Q) = (k";) Cqo(H), (where H denotes HAR-

MONIC) so we can’t hope to do better than (k";

the competitive factor for HARMONIC is indeed equal to this lower bound.
Finally, recall that we can get an a?-competitive deterministic on-line algorithm

)—competitiveness. It is open whether

from an a-competitive randomized algorithm. So this theorem will also give us a
(%ka &2k)?-competitive deterministic algorithm, although the algorithm that we get
this way is far from efficient.

12.1 Analysis of HARMONIC

We prove here a slightly weaker result than Grove’s result.

Theorem 22 HARMONIC is k22" '-competitive against an adaptive online adver-
sary.

Proof:
In the following, let OFF denote both the servers of the online adaptive adversary
which HARMONIC plays against, as well as their locations in the metric space.

Phase 1 Phase 3 Phase 2i
Adversary Q O1 Oz Oi
Harmonic \al \a2 81/ \a
Phase 2 Phase 4 Phase 2i-1 Phase 2i+1

Figure 3: Odd and even phases of OFF vs. ON.
We define phases (Figure 3) by:

Online-26

o In the odd phase 2 <1, the online adversary moves a server to vertex A at cost
ex A. (Note that OFF can

it is an online adversary, so

d;. The adversary then makes a request
move its server beforg

the order makes no

e In the even phase 21
a cost of [;. [;1s in
to move probabilist

The actions of ON a
trated in Figure 4.

X
®

Figure 4: The movement of servers. X’s denote the servers of ON while O’s denote

the servers of OFF.

12.1.1 Analysis by Means of a Potential Function

To aid in the analysis of HARMONIC, we introduce a potential function ®. Let ®(j)
denote the value of ® at the end of phase j. The potential function will be required
to satisfy the following properties.

1. ®(0) =0, B(j) > 0.
2. (2 1) &0(2 &2) < k22814,
3. E[li 4+ ®(2) <0(2 <1)] < 0.

Online-27

These properties allow us to prove the competitive ratio of k225! since, by sum-
ming 2. and 3., we obtain:

B[S 1] = Zi: E[l]
— ZJ:(E[ZZ + E[®(2i) P2t <1)])g + ZJ: E[®(2 1) ©®(2 <2)]
55@(21)] + E[®(0)] =

J
< k2FUNT B[
=1
J
= E2FTED).

=1

12.1.2 Derivation of the Potential Function ¢

We now obtain a potential function satisfying the above constraints. ® will depend
on three factors:

1. The vertices in ON.
2. The vertices in OFF.

3. The past history of moves by ON and OFF.

® is obtained by means of a matching M mapping the vertices in ON bijectively
to the vertices in OFF. If # € ON then we denote by M(z) € OFF the server in OFF
matched to x.

Initially we impose that @ = M (x) for all servers x in ON (since ON and OFF
start with the same initial configuration of servers). This implies that ®(0) = 0.

In an odd phase (i.e. when a server from OFF is moved, the matching is kept
unchanged.

When (during an even phase) a server in ON is moved from vertex b to the position
of the OFFline server A (where a request occurs and with M(a) = A), the matching is
updated by the following rule: If ON moves the server b which was originally matched
to server B from OFF, then M is updated according to M(a) = B and M(b) = A.

We can now define ® by:

o= > Ma)
-eON

where for , C OFF we define the radius by:

R(z,,) =maxd(z,Y)

Yel'

Online-28

and

_ k . R(l‘,,) .
Azx) = k2 an(l)l%F{ ST M(z) €, }

Also define , % to be the argmin of the term in the definition of A(z).
Note that A(x) > kd(x, M(x)) for all & since 2l < 9% and
R(z,,) > d(xz, M(x)) for any , 3 M(x).

Two final definitions are:

So A(z) = k2k L)

12.1.3 Why we Argue on Matchings

A small example now suffices to provide an intuitive feeling for why matchings provide
a tool for measuring the potential difference between ON and OFF. Suppose that there
are seven servers positioned as shown in Figure 5. If the adversary consistently makes
requests to the poorly matched server on the right, then the adversary will pay 0 cost,
while HARMONIC will keep paying until it moves a server from the left side of the
network. In the matching, one edge will be large, and so both R(x,, %) and A(x) will
be large until such a move is made.

O>c<>0 ®9
X X X ® @

Figure 5: An example of a configuration of OFF’s servers (O’s) and ON’s servers
(X’s). If the adversary requests at the unmatched OFFline server on the right, then
HARMONIC eventually pays a high cost while the adversary pays 0.

12.1.4 Proof of Properties about ¢

Property 1

Initially , ¥ = {2} so p(x) = 0 which means A(x) = 0 and ®(0) = 0. It is clear
that ®(y) > 0.
Property 2

In an odd phase, the adversary moves a server in OFF by a distance d;. Let '(x)
be the value of A after the move. Then

p Rz, 7)

'Y

)\/(x) S k2 or3

Online-29

* is the value from before the move and:

where |, *

R'(z,,) = maxd'(z,Y)

Yel*
< max{d(z,Y)} +d;
= R(l’,,;)—l—dz

Note that the distance function is primed to indicate that Y may have moved
during the phase. However, the matching is not altered during an odd phase, so we
were able to use the same , * (since M (x) still belongs to , %).

Since |, | is at least one, we now can calculate that:

)\/(1}) kaR/(xm ;;)

IA

AL
< A pok
< AMa) 4 k2 o
< Az) + k2814,
Therefore,
(2 1) &P(2w2) = ¥ _oNW(z) &A(2))
< k(k2M1d))
< k22k_1d2'.
Property 3

We now need to show that E[l; + ®(2i) &®(2i <1)] < 0. In the rest of this proof,
we shall be conditioning on P, the current position of the servers in ON and OFF.
Clearly, if the inequality is true while conditioning on P, then it will remain true
when we take the expectation over P. First consider what E[l;|P] represents. It is the
expected distance that the server moved by HARMONIC will have to travel. By the

definition of HARMONIC, we know that, given P, x € ON is moved with probability
1

Nd(z,A)"
Therefore,

E[L|P] = ¥.coN Nd(lx,A)d(x7 A)
= ¥
since ON contains k servers.
So for ® to satisfy property 3, we must show that

E[®(2i) (2 <1)|P] < B[] P] = @%

Because we are in an even phase, OFF already has a server at A. We will examine
the changes in the matching depending on which server ON moves in order to approach
this problem. Each of the cases has a probability attached, and so the results of each
case can be used to determine an expected value for ®(2¢) &®(2: <1). Note that in

Online-30

the following analysis the servers of OFF are fixed, since the adversary has already
moved its server during the odd phase.
Case 1 (occuring with probability Nd(la 7y):

ON moves server a to the request at A (where M(a) = A before the phase).

Then after the move, A'(a) =0 and M(¢) = A(c) for all ¢ # a. Therefore,

O(2) <B(2 1) = ©\(a) = @%Qk;’i(“))

Case 2:
ON moves a server b # a where M(b) = B before the move.

Case i: d(a, B) < p(a).

Then M(¢) = A(e) for ¢ # a, ¢ # b. Moreover, X'(b) = 0. And lastly, M (a) < A(a)
since the fact that d(a, B) < () implies that B (the new OFFline server matched
to a, belongs to , %) (see Figure 6). Therefore, ®(2:) <®(2: 1) < 0.

’a

Original Matching Updated Matching After b isMoved to A

Figure 6: The configuration of the matching when d(a, B) < p(a), and when the
matching is updated.

Case ii: d(a, B) > p(a).

Now define [so that B is the [th closest OFF server to a from outside of the disk of
radius p(a) centered at a. Consider a disk centered at a of radius p(a)+d(A, b)+ p(b).
(See Figure 7). Clearly B is in that disk, since

d(a, B) < d(a, A) + d(A,b) + d(b, B) < p(a) + d(A, b) + p(b).

Online-31

In fact, this big disk contains at least max(n(a) + [,n(b)) servers from OFF. (i.e.
n(a) + [is all OFF servers in the disk centered at a with radius d(a, B) and n(b) is
all servers in the disk of radius p(b) centered at b).

Therefore,

R(a,I’
ka él |)

ot Pla) +d(A,0) + p(b
Qmax(n(a)+1,n(b))

popla) d(AD)
RSy + e +

X(a)

IA

IA

)
p(b)]
on(b)

IA

Il

Py
—
~—

|
o

[\\]
X

Furthermore, A'(b) = 0 since b is moved to the position A of the request and M'(b) =
A. Lastly, M(¢) = A(e) for ¢ # a,c # b. This means that in this case when b is the

server moved to A:

k25d(A, b)
2n(a)—|—l

¢(20) =P(2 1) <

Figure 7: The configuration of the matching when d(a, B) > p(a).

Online-32

12.1.5 The Expected Value for ¢(2:) <®(2: <1) Over All Cases

Weighting the three cases presented above by the probability of their occurences, we
have that:

E[0(2) 0(2i o1)] < (kap(“))Jrk_n(a) ! (Wd(fhbz))

Nd(a, A) on(a) — Nd(A,b) onla)+l
Je2k A ON

< = _lal —

— N2n(a) <+ ; 2[

_ k . .
= &5 (geometric series)

where b, is the server which before the move has M (b) = B, where B is the [th closest
OFF server to a from outside the disk of radius p(a) centered at a. Note that the
sum is to k <n(a) which is the number of OFF servers outside of the disk of radius
p(a) centered at a.

This is the result we wanted.

12.1.6 The Intuition

R(l‘,)) k p(A)

oL k2 on(a)
Here is some intuition behind the use of the use of the exponential factor 21, If
n(a) is large then there are not many OFF servers outside of p(a) so the 27(9) term is

Recall that A(z) = k2k H}ﬂin

large, making A(a) smaller. On the other hand, if n(a) is small, then there are many
OFF servers outside of the circle, and these contribute to a big potential function by
making 23—(}1) big. These two cases correspond to the cost we could expect. If n(a) is
large, then HARMONIC will have a reasonably high probability of moving an ONline
server whose matched OFFline server is in the disk centered at a of radius p(a) to
cover a request at A. This would result in a ”"small” expected cost. However, by a

similar argument, we would expect a larger expected cost if n(a) is small.

13 A Fk-competitive, deterministic algorithm for
trees

The results of this section are due to Chrobak and Larmore [5]. Let (V, E) be a tree
(an undirected graph without cycles) with a positive distance function on each edge.
We view each edge, e, as an actual segment of length d(e). Let W denote the infinite
set of all points on all edges in F, and let requests be any points in W. (The cost of
travelling from an endpoint of e to a non-vertex point in edge e will simply be the
fraction of d(e) proportional to the location of the point from the end.) The algorithm
presented will of course also apply to the discrete case where all requests are vertices.

Online-33

Definition 11 At any time, there is some request o which we are trying to service.
We say that a server is active if there is no server located between it and o. If there
are several servers located at the same point, with no servers located between them and
o, we pick exactly one of them to be active. We can do this deterministically according
to some ordering of the servers if we like, calling the highest-priority server the active
one. Note that this definition makes sense because the (acyclic) tree structure means
that there is exactly 1 path between any two points.

Request

Figure 8: Active servers are marked with an A, inactive ones with an I. Note that if
all servers move with a constant speed, the closest one (at the bottom) will reach the
request and the others will become inactive somewhere on the way to the request.

Our algorithm A is simple to describe: to service a request ¢, all active servers
move towards ¢ at constant speed, each one stopping when one of the following is true

1. the server reaches the destination, .

2. the server is eclipsed by another server and becomes inactive;

According to the second condition, a server that is active at the beginning of a
request might not be active later on in the request. As soon as a server sees another
server between it and ¢, it becomes inactive and stops moving.

13.1 Proof of k-competitiveness

We will use a potential function to show that, for any sequence oy, 09, ... of requests,
Ca(c) < kCyvin(o). Let @ be the value of the potential function after the on-line
algorithm has processed ;. Let @' be the value of the potential function before the
on-line algorithm has processed o; but after the off-line algorithm has processed it.

Suppose that the on-line servers are at postions sq, s3,...,S; and the off-line servers
are at positions aq, as, ... ,ar. We define the potential funtion by
O => d(si,s;) + kM(s,a).
i<

where M(s,a) is the minimum cost matching between the on-line servers and the
off-line servers. i.e. M(s,a) = min, Sk d(a;, s7(;y) where the minimum is taken over

Online-34

all permutations 7. Note that this is a potential function which often arises in the
analysis of algorithms for the k-server problem.

O P

P~

)]

1

Request is made
and an off-line 1 0-2 0-3
server is moved.

Server moved al a2
by on-line
agorithm.
Claim 23
ot =it < kCvin (o),
O 50! < sC4(0y).

where A is the on-line algorithm. From this claim we can derive that ®! & @~1 <
kCyvin(ot) < Ca(oy). If we take the sum over ¢ then the left hand side telescopes
to give us (I)ﬁnal & 0% < kCyin(o) & Ca(c). We know that 0 < (I)ﬁnal and so
Ca(o) < kCyin(o) + ®°. We assume that all of the on-line servers and all of the
off-line servers are initially at the same single point. This implies that ®° = 0 and
so Cy(0) < kECwmin(o). From this inequality we can see that the algorithm is k-
competitive. It only remains for us to prove the claim.

Proof of claim We first consider what happens when the off-line algorithm moves
a server to the request. Choose 7 so that M(s,a) = Y5, d(a;, 5;;)). Suppose that
the off-line algorithm chooses to move a; to the request. Since none of the on-line
servers are moving y_;; d(s;, s;) does not change. Hence

' &t = kAM(s,a) < k(distance traveled by a; to the request)
= kCMIN(O't)-

We now consider how ® changes when the on-line algorithm moves its servers. Num-
ber the on-line servers so that sq,s;,...,s, are active and s,41,..., s, are inactive.

Online-35

The active servers are all moving at the same speed towards the request. Suppose
that they all move a small distance e. It is easy to see that without loss of generality
a; is matched to an active server in the minimum cost matching. (Recall that a; is
the off-line server which is already at the request.) Hence the distance between these
two servers decreases by €. Also, the distance between other pairs of matching servers
increases by at most ¢. Therefore,

AM < (g&l)ese= (¢ &2)e

We also have to consider the change in =, _; d(s;,s;). Let

Sro=) disi,sg),

g<i<y

Sra =) d(si,sg),
i<g<y

SA == Z d(SZ’,S]‘).
1<j<q

Then,

1
ASy = <:>26(g) = 26@ = &eq(q =1),

ASta = (keg)(es(gel)e) = (k&q)d2 <q),
AS; = 0.

The first equation comes from the fact that each pair of active servers move towards
each other by a distance <2e. The second is true because there are k& < ¢ inactive
servers, each of which has one active server moving away from it and ¢ <1 mov-
ing towards it. From the above equations we derive that), . d(s;,s;) increases by
e[(k <q)(2 <q) ©q(¢<1)]. Hence

A < €[(k<q)(2eq)eq(gel) + k(g e2))
Eye.
Now ge is the cost incurred by the on-line algorithm when it moves its ¢ active servers

a distance ¢. Hence ¢! ¢! < &' 4(oy) which is the inequality that we were trying
to prove.

13.2 Paging as a case of k-server on a tree

Note that a special case of the k-server problem on a tree is paging. Create M
tree-vertices corresponding to the pages of main (slow) memory, create one dummy
tree-vertex, v, and connect v to all the other M vertices using edges of length %
Note that the cost of moving a server from one page to another is % + %, the cost of

Online-36

Figure 9: Paging as a special case of the k-server problem on a tree.

swapping. (More generally, we could let the length of the edge from v to page ¢ be
any positive function f(¢), obtaining the Generalized Paging problem, where the cost
of swapping pages ¢ and j is f(¢) + f(j).)

Let us consider the behavior of the above algorithm A on this special case. The
resulting algorithm for paging is known as FLUSH-WHEN-FULL. The interpretation
is simple if one keeps track of “marked” pages. When a server is at a vertex corre-
sponding to a page p, this page is considered marked. As soon as the server leaves
that vertex to go towards v, the page will be unmarked.

Initially there are k servers on k pages. These pages are thus marked. Suppose
request o; causes the first page fault. Algorithm A will then move all servers towards
v, resulting in the unmarking of all pages in fast memory. All these servers move at
constant speed towards v and thus will reach the middle vertex v at the same time.
One (arbitrarily selected) server at v will continue to the requested page o; and the
other £ <1 will become inactive. The page o; will then be marked. Later, if there is
a page fault on say o; and there is at least one server at vertex v, one of these active
servers will be moved to o;. In terms of paging, this is interpreted as swappping o;
with an arbitrarily selected unmarked page of fast memory and then marking o;. The
claim of the previous section implies that FLUSH-WHEN-FULL is k-competitive.

Of course we don’t have to move more than one server per step. We could “pre-
tend” to moves servers simultaneously but actually just keep track of where the servers
should be (by keeping track of which pages of fast memory are marked) and move one
server to the request-destination per step. The cost per step would be the the total
distance travelled by that server since the last time it reached a request-destination.
This way the cost per page-fault is always exactly one.

FLusu-WHEN-FULL is much like MARKING, except that MARKING uses ran-
domization to select a server at a tie. FLUSH-WHEN-FULL is k-competitive while
MARKING is Hj-competitive against an oblivious adversary. This shows how use-
ful a simple randomization step can be. FLUSH-WHEN-FULL applies to Generalized
Paging and is the only known k-competitive algorithm for that problem.

Question: Could LRU be an example of FLUSH-WHEN-FULL? Yes, it is. In other
words, LRU would never get rid of a marked page and thus, by carefully selecting
which unmarked page to remove from fast memory, FLUSH-WHEN-FULL reduces to

Online-37

LRU. To see that a marked page is never removed from fast memory by LRU, notice
that each marked page has been requested after the last request to any unmarked

page.

14 Electric Network Theory

We will use electric network theory for a randomized k-server algorithm due to Cop-
persmith, Doyle, Raghavan, and Snir [8]. Their algorithm will be k-competitive
against an adaptive on-line adversary for a subclass of metrics.

An electric network is a graph GG = (V, E') such that each edge has weight o(e) =
ﬁ, where R(¢) € R* is called the resistance and o(e) € R* is called the conductance
of edge e. We can then ask what the effective resistance (also called the equivalent
resistance) between any two vertices is, i.e. the resistance which is felt when applying
a difference of voltage between any two vertices. The effective conductance is the
inverse of the effective resistance.

For resistances in series, the effective resistance between the endpoints is equal to
the sum of the resistances. For resistances in parallel, the effective conductance is
equal to the sum of the conductances. See Figures 10 and 11. In general, though,
these rules are not enough to determine the effective resistance between any two
vertices in an electric network (consider the case when the underlying graph is the
complete graph Ky on 4 vertices). In full generality, one has to use Kirchoff’s first
law and the relation V' = RI. Simply stated, the first law says that the sum of the
currents entering a junction is equal to the sum of the currents leaving that junction.

2 X
k |

Figure 10: Resistance in series. The effective resistance between k and [is ry + ry +

T

r

Iy

Figure 11: Resistances in parallel. The effective conductance between &k and [is

1 1 1
o M S

Online-38

Definition 12 A distance matriz D = [d;;] is resistive if it is the effective resistance
matriz of some electric network G, G = (V, F).

Now let us use the effective resistance as a metric. This is justified by the following
proposition.

Proposition 24 If D is resistive then D is symmetric and D salisfies the triangle
inequality dij + d]‘k Z dzk \V/i,j, k.

The converse of this proposition is not necessarily true. A metric does not necessarily
induce a resistive distance matrix. In fact, there are metric spaces on four points that
aren’t resistive. Satisfying the triangle inequality isn’t enough.

Metrics which correspond to resistive distance matrices will be referred to as
resistive.

What are resistive matrices or resistive metrics? Here are two simple examples.

1. if D is 3 x 3, symmetric, and satisfies the triangle inequality, then it is always
resistive. Hence, the above proposition is true in the converse for 3 x 3 matrices.
As an example, consider a triangular network with effective resistances 3, 4,
and 5. See figure 12. We claim that the edge-resistances are %, % and 11—1 (see

figure). We verify it for the vertices 1 and 3. Consider the two paths between

these vertices. We need the effective resistance to be 4, and thus the effective

conductance to be i. Verify that

2 (1 11
11 \S4+5) 44 4

1

2. atree metricis resistive. To see this, make a tree of resistances with R;; = d(z, 5)
along the edges of the tree. Because there are no cycles, every pair of points is
connected by a series of resistances. The effective resistance is the sum of the
edge-resistances.

©

3 3 2
4 11 1

nis e

Figure 12: The given matrix of effective resistances (left) is relabelled (right) as the
corresponding electrical network with resistances.

Another property of resistive metrics is given by the following lemma.

Online-39

Lemma 25 If D is resistive then any induced submatriz D' is resistive.

How can we compute an array of conductances o from D7 We will not go through
the proof here, but the outline of the algorithm is as follows:

e Assume D is n x n. Construct an (n <1) x (n <1) matrix D such that d;; =
(dyi + dy; <d;;) /2> 0for 2 <i,j <n.

o Let 6 =D,

o Let 0, =<0 fore#5,2<1,5 <n.

o Let 2 Oif = O for 2 <1 <n. This allows us to determine o;; and oy;.
o leto; =0forl <:<n.

It D is resistive, the above procedure yield a matrix o of non-negative conduc-
tances.

14.1 The Algorithm: RWALK

Consider the following algorithm for the k-server problem. We have servers at
ay ...ap, and we get a request at apy;. Consider the distance matrix D’ among
these k4 1 elements. Assuming D’ is resistive, calculate ¢’ and then move the server
at a; to the request with probability

Okt
Pr(ai — ak-l—l) = !

7
21<i<h Tkt

Notice that a shorter distance corresponds to a higher conductance which in turn
corresponds to a higher probability. Thus, this algorithm is intuitively correct because
we are more likely to move a server “close” to the request.

Theorem 26 [f every induced subgraph on k + 1 points is resistive, then RWALK
is k-competitive against an adaptive on-line adversary.

Two important cases covered by this theorem are:
o k-server with £ = 2. RWALK can be used and is thus 2-competitive.

o k-server on a tree. We know that D" will always be resistive (by Lemma 25) and
hence RWALK can be used. The theorem shows that RWALK is k-competitive

in this case.

Online-40

Proof:
We need to show

E[Crwar(Q)] < kE[Co(RWALK)]
where Q is an adaptive on-line adversary. We can rewrite this as
E[Crwarx ©kCq] < 0.
We will in fact show that
E[® + CrwaLk <kCq] <0

where ® is a potential function that we will define.
We will show that at every step,

E[A® + Crwark(step) ©kCq(step)] < 0.

In words, this means that, in any single step, the cost of RWALK is at most k£ times
the cost of the adversary, once the costs are amortized according to the potential
function ®. Summing over all steps, we obtain that

E[(I)n =0y + CRWALK(Q) @kCQ(RWALK)] <0,

for a sequence of n requests. Since ®,, > 0 and we shall assume that &g = 0, we derive
the competitive factor of k. (®¢ = 0 corresponds to the case in which all servers start
initially from the same location (see below), and @y # 0 would just result in a weak
competitive factor of k.)

We want @ to measure the difference between the locations of RWALK’s servers
and Q’s servers. Let a = aq, ..., a; be the set of locations of RWALK’s servers, and

let b = by, ..., b, be the set of locations of Q’s servers. Then define a potential function

®(a,b) = > d(aja;)+ kM(a,b)

1<i<j<k

where M(a,b) is the cost of the minimum cost matching between A and b (in other
words, M(a,b) = min, S, d(a;, ba(iy) where the minimum is taken over all permu-
tations «). Intuitively, the sum is the amount of “separation” of the elements of A,
and the matching term is the “difference” between the algorithm and the adversary.
Some intuitive argument justifying the M(a, b) term goes as follows. If the algorithm
has to pay much more than the adversary, it means that (some of) the algorithm’s
servers are far away from the adversary’s servers, implying that M (a, b) is large. The
reduction in M (a,b) can therefore be used to pay for the move.

Let us consider the request o;. We decompose the processing of ; into two steps.

o step 1: adversary moves a server to o;.

Online-41

o step 2: on-line algorithm RWALK moves a server to o;.

Step 1. The adversary moves from b; to 0. Then A® < kd(b;,b:) because given
the minimum matching for the old A and b, we can get a matching for the new A
and b by using the same matching. So if b; was matched to a;, then

A® < k(d(a, b)) ed(a;, b;)) < kd(b;,b').
We also have
Crwark (step) = 0,

and

Cq(step) = d(b;,b’).

Jr g

Therefore,
E[A® < ECq(step)] < 0.

Case 2. The on-line algorithm moves. Since the adversary has already moved a
server to the requested node, assume WLOG that the request is at by (we can always
renumber). Let the minimum matching M before the move be (a1,b1) ... (ax, b)
(again we can renumber to make this the case).

Assume that RWALK moves a; to the request b;. We claim that

AM(G, b) < d(alv b]) <:>>Cl(a17 bl) <:>d(aj7 b])

since a possible matching can be defined from the minimum cost matching between
the old A’s and b’s by simply assigning a; to b; and a; to bs:

aq <:>b]‘

g by

a; &by

ag <:>bk
From the triangle inequality, we have d(a1, b;)<d(aj, b;) < d(ay,a;) and thus AM (a,b) <
d(ay,a;) <d(ay, by). Therefore,

AP < Z a;, b)) Sd(a;, a;)] + k[d(ar, a;) <d(ay, by)].
i#]

We also have Crwark(step) = d(a;, by) and hence
A® + Crwark (step) < > [d(ai, by) <d(ai, a;)] + kld(ay, a;) d(ay, by)] + d(ay, by)
127
< Z[d(aﬂ bl) <:}d(aiv Cl]‘) + d(alv Cl]‘) <:>>Cl(a17 bl)]

7

Online-42

We will show that E[A® 4+ Crwark(step)] < 0 by showing that

k
Za] k+1 (Z a17ai7ajvbl)) =0

=1

where

e(ar, a;,a;,b1) = d(a;, b)) <d(a;,a;) + dlay, a;) <d(ar, by).

For convenience, define az11 = b;. Now we have to recall a few facts about electric

networks to get a handle on the o?, ;. Recall that

, ~ .
Oipp1 = S0 k1 for j =2,

and
k

/ _ =
Z Ojk+1 = Ok41k+1-
j=1

We know that D -5 = I, so

k+1
Z d(ai,aj) 5'j,k-|—1 =0 ife= 2, ceey k.
7=2
Summing over ¢, we get
k k+1
Z Z d(ai, Cl]‘) a'j,k-l—l = 0
=2 j=2

or, using the definition of &,

=2 7=2 7=1

k k k
Z (@Z d(aiv aj)U;‘,kH + Z U;7k+1d(ai7 Gk+1)

):0.

Since d(a;,a;) = (d(a;,a1) < d(ay,ar) <d(a;i,ar))/2 = 0, we can extend the first

summation over j from 1 to k:

5 (d(ai, br) ©d(ai, a;)) o py = 0.

=2 j=1
The term in parenthesis is

1

J(ai, b1) @J(ai, a;) = §[d(a1, a;) + d(ay, by) <d(a;, b)) d(ar, a;) <d(ay,a;) + d(a;, a;)]

1
= <:>§e(a1,ai,aj, b1)

so we finally get

Za] k+1 (Z a17ai7ajabl)) =0

=1

since we can do the sum of i from 1 because e(ay, ay,a;,b) = 0.
Therefore, we have that the expected amortized cost is negative and thus we have

a k-competitive algorithm for any resistive metric.

Online-43

4

15 The work function algorithm

In this section, we show that the work function algorithm for the k-server problem
is 2k &1-competitive. The algorithm was proposed by Chrobak and Larmore [7] but
they were only able to show that it is 2-competitive when & = 2. The following
proof is due to Koutsoupias and Papadimitriou [15]. Before this result was obtained,
no algorithm was known to have a competitive ratio which was polynomial in & for
an arbitrary metric space. It is believed that the work function algorithm is in fact
k-competitive.

15.1 Definition of the work function

Let Ay = {aoq1,a02,...,a0%} be the initial configuration of the servers and let
1,72,7, ... be the sequence of requests. If X is a multiset of k& points in the
metric space we define the work function at time t by,

w(X) =the optimal cost of servicing the first ¢ requests
and ending up with the servers in configuration X.

From this definition we can see that the initial work function wg can be expressed as,

wo(X) = minimum cost matching between Ay and X
k

= pg{lfglagd(aom%(i))
— d(Ao, X) .
Before servicing r; the servers will be in some configuration Y. Hence,

wy(X) = min [w,_1(Y) 4+ d(Y, X)].

Y:ri€Y
We shall need a number of properties of the work function.

Lemma 27
Vi, X, 7 s w(Z) < wi(X)+d(X, 7).
Proof:

w(X)+d(X,Z) = min {w_(Y)+d(Y,X)+d(X,2)}

Y:iri€eY

> min {w(Y)+d(Y,Z)}

Y:iri€eY

= w(72).

Online-44

Lemma 28

Vi, Xt w(X) = Héi)r(l{wt_l(X Sa4ry) +d(ry,)}

Proof:
e (<) This is obvious since if we take Y = X <u + ry then d(Y, X) = d(ry, @).
e (>) Take the optimum Y in the definition of w;(X). Let be the element of X
which is matched to r; in the minimum cost matching between X and Y. Let

Y' = X &x +r;. Then,

W (V) 4 d(Y,X) = wa(Y) +d(Y.Y) 4 d(e,)

> wi (YY) 4+ d(x, 1) by lemma 27
> mingex (wi—1 (X S +ry) +d(x, 1))
O
Lemma 29
Vi, Xt wi(X) > weg (X).
Proof:
wi(X) = wi (V) +d(Y,X) for someY
> w1 (X) by lemma 27.
O
Lemma 30
VX i € X = w(X) = wimq (X).
Proof:

From lemma 28 with @ = r; we get wy(X) < w;—1(X). Together with lemma 29
this implies the result. O
Lemma 31

Vi, Xt wy(X) = Hél)r(l {w(X a4+ ry) +d(ry,z)}.
Proof:
This 1s immediate from lemmas 28 and 30. O]

Online-45

15.2 Definition of the work function algorithm

Let A;_; be the configuration of the on-line servers before r; is requested. When the
request comes in the work function algorithm moves a € A;_; which minimizes

wi—1(Aiy a+ry) + d(a,ry).
le. Ay — Ai_1 &a + r; where
@ = argmingc, {wi—1 (A1 Sa+re) +d(a,r)} .

Note that w;—1(Ai—1 <a + 1) + d(a,ry) = wi(Ai—1). Hence if we were to move the
servers to A;_; after serving request r; then we would move the server at r; to a. The
work function algorithm does this move backwards.

For analysis purposes we assume that the on-line servers and the off-line servers
finish at the same position. (If this is not the case we can repeatedly request points
where there is an off-line server but no on-line one. This does not increase the off-line
cost.) It is clear from the above definition that the on-line cost of serving ry is d(a, ry).
If ry is the final request then the total off-line cost of serving all the requests is,

f
wi(Ay) = Y [wi(Ar) Swima(Ae)]

t=1

We define the off-line pseudocost of serving request r; to be w;(A;) S wi—q1(Aiq).
We then define the extended cost of serving request r; to be the sum of the off-line
pseudocost and the on-line cost. i.e.

extended cost = wi(A;) Swi—1(Ai—1) + d(a,).

But, by definition of the work function algorithm, w;(A:—1) = wi—1(A:) + d(a,ry).
Hence,
wt(At—l) <:>wt—1(14t—1)

extended cost =
< maxy {w(X) w1 (X)}.

Note that the above equation gives an upper bound for the extended cost which is
independent of the algorithm or the location of the servers. The definition of extended
cost means that if

extended cost < (¢ + 1) off-line cost

then the work-function algorithm is e-competitive. We shall show that
extended cost < 2k (off-line cost),

proving the desired competitive ratio.
Our next goal is to define a potential function ®(w). We shall then show that, at
every request, the increase of the potential function is lower bounded by the extended

Online-46

cost and that the total increase of the potential function is upper bounded by 2k times
the off-line cost. More formally, we will show that

O(wy) ©P(wi—r) > maxy {w(X) w1 (X))},
CI)(wf) S kaf(Af)—l-C.

For this purpose, we shall need a better understanding of maxx {w:(X) <w,—1(X)}.
The following lemma is useful. Koutsoupias and Papadimitriou show a generalization
of this lemma which they call “quasiconvexity”.

Lemma 32
Vi,VA,B,Va € A,3b € B : wi(A) + wi(B) > wi(A <a+b) 4+ wi (B &b+ a).

Proof:

By induction on t. When ¢ = 0, w;(X) = wo(X) = d(Ap, X) for all configurations
X. Let gy be the element of Ay which is matched with ¢ in the minimum cost
matching between A and Ag. Let b be the element of B which is matched with ag in
the minimum cost matching between Ag and B. Then,

wo(A) 4+ wo(B) = d(Ag, A)+ d(Ao, B)

d(Ap &ap, A <a) + d(Ag <ao, B<b)+ d(ag,a) + d(ag, b)
d(Ap, Aa+b) 4+ d(Ao, B &b+ a)

wo(A <a +b) + wo(B &b+ a).

v 1

Now assume that the lemma is true for ¢t <1. Then by lemma 28,

{ de e At wi(A) = wi(Asx+r) +d(a,r),

(4) E|y cB: wt(B) = wt_l(B =Y + Tt) + d(yvrt)‘

If @ = x then let b = y. By definition of w,,

wi(Aer+y) < w_1(Ase+r)+dy,r),
wi(Bey+) < wi(Bey+r)+da,r).

Hence,

wi(ASr+y)+w(Bey+) < wlA) +w(B).

If « # x then a € A x4 r;. Using the inductive hypothesis on A <« + r; and
Bey+r,dbe Bey+ry:

(5)
wi (A +r)+w g (Bey+r) > wa(Ase+r<a+b) 4w (BEy+r b+ a)

But,

(6) wi(Aea+b) < wa(Asa+bese+r) +d(x,r),
w(Beb+a) < wa(Bebtasy+r)+dy,r).

Finally, (4), (5) and (6) imply the lemma. O

Online-47

Definition 13 A is called a minimizer of the point a with respect to w; if A minimizes

(wi(A) &Y pea da, z)).

We can redefine maxy {w;(X) <w;—1(X)} as

max {(wt(X) <:>Z d(x,ri)) (w1 (X) <:>Z d(x, rt))})

z€X rzeX

A minimizer of r; with respect to w,_; would thus maximize the second term. The next
lemma shows somewhat surprisingly that such a minimizer would in fact maximize
the entire expression.

Lemma 33 Assume that A is a minimizer of ry with respect to w,_1. Then wi(A) &
wi—1(A) = maxy {wi(X) ©wi—1(X)}.

Proof:
We need to show that,

VB wi(A) + w1 (B) > wi—1(A) + wi(B).
This is equivalent to,

Va € A : w1 (Asa+tr)+d(a, r)+wi—1(B) > %ré%l {wi—1(B<b+r) +d(b,ry) + wi—1(A)}.

By assumption,

wi—1(A) <:>Z dz,ry) w1 (Asa+b) & Z d(y,re),

r€EA yEA—a+b

or

wt_l(A) + d(b, Tt) S wt_l(A Sa 4+ b) + d(a, Tt).

Hence we only need to show that,
wi—1(ASa+ry) 4 w1 (B) > %ré%l {wi1(Beb+r) +wi1(Asa+b)}.
But by lemma 32, r, € A=a+r, = 3be B
wi—1(Asa+r) + wi—1(B) > w1 (A <a+b) + w1 (B<b+).

4

Lemma 34 Assume that A is a minimizer with respect to wy_1. Then A is also a
minimizer with respect to wy.

Online-48

Proof:
We need to show that,

VB :w(A) <:>Z d(a,r) > w(B) @Z d(b,r),

a€A beB
or, for all y € B,
meifll {wt_l(A Sa+ry) + d(x,ry) <:>Z d(a, rt)} < w1 (Bey+r)+d(y, rt)<:>z d(b,).
v a€A beB

Since A is a minimizer of r; with respect to w;_1,

wii(A) &) dla,r) Sw o (Beety)e Y dbr),

acA beB+xz—y

or

wi—1(A) + d(x, 1) <:>Z da,r:) < w1 (B4 2 &y) <:>Z d(b,re) + d(y,re).

ag€A beB
Now r; € B <y + 1y, hence by lemma 32,
dJr e Arw (A +r) +wa(Bey+a) <wiq(A) + wimi (B Sy +),
which implies that

wi—1 (A S +ry) + d(x,) <:>Z da,r:) < wi (B Sy +re) + d(y,re) <:>Z d(b,ry).

acA beB

4

15.3 Definition of the potential function

We define the potential function as follows.
k k
O (wy) = mUin kw,(U) + er}lgi‘n wy(B;) <:>Z d(uj,bij))
=1 ' 7=1
Thus B; is a minimizer of u; with respect to w;.

Lemma 35 We can assume that ry € U when trying to minimize the above expres-
ston.

Proof:
By lemma 31,

wi(U) = wi(U <y + ry) + d(re, up) for some uy.

Online-49

By the triangle equality,
(7) d(re,wr) < d(ug, bij) = <d(re, bij).
Let U' = U &up + ry.

(8) B(wy) = min { kwU') + Ty i ming, (wi(B;) &5, d(u;, b))

U’ + minBl (wt(Bl) + Zle (<:>d(ul, bl]‘) + d(Tt, ul))) .
But by (7),
3 3
@Z ul, bl] + d Tt, ul Z Tt, bl]
]:1 :
Substituting this inequality into (8) gives us the required result. O

Let U, By, By, ..., By attain the minimum in the definition of ®(w;). The above
lemma means that we can assume r; = u;. Hence we can assume that B; is a minimizer
of r; with respect to w;. Therefore by lemma 34 we can take B; to be a minimizer of
ry with respect to w;_1. Let A = B;. By defeinition of ®, we derive that

3 3
Bluees) < Foa(A) + 3 (wt_m &3 dus, bm) -
=1 7=1
Therefore, by Lemmas 29 and 32, we obtain

O(wy) ©P(wi—1) > wi(A) w1 (A) = max {wi(X) w1 (X))} .

Summing over all requests, we obtain that the total extended cost is at most ®(w;) <
O (wo).

We only need to upper bound this quantity in terms of the off-line cost. Let
U= As, B, = Ay (where Ay is the final location of the off-line or on-line servers).
This gives us,

O(wy) < kw(Af) +kws(Ag) e Y d(a,b)
aEAf,bEAf

S kaf(Af).

Hence if we let ¢ = ®(wy) (constant dependent only on the initial configuration, not
the request sequence) then,

total extended cost < 2kwys(Af) + c.

By the remarks following the definition of extended cost this means that the work
function algorithm is (2k <1)-competitive.

Online-50

References

1]

2]

[10]

[11]

[12]

[13]

L. Belady. A study of replacement algorithms for virtual storage computers.

IBM Syst. J., 5:78-101, 1966.

S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On the power

of randomization in on-line algorithms. Algorithmica, 11:2-14, 1990.

P. Berman, H. Karloff, and G. Tardos. A competitive three-server algorithm. In
Proceedings of the 1st ACM-SIAM Symposium on Discrete Algorithms, 1990.

M. Chrobak and L. Larmore. On fast algorithms for two servers. Journal of

Algorithms, 12:607-614, 1991.

M. Chrobak and L. Larmore. An optimal on-line algorithm for k-servers on trees.

SIAM Journal on Computing, 20(1):144-148, February 1991.

M. Chrobak and L. Larmore. HARMONIC is 3-competitive for 2 servers. The-
oretical Computer Science, 98:339-346, 1992.

M. Chrobak and L. Larmore. The server problem and on-line games. In D. Sleator
and L. McGeoch, editors, On-line algorithms, volume 7 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 11-64. AMS,
1992.

D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir. Random walks on weighted
graphs, and application to on-line algorithms. Journal of the ACM, 40:421-453,
1993. A preliminary version appeared in the Proceedings of the 22nd STOC,
369-378, 1990.

A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young.
Competitive paging algorithms. Journal of Algorithms, 12:685-699, 1991.

A. Fiat, Y. Rabani, and Y. Ravid. Competitive k-server algorithms. In Pro-
ceedings of the 31st Annual Symposium on Foundations of Computer Science,

1990.

E. Grove. The harmonic online k-server algorithm is competitive. In Proceedings
of the 23rd Annual ACM Symposium on Theory of Computing, pages 260-266,
May 1991.

S. Irani and R. Rubinfeld. A competitive 2-server algorithm. Information Pro-

cessing Letters, 39:85-91, 1991.

D. Johnson. Fast algorithms for bin packing. Journal of Computer and System
Sciences, 8:272-314, 1974.

Online-51

[14] J. M. Kleinberg. On-line algorithms for robot navigation and server problems.

Master’s thesis, MIT, Cambridge, MA, 1994.

[15] E. Koutsoupias and C. Papadimitriou. On the k-server conjecture. In Proceedings
of the 26th Annual ACM Symposium on Theory of Computing, pages 507-511,
1994.

[16] M. Manasse, L.. McGeoch, and D. Sleator. Competitive algorithms for server
problems. Journal of Algorithms, 11:208-230, 1990.

[17] L. McGeoch and D. Sleator. A strongly competitive randomized paging algo-
rithm. Algorithmica, 6:816-825, 1991.

[18] P. Raghavan and M. Snir. Memory vs. randomization in on-line algorithms. In

Proceedings of the 1989 ICALP Conference, 1989.

[19] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202-208, 1985.

[20] A. Yao. New algorithms for bin packing. Journal of the ACM, 27:207-227, 1980.

Online-52

18.415/6.854 Advanced Algorithms September 1994

Randomized Algorithms
Lecturer: Michel X. Goemans

1 Introduction

We have already seen some uses of randomization in the design of on-line algorithms.
In these notes, we shall describe other important illustrations of randomized algo-
rithms in other areas of the theory of algorithms. For those interested in learning
more about randomized algorithms, we strongly recommend the forthcoming book
by Motwani and Raghavan. [9]. First we shall describe some basic principles which
typically underly the construction of randomized algorithms. The description follows
a set of lectures given by R.M. Karp [7].

1. Foiling the adversary. This does not need much explanation since this was
the main use of randomization in the context of on-line algorithms. It applies to
problems which can be viewed as a game between the algorithm designer and
the adversary. The adversary has some payoff function (running time of the
algorithm, cost of solution produced by algorithm, competitive ratio, ...) and the
algorithm designer tries to minimize the adversary’s payoff. In this framework
randomization helps in confusing the adversary. The adversary cannot predict
the algorithm’s moves.

2. Abundance of witnesses. Often problems are of the type “does input have
property p?” (for example. “Is n composite?”). Typically the property of inter-
est can be established by providing an object, called a “witness”. In some cases,
finding witnesses deterministically may be difficult. In such cases randomiza-
tion may help. For example if there exists a probability space where witnesses
are abundant then a randomized algorithm is likely to find one by repeated
sampling. If repeated sampling yields a witness, we have a mathematical proof
that the input has the property. Otherwise we have strong evidence that the
input doesn’t have the property, but no proof. A randomized algorithm which
may return an incorrect answer is called a Monte-Carlo algorithm. This is in
contrast with a Las Vegas algorithm which is guaranteed to return the correct
answer.

3. Checking an identity
For example, given a function of several variables f(xy,... ,2,),1s f(21,... ,2,)
07 One way to test this is to generate a random vector aq,... ,a, and evaluate
flai, ... a,). If its value is not 0, then clearly f # 0.

Random-1

Suppose we can generate random vectors aq,...,a, under some probability
distribution so that

P= Prlf{an.... .a) = 0lf £0] < &

or any other constant bounded away from 1. Then we can determine whether or
not f = 0 with high probability. Notice that this is a special case of category 2,
since in this probability space, vectors a for which f(aq,...,a,) # 0 constitute
“witnesses”.

. Random ordering of input

The performance of an algorithm may depend upon the ordering of input data;
using randomization this dependence is removed. The classic example is Quick-
sort, which takes O(n?) time in the worst case but when randomized takes
O(nlgn) expected time, and the running time depends only on the coin tosses,
not on the input. This can be viewed as a special case of category 1. Notice that
randomized quicksort is a Las Vegas algorithm; the output is always correctly
sorted.

. Fingerprinting

This is a technique for representing a large object by a small fingerprint. Under
appropriate circumstances, if two objects have the same fingerprint, then there
is strong evidence that they are identical.

An example is the randomized algorithm for pattern matching by Karp and
Rabin [8]. Suppose we are given a string of length n such as

randomzizearandomlyrandomrandomizedrandom

and a pattern of size m such as random. The task is to find all the places the
pattern appears in the long string.

Let us first describe our model of computation. We assume a simplified version
of the unit-cost RAM model in which the standard operations +, <%, /, <, =
take one unit of time provided they are performed over a field whose size is
polynomial in the input size. In our case, the input size is O(n +m) = O(n)
and thus operations on numbers with O(logn) bits take only one unit of time.

A naive approach is to try starting at each location and compare the pattern
to the m characters starting at that location; this takes O(nm) time (in our
model of computation we cannot compare two strings of m characters in O(1)
time unless m = O(logn)). The best deterministic algorithm takes O(n + m)
time, but it is complicated. There is, however, a fairly simple O(n + m) time
randomized algorithm.

Say that the pattern X is a string of bits z1,... , z,, and similarly Y = 4y, ... ,y,.
We want to compare X, viewed as a number to Y; = y;, ..., ¥4m—1. This would

Random-2

normally take O(m) time, but it can be done much more quickly by computing
fingerprints and comparing those. To compute fingerprints, choose a prime p.
Then the fingerprint of X is A(X) = X mod p and similarly A(Y;) = ¥; mod p.
Clearly h(X) # h(Y;) = X # Yi. The converse is not necessarily true. Say that
we have a false match if h(X) = h(Y;) but X # Y;. A false match occurs iff p
divides | X &Y.

We show that if p is selected uniformly among all primes less than some thresh-
old @) then the probability of a small match is small. First how many primes p
divide | X &Y;|? Well, since every prime is at least 2 and | X <Y;| < 2™, we must
have at most m primes dividing | X <Y;|. As a result, if p is chosen uniformly at

random among {¢ : ¢ prime and ¢ < @} then Pr[h(X) = h(Y;)|X £ Y] < 67
where m(n) denotes the number of primes less or equal to n. Thus, the proba-
bility that there is a false match for some 7 is upper bounded by n times %
Since w(n) is asymptotically equal to n/Inn, we derive that this probability is
O(IHT”) if Q@ = n*m. This result can be refined by using the following lemma

and the fact that there is a false match for some ¢ if p divides [], | X &Y;| < 2"™.
Lemma 1 The number of primes dividing a < 2" is at most #(n) + O(1).

The refined version is the following:

Theorem 2 Ifp is chosen uniformly at random among {q : ¢ prime and ¢ < n*m},
then the probability of a false match for some 1 is upper bounded by %(1).

The fingerprint has only lg(n?m) bits, much smaller than m. Operations on the
fingerprints can be done in O(1) time in our computational model.

The advantage of this approach is that it is easy to compute A(Y;11) from 2(Y)
in O(1) time:

Yisn = 2Yi 4 yiym €27y,
h(Yipr) = 20(Y3) + yiym 2"y (mod p).

One then checks if the fingerprints are equal. If they are, the algorithm claims
that a match has been found and continues. To reduce the probability of failure,
one can repeat the algorithm with another prime (or several other primes) and
ouput only those who were matches for all primes tried. This is thus a Monte
Carlo algorithm whose running time is O(n + m).

This algorithm can easily be transformed into a Las Vegas algorithm. Whenever
there is a potential match (i.e. the fingerprints are equal), we compare X and
Y; directly at a cost of O(m). The expected running time is now O((n + m) +
km + nm%) = O(km + n), where k denotes the number of real matches.

Random-3

6. Symmetry breaking
This is useful in distributed algorithms, but we won’t have much to say about
it in this class. In that context, it is often necessary for several processors
to collectively decide on an action among several (seemingly indistinguishable)
actions, and randomization helps in this case.

7. Rapidly mixing Markov chains
These are useful for counting problems, such as counting the number of cycles in
a graph, or the number of trees, or matchings, or whatever. First, the counting
problem is transformed into a sampling problem. Markov chains can be used
to generate points of a given space at random, but we need them to converge
rapidly — such Markov chains are called rapidly mixing. This area is covered
in details in these notes.

2 Randomized Algorithm for Bipartite Matching

We now look at a randomized algorithm by Mulmuley, Vazirani and Vazirani [10] for
bipartite matching. This algorithm uses randomness to check an identity.

Call an undirected graph G = (V, E) bipartite if - 2 ANB =10,
and (2) for all (u,v) € E, either v € A and v € B, o example
of a bipartite graph is shown in Figure 1.

Figure 1: Sample bipartite graph.

A matching on GG is a collection of vertex-disjoint edges. A perfect matching is a
matching that covers every vertex. Notice that we must have |A| = |B].
We can now pose two problems:

1. Does G have a perfect matching?
2. Find a perfect matching or argue that none exists.

Both of these problems can be solved in polynomial time. In this lecture we show
how to solve the first problem in randomized polynomial time, and next lecture we’ll

Random-4

cover the second problem. These algorithms are simpler than the deterministic ones,
and lead to parallel algorithms which show the problems are in the class RNC. RNC
is Randomized NC, and NC is the complexity class of problems that can be solved
in polylogarithmic time on a number of processes polynomial in the size of the input.
No NC algorithm for either of these problems is known.

The Mulmuley, Vazirani and Vazirani randomized algorithm works as follows.
Consider the adjacency matrix A on graph G = (V, E') whose entries a;; are defined
as follows:

(1) aij:{l if (¢,5) € I

0 otherwise

where the indices 2 and j correspond to vertices of the vertex sets A and B respectively.
There exists a perfect matching in the graph G if and only if the adjacency matrix
contains a set of n 1’s, no two of which are in the same column or row. In other
words, if all other entries were 0 a permutation matrix would result.
Consider the function called the permanent of A, defined as follows:

) perm(d)= ¥ (ﬁ) -

permutations o V=1

This gives the number of perfect matchings of the graph A represents. Unfortunately
the best known algorithm for computing the permanent has running time O(n2").
However, note the similarity of the formula for computing the permanent to that for
the determinant of A:

det(A) = 3 sign(o) (1;[1 a) .

permutations o

The determinant can be computed in O(n?) time by using Gaussian elimination (and
in O(log®(n)) time on O(n3®) processors). Note also that:

det(A) # 0 = perm(A) # 0 < 3 perfect matching.

Unfortunately the converse is not true.
To handle the converse, we replace each entry a;; of matrix A with (a,jx,;), where
x;; is a variable. Now both det(A) and perm(A) are polynomials in x;;. It follows

det(A) =0 & perm(A) = 0 & A perfect matching,.

A polynomial in 1 variable of degree n will be identically equal to 0 if and only if it
is equal to 0 at n+1 points. So, if there was only one variable, we could compute this
determinant for n + 1 values and check whether it is identically zero. Unfortunately,
we are dealing here with polynomials in several variables.

So to test whether det(A) = 0, we will generate values for the x;; and check if the
resulting matrix has det(A) = 0 using Gaussian elimination. If it is not 0, we know
the determinant is not equivalent to 0, so (¢ has a perfect matching.

Random-5

Theorem 3 Let the values of the x;; be independently and uniformly distributed in
[1,2,...,2n], where n = |A| = |B|. Let A" be the resulting matriz. Then

Pr[det(A") = 0|det(A) £ 0] < %

It follows from the theorem that if G has a perfect matching, we’ll find a witness in
k trials with probability at least 1 <1/2*.

In fact, this theorem is just a statement about polynomials. We can restate it as
follows:

Theorem 4 Let f(x1,...,2,) be a multivariate polynomial of degree d. Let x; be
independently and uniformly distributed in {1,2,... ,2d}. Then

[N

Prif(zy,... z.) # 0 #0] =

This theorem can be used for other problems as well.

Instead of proving this theorem we’ll prove a stronger version which can be used
for the second problem, that of finding the perfect matching.

Consider assigning costs ¢;; (¢;; € N) to the edges (7, j) € E. Define the cost of a

o(M)= >«

(7,5)eM

matching M as:

Now, consider the matrix A with entries a;;w;;, where w;; = 2% . Then:
perm(A) = ZZC(M)
M

and

det(A) =" sign(M)2cM),
M

If a unique minimum cost matching with cost ¢* exists then det(A) will be nonzero
and, in fact, it will be an odd multiple of 2¢".

We will prove that if we select the costs according to a suitable probability dis-
tribution then, with high probability, there exists a unique minimum cost matching.
Let ¢;; be independent, identically distributed random variables with distribution
uniform in the interval [1,... ,2m], where m = |E|. The algorithm computes det(A)
and claims that there is a perfect matching if and only if det(A) is nonzero. The only
situation in which this algorithm can err is when there is a perfect matching, but
det(A) = 0. This is thus a Monte-Carlo algorithm. The next theorem upper-bounds
the probability of making a mistake.

Theorem 5 Assume that there exists a perfect matching in G. Then the probability
that we will err with our algorithm is at most %

Random-6

It a higher reliability is desired then it can be attained by running multiple passes,
and only concluding that there is no perfect matching if no pass can find one.
Proof:

We need to compute Pr [det(A) = 0]. Though this quantity is difficult to compute,
we can fairly easily find an upper bound for it. As we have seen previously,

Prdet(A) =0] = 1<Prldet(A) #0]
< 1P

where
P = Pr[d unique minimum cost matching] .

Indeed, if there is a unique minimum cost matching of cost say ¢* then det(A) is an
odd multiple of 2°° and, hence, non-zero. The following claim completes the proof.

Claim 6 PZ%

Given a vector ¢, define d;; to be the maximum value for ¢;; such that
(¢,7) is part of some minimum cost matching.
We can then draw the following inferences:

¢ij > dij = (1,7) tsnot part of ANY minimum cost matching
¢ij = dij = (1,5) 18 part of SOME minimum cost matching
¢ij < dij = (i,5)1s part of EVERY minimum cost matching

Thus, if ¢;; # d;; for all (¢,) = 3 a unique minimum cost matching M.
Moreover, this matching is given by M = {(7,j) | ¢;; < d;;}.

5 d
3
b 2 e
8
c 2 f

Figure 2: Example graph for d;; computations.

Figure 3 shows an example of a bipartite graph with the values of ¢;;
assigned. Notice that in this graph ¢* = 9. Consider the edge (¢, f). The
cheapest perfect matching not containing (c,f) has a cost of 64845 = 19.
The other edges in the perfect matching containing (¢, f) have a total

Random-7

cost of 7, so d.; = 12. Thus, it is in every perfect matching. d,y =5 =
44342252 = ¢4y. Thus it is in some minimum cost matching. Finally,
dee = €2 =966ED < e, 50 (¢, €) is not in any minimum cost matching.

Therefore,
Prlunitque minimum cost matching] > Pr|c;; # d;; for all (1, j)]
= 1 &Prc; =d;; for some(1,j)]
> 1e Y Prle; =d;]
(¢,7)eE
> = !
- m 2m

The equation in the next to last line is justified by our selection of
m = |E| and the fact that d;; is independent of ¢;;, so that the probability
of ¢;; being equal to the particular value d;; is either ﬁ iff d;; is in the
range [1,...,2m] or 0 otherwise. o

O
Notice that if we repeat the algorithm with new random ¢;;’s, then the second
trial will be independent of the first run. Thus, we can arbitrarily reduce the error
probability of our algorithm, since the probability of error after ¢ iterations is at most
()
2 ’ . .
Also, note that, in the proof, we do not make use of the assumption that we are
working with matchings. Thus, this proof technique is applicable to a wide class of
problems.

2.1 Constructing a Perfect Matching

In order to construct a perfect matching, assume that there exists a unique minimum
cost matching (which we have shown to be true with probability at least %) with cost

¢*. The determinant of A will then be an odd multiple of 2¢". By expanding the
determinant along row ¢, it can be computed by the following formula:

(3) Z:l:QC” aijdet(Aij)
J

where A;; is the matrix created by removing column ¢ and row j from the matrix A
(See figure 3), and the sign depends on the parity of i+ j. The term in the summation
above will be an odd multiple of 2°” if (z,7) € M and an even multiple otherwise. So,
we can reconstruct a perfect matching M by letting:

(4) M = {(z,j) | 2% det(A;j) is an odd multiple of ZC*} :

Random-8

Figure 3: The Matrix A;;. The matrix A;; is formed by removing the ith column and
the jth row from the matrix A.

Note that ¢* can be obtained since 2°" is the largest power of 2 in det(A).

The algorithm we have presented can be seen to be in RNC since a determinant
can be computed in RNC.

We can apply a similar algorithm for solving the following related matching prob-
lem:

Given:
o A bipartite graph G,
e A coloring for each edge in GG of either red or blue,
e an integer k,
find a perfect matching with exactly k red edges.
However, in contrast to the problem of finding any perfect matching, it is not known

whether this problem is in P or even NP-complete. For this problem, define the
entries a;; of the matrix A as follows:

0 (i) gn
(5) a;; =< w;; if (¢,7) is blue
wije if (¢,7) isred

where 1s a variable. Both the permanent of A and the determinant of A are now
polynomials in one variable, z, and we wish to know the coefficients ¢; of z*. If all w;;
were 1, ¢; would represent the number of perfect matchings with exactly k red edges.
If there does exist a perfect matching with &k red eges, then Pr(¢, = 0) < % by the
same argument we derived the probability that det(A) = 0 when a perfect matching

Random-9

exists, since we can always decompose the determinant into a sum of products of
matrices with 2*.

We can now compute all the ¢; by computing the determinant of A in n + 1
different points and interpolating from that data to compute the coefficients.

3 Markov Chains

A lot of recent randomized algorithms are based on the idea of rapidly mixing Markov
chains. A Markov chain is a stochastic process, i.e. a random process that evolves
with time. It is defined by:

e A set of states (that we shall assume to be finite) 1,... , N.

e A transition matrix P where the entry p;; represents the probability of moving
to state j when at state i, i.e. p;; = Pr[Xiy1 = j | Xi = 1], where X} is a random
variable denoting the state we are in at time ¢.

Figure 4: A Markov Chain.

Figure 4 partially illustrates a set of states having the following transition matrix:

0 0 1 0 0
04 03 01 0 0.2
(6) P=| 005 0 0 05
02 08 0 0 0

0.1 0.1 0.1 0.1 0.6

The transition matrix P satisfies the following two conditions and any such matrix
is called “stochastic”:

e P>0

o Zpii =1 for all z.
J

Random-10

Suppose we are given an initial probability distribution 7(®) where we denote

Pr(Xo =1) by 71'2(0). Then,

= Pr(Xy =)
= Y Pr(Xy=j | Xo=)Pr(Xo =1)

n
- E :pw T
=1

i.e.

Repeating this argument, we obtain
70 — 20 ps

Here, 7(*) represents the distribution after s steps. Therefore, the matrix P? is the
so-called “s-step transition matrix”. Its entries are pf; = Pr [Xy, =5 | X; = 1].

Definition 1 A Markov Chain is said to be “ergodic” if limp? = m; > 0 for all j

and is independent of 1.

In this case,

P = lim [P?]
S$— 00
T .. T ... Ty
T .. T ... Ty

Hence, 7 is independent of the starting distribution 7(©):
r=7x0.p

Any vector m which satisfies 7P = 7 and), m; = 1 is called a stationary distribu-
tion.

Proposition 7 For an ergodic MC, 7 is a stationary distribution, and moreover it
is the unique stationary distribution.

Proof:
We have already shown that #(® P = (1) which implies

P> = lim P*' = (lim P*)P = P> P

5— 00 5— 00

Random-11

Since 79 P® = 7 for any probability distribution 7(°), we have 79 P> = g0 p>p
which implies # P = 7. Since P -1 = 1 where 1 is the vector of 1’s, we derive that
P> -1 =1, which says that >, =; = 1.

The reason why there is a unique stationary distribution is simply because by
starting from another stationary distribution, say 7, we always remain in this distri-
bution implying that 7 = =. O

Proposition 7 gives an “easy” way to calculate the limiting distribution of an
ergodic Markov chain from the transition matrix P. We just solve the linear system
of equations 7P =x, >, 7, = 1.

4 Ergodicity and time reversibility

Theorem 8 An MC' is ergodic if and only if both of the following are true:

1. it is irreducible. That is, the underlying graph (consisting of states and tran-
sitions with positive probabilities on them) is strongly connected. Formally, for

all © and j there is s such that pgj) > 0.
2. the chain is aperiodic. That is, you cannot divide states into subgroups so that
you must go from one to another in succession. Formally,

ged{s :pgj) >0} =1
for all v and j.

Definition 2 An ergodic MC is called time reversible (TR) if the chain remains
a Markov chain when you “go backwards”. More formally, if © is the stationary
distribution, then

TiPij = T;iPji
for all pairs of states i and j or, in words, the expected (or ergodic) flow from i to j
equals the expected flow from j to 1.

Proposition 9 Consider an ergodic MC. Suppose there exists v such that the bal-
ance condilions are salisfied: ~;pi; = v;pji, Ve,) and also, 3 ;v = 1. Then ~ is the
stationary distribution, and clearly, the MC'is TR.

Clearly the MC in Figure 5 is ergodic (strong connectivity (i.e., irreducibility) and
aperiodicity are obvious). It is clear that there exists a stationary distribution, and
we can easily guess one. Consider 71 = % and Ty = % Since one can easily verify that
7 satisfies the balance conditions, # must be the stationary distribution (and the MC
is time-reversible).

Consider an ergodic MC which is also symmetric (p;; = p;i) as in Figure 6. Then
the stationary distribution is 7; = %, where N is the number of states.

In these notes, we shall consider MC’s that are ergodic and symmetric, and there-
fore, have a uniform stationary distribution over states.

Random-12

12 3/4
12

14

Figure 5: An example of an MC with a stationary distribution.

5/12

Figure 6: A symmetric ergodic MC.

Random-13

5 Counting problems

Suppose you would like to count the number of blue-eyed people on a planet. One
approach is to take some sort of census, checking everyone on the planet for blue
eyes. Usually this is not feasible. If you know the total number of people on the
planet, then you could take a sample in such a way that every person has the same
probability of being selected. This would be a uniformly selected sample of size n out
of a universe of size N. Let Y be the random variable representing the number of
individuals in this sample that have the property (blue eyes, in our example). Then
we can infer that the total number of individuals with this property is approximately
YN

! If the actual number of individuals with the property is p/N, then we have a
Bernoulli process with n trials and success probability p. The random variable Y has
a Binomial distribution with parameters (n,p). We are interested in finding out how
close % is to p, and to do this we can use Chernoff bounds, which are exponentially
decreasing on the tail of the distribution. Since Chernoff bounds are quite useful, we
will digress for a while and derive them in some generality.

Lemma 10 Let X; be independent Bernoulli random variables with probability of
success p;. Then, for all « > 0 and all t > 0, we have

Pr [ZXZ > 1

=1

< L[] = e + 0.
1=1

i=1
Proof:
= Pr [eaZ?lei > eat]

Pr [ZXZ > 1

=1
for any a > 0. Moreover, this can be written as Pr[Y > «a] with Y > 0. From
Markov’s inequality we have

E[Y]

a

PrlY > a] <
for any nonnegative random variable. Thus,

Priyoi, Xo>t] < ek [eaZiXi]

e I, E [eaX"] because of independence.
The equality then follows from the definition of expectation. O

Setting ¢t = (1 + €) E[>_; X;] for some € > 0 and o = In(1 + ¢€), we obtain:
Corollary 11 Let X; be independent Bernoulli random variables with probability of
success p;, and let np = B[, Xi] =30 pi. Then, for all ¢ > 0, we have

Pr ZXi > (14 €)np

=1

< (14)~ Ot ﬁ E [(1 + e)Xi] <

=1

ef "
0+ 6)(1"‘5)] |

Random-14

The second inequality of the corollary follows from the fact that
E [(1 + e)X"] =pi(l+e)+(1ep)=14¢ep <ePu.

For € in the range (0,1), we can simplify the above expression and write the
following more classical form of the Chernoff bound:

Theorem 12 (Chernoff bound) Let X; be independent Bernoulli random variables
with probability of success p;, let Y = 370, X, and let np = 3°7_; pi. Then, for
1 >e>0, we have

PrlY @np > enp] < e/,

(For other ranges of ¢, we simply have to change the constant 1/3 appropriately
in the exponent.)

Similarly, we can write a Chernoff bound for the probability that Y is below the
mean.

Theorem 13 (Chernoff bound) Let X; be independent Bernoulli random variables
with probability of success p;, let Y = " X;, and let np = 3" p;. Then, for
1 >e>0, we have

€ np
c 2

< < o€ np/2
PrlY &np < enp] < 7(1 = <e)

The last upper bound of e=/2 can be derived by a series expansion.

Let us go back to our counting problem. We can use Theorems 12 and 13 to see
what sample size n we need to ensure that the relative error in our estimate of p
is arbitrarily small. Suppose we wish to impose the bound Pr {|% Spl > ep} <.

Imposing emEmP/3 < %, we derive that we can let the number of samples to be

3 2
n = % log —.
%, and]1—). If p is exponentially small, then this
may be a bad approach. For example, if we were trying to count the number of

American citizens who have dodged the draft, have become President of the country

Notice that n is polynomial in %, log

and who are being sued for sexual harassment, we would need an exponential number
of trials.

These notions can be formalized as follows. Suppose we would like to compute an
integral number f(x) (x represents the input).

Definition 3 An fpras (fully polynomial randomized approximation scheme) for f(x)
is a randomized algorithm which given x and € outpuls an integer g(x) such that

[

and runs in time polynomial in the size of the input x and in %

3
< el > —
- 4

Random-15

Thus repeated sampling can be used to obtain an fpras if we can view f(x) as the
number of elements with some property in a universe which is only polynomially
bigger, and if we can sample uniformly from this universe. Notice that the running
time is assumed to be polynomial in % It we were to impose the stronger condition
that the running time be polynomial in ln% then we would be able to compute
f(z) exactly in randomized polynomial time whenever the size of the universe is
exponential in the input size (simply run the fpras with € equal to the inverse of the
size of the universe).

Going back to our original counting problem and assuming that p is not too small,
the question now is how to draw a uniformly selected individual on the planet (or more
generally a uniformly generated element in the universe under consideration). One
possible approach is to use a Markov chain where there is one state for each individual.
Assuming that each individual has at most 1000 friends, and that “friendship” is
symmetric, we set the transition probability from an individual to each of his friends
to be zolﬁ' Then if an individual has & friends, the transition probability to himself
will be 1 <o

If the graph of friendship is strongly connected (everyone knows everyone else

> 1, implying that the chain is aperiodic.

through some sequence of friends of friends) then this MC is ergodic, and the station-
ary distribution is the uniform distribution on states.

Recall that

7"'1 .« e ﬂ-] .« e 7Tn
limPS_POO_ 7"'1 .« e ﬂ-] .« e 7Tn
5§—00

7"'1 .« e ﬂ-] .« e 7Tn

If this limit converges quickly, we can simulate the MC for a finite number of steps
and get “close” to the stationary distribution. Therefore, it would be useful for us to
know the rate of convergence to the stationary distribution if we want to use Markov
chains to approximately sample for a distribution.

It turns out that the rate of convergence is related to the eigenvalues of the
transition matrix, P. Given a stochastic matrix P (recall that P is stochastic if
it is nonnegative and all row sums are 1) with eigenvalues Ay,..., Ay, we have the
following.

L. ALl [N\ < 1. Indeed, if Pe; = Ae; then Pfe; = Ae;, and the fact that the LHS
is bounded implies that the RHS must also be.

2. Since P is stochastic, Ay = 1 (P1 =1).
3. The MC is ergodic iff |\;| < 1 for all ¢ # 1.
4. It P is symmetric then all eigenvalues are real.

Random-16

5. if P is symmetric and stochastic then if p; > % for all ¢ then A\; > 0 for all z.
Indeed, if we let) = 2P <1, then () is stochastic. Hence, the :th eigenvalue

for Q, \? = 2); 1, but [2); ©1| < 1 implies that 0 <); < 1.

6. Speed of convergence
The speed of convergence is dictated by the second largest eigenvalue. For
simplicity, suppose P has N linearly independent eigenvectors. Then P can be
expressed as A”'DA where D is the diagonal matrix of eigenvalues (Dii = \i).
And
P*=AT'DAAT'DA = AT D*A,

or, in general,
P = AT'DFA

N
= Y M
=1

N

=2

where M; is the matrix formed by regrouping corresponding terms from the ma-
trix multiplication. If the MC is ergodic, then for ¢ £ 1, A; < 1, s0lims_o A7 =0
implying M; = P*. Then P® < P> = YY_A:M; is dominated by the term
corresponding to A, = max;z |[A;|. More generally,

Theorem 14 Consider an ergodic time-reversible MC with stationary distribution «.
Then the relative error after t steps is

(t) ¢
T A
ax |p2] 7T]| <

max

A = ma

] T o minj T

Lo we have \y > Ay > ... >

In particular, for an ergodic symmetric chain with p; > 3,

AN >0, 850 Apazr = Ag.

Corollary 15 For an ergodic symmetric MC with p; > %, the relative error A < e

. log(N/e)
LR v

Returning to our example: In order to calculate how many iterations are needed
until we are arbitrarily close to the uniform distribution =, we need to evaluate the
second eigenvalue. For this purpose, Jerrum and Sinclair [11] have derived a rela-
tionship between the so-called conductance of the MC and A,,,,. Their result can be
viewed as an isoperimetric inequality, and its derivation is analogous to an isoperi-
metric inequality of Cheeger [4] for Riemannian manifolds, or results on expanders

by Alon [1] and Alon and Milman [2].

Random-17

6 Conductance of Markov chains (Jerrum-Sinclair)

Given a set S of states, let (s denote the capacity of S, which is the probability of
being in some state in S when steady-state is reached. Specifically,

Cs == ZTQ’.

€S
Define Fl, the ergodic flow out of S (expected flow) so that

Fs= Y mpy,

1€S,JES

(summing over transitions from S to the complement of S, S). Clearly Fs < Cs.
Define @5 = Fs/Cs, which is the probability of leaving S given that we are already
in 5. Define the conductance of the MC

® = min &s.
5:Cs< %
Intuitively, if we have an MC with small conductance, then once we are in a set .5,
we are “stuck” in S for a long time. This implies that it will take a long time to
reach the stationary distribution, so the rate of convergence will be small. We might
therefore expect that Ay will be close to 1 if the conductance is small.

Theorem 16 (Jerrum-Sinclair[11]) For an ergodic MC that is TR, we have
Ay < 1&02/2,

Remark 1 There exist corresponding lower bounds expressing that A > X, and Ay >
1 <2®. This therefore shows that the conductance s an appropriate measure of the
speed of convergence.

7 Evaluation of Conductance of Markov Chains

Given a markov chain, the task will be to evaluate the conductance ®. In order to
generate Markov chains with a uniform steady state distribution and rapidly mix-
ing property, we restrict our attention to the following MC: symmetric and equal
transition probability p between states having a transition (i.e. for all 7 # j, either
pij = pji = 0 or p;; = p;i = p). Therefore, it will have a uniform steady state distri-
bution #; = 1/N, where N denotes the number of states. Instead of looking at the
MC, we can look at the underlying graph G = (V, E), £ ={(4,j) : pij = pji = p}.
For a set S of states, let 6(5) = {(¢,7) € E:i € 5,5 € S}, then,

1
CS:ZT"i = W|S|,

1€S

Random-18

1
Fs= Y mpj=p- ﬁ|5(5)|7

1€S,JES

s |o(5)]
by — -5 — pl2\2)l
S Cb P |S|

Definition 4 The magnification factor of G is

()= min ——~.
16 o<|sj< 1 [S]

Therefore,
¢ = msinq)g =p-v(G).

In the rest of this section, we study the conductance of a simple MC, which will
be useful in the problem of counting matchings. Take a MC on states that are all
binary numbers with d bits so that the underlying graph is a d-cube (with 27 states).
Two nodes are adjacent only if they differ by exactly one bit. Refer to Figure 7 for a
3-cube.

000 001

\\\\\\\100 101

010 011

110 111

Figure 7: A 3-cube Markov chain.

If we put probabilities of ;—d on all out-transitions then the self loops get probabil-

ities % The MC is symmetric and ergodic, so m; = =

on this d-cube, we obtain a random d-bit number.

s7- If we simulate a random walk

Claim 17 The magnification factor of the d-cube v(G) = 1.

Proof:

Random-19

L. ~(G) < 1.
Let 57 be a vertex set of “half cube” (e.g. all vertices with state number starting
with 0). Then clearly, every vertex in S will have exactly one edge incident to

it leaving S;. Therefore, [6(51)| = |5y = &1, and

2 7

.S _ (6 0S)]
()= min < = 1.
7(6) o<isicd ST T |5

2. v(G) > 1.
For all x4, x5, define a random path between x; and z, selected uniformly among
all shortest paths between a1 and x3. For example, for

rxw =1 011010
1001111

o =

we first look at the bits in which they differ (3rd, 5th and 7th). The order in
which you change these bits determines a (or all) shortest path in the d-cube.

Given e € E. by symmetry,

E[# of paths through e] = |l1?—| T,

where T is the total length of all shortest paths. We can compute this by first
choosing z; (27 choices), sum up all the paths from z;(from length 1 to d). For
any path p, we count it twice: ¥y — x5 and xy — x1. Thus,

1 i (d
T=--2¢ k.
75 (i)

This can also be written as T' = - 2154 (Z) (d < k). Taking the average of
these two expressions, we deduce that

T:l-deZd:) = o2
2 k '

k=0

On the other hand, |E| = $2¢ - d. Hence,

E[# of paths through ¢] = — = ———— = 2971,

Consider any set S. By linearity of expectations,

E[# of paths intersecting §(5)] < > E[# of paths through €] = 277116(9)).
e€6(S)

Random-20

However, the number of paths crossing §(5) should be at least |S| - |S|. This
implies that

S| - |S|] < E[# of paths through §(5)] = 277! - 6(9)].
Since |S] < ”2/—|, S| > |21| = 2971, Therefore, for any set S,

5(8)] 1]
|S| - 2d—1

> 1.

So, y(G) > 1.

O
This gives us the conductance of the corresponding MC: & = p-~(G) = ;—d. Then

A <1 <:>%2 =1 @#. The steady-state distribution is 7; = 21—d for all y. Thus, the

relative error after t steps is

o Al I\
A:maxp” l< 2 §2d-<1<:>—))
0 T min; 7; 8d?
If we want A < ¢, we shall choose ¢ such that:
dln2 &lne

eln(l &)
> 8d?- (dIn2 <lne).

In this case, although the MC has an exponential number of states (2¢), we only
need O(d?) steps to generate an almost uniform state (with e say constant or even as
small as e=9(@)),

In general, let M be an ergodic, time reversible Markov chain with (") states,
where ¢(n) is a polynomial in n (n represents the size of the input). If its conductance
o > ﬁ, where p(n) is a polynomial in n, we will say that it has the rapidly mizing
property. The relative error after ¢ steps is

N (1)

m - . q(n
min; 7y 6()

A <

<,

To get A; < ¢, we only need to take ¢t = 2p?*(n) (q(n) +In %) steps, a polynomial
number in n and In %

Thus a rapidly-mixing MC with uniform stationary distribution with state space
M can be used as an e-sampling scheme on M:

Definition 5 A fully polynomial e-sampling scheme (also called an e-generator) for
a set M is an algorithm that runs in time poly(size of input, In %), and outputs an
element © € M with probability =(x) such that

()<:>1 - €
vedt | S M

Random-21

(M is typically given implicitly by a relation (i.e. on input x, M is the set of
strings y satisfying some relation < x,y >).)

8 Approximation by sampling

We now sketch how an e-sampling scheme can be used to develop a randomized
approximation algorithm for the counting problem we discussed before. To evaluate
|M|, first we immerse M into a larger set V' 2O M. Then we sample from V', and
approximate % by

size of (MM sample)

size of sample

This scheme works well if | M| is polynomially comparable to |V|. But if |M| < |V|
(i.e. |M| exponentially smaller than |V]), this scheme will have trouble, since in order
to obtain a small relative error in the approximation, the number of samples will
need to be so large (i.e. exponential) as to make this approach infeasible. (See our
previous discussion for the problem of counting individuals, and our study of Chernoft
bounds.)

Example: Suppose we wish to approximate . If we take a square with side-
length 2 and we inscribe within it a circle of radius 1, then the ratio of the area of
the circle to the area of the square is /4. Thus the probability that a uniformly
generated point in the square belongs to the circle is precisely = /4.

Figure 8: How (not) to calculate 7.

By generating points within the square at random according to a uniform distri-
bution, we can approximate 7 as simply 4 times the fraction of points that lie within
the circle. The accuracy of such an approximation depends on how closely we can
approximate the uniform distribution and on the number of samples. However, we
will run into trouble if we want to estimate vol(B,,) by using the same method, where
B, = {x € R" : ||z]|| < 1}, since the volume is exponentially smaller than the vol-
ume of the corresponding cube (2"). Nevertheless, a very nice application of rapidly
mixing markov chains is precisely in the computation of the volume of a convex body
or region [6]. To avoid the problem just mentioned, what is done is to immerse the
body whose volume V4 needs to be computed in a sequence of bodies of volumes V4,

Random-22

Vi, ..., such that V;/Viyq is is polynomially bounded. Then one can evaluate V4 by
the formula:

Vo _ Ve Vi Vo Vi

V, WV Va VsV,

We now show how this technique can be used to develop a fully polynomial ran-

domized approximation scheme for computing the permanent of a class of 0-1 matri-
ces.

9 Approximating the permanent

Recall that for an n x n 0-1 matrix A, the permanent of A, perm(A), is the number of
perfect matchings in the bipartite graph G whose incidence matrix is A. It is known
that computing perm(A) is #P-complete.

In order to develop an approximation scheme for the permanent, we use the tech-
nique of approximation by sampling. As a naive adoption of this technique, we can
generate edge sets at random and count the fraction that are perfect matchings. Un-
fortunately, this scheme may resemble searching for a needle in a haystack. If the
fraction of edge sets that are perfect matchings is very small, then in order to obtain
a small relative error in the approximation, the relative error in the sampling may
need to be so small and the number of samples may need to be so large as to make
this approach infeasible.

Instead of trying to directly approximate the fraction of edge sets that are perfect
matchings, we can try to approximate a different ratio from which the permanent can
be computed. Specifically, for £ = 1,2,... ,n, let M}, denote the set of matchings
with size k, and let mj = |Mj| denote the number of matchings with size k. The
permanent of A is then given by perm(A) = m,,, and we can express perm(A) as the
product of ratios:

My My m
(7) perm(A) = Lo Zmy
My—1 Mp_2 my
(my = |E|). Thus, we can approximate the permanent of A by approximating the
ratios my/my_y1 for k =2,3,... ,n. We write my/myj_; as
m u
(8) UL LIRS

mp_1 mp_1

where uy, = [Uy| and U, = MU Mj_q (see Figure 9), and then we use an e-sampling
scheme for U}, to approximate the fraction my_1/ug. To summarize our approach, for
each k = 2,3,...) n, we take random samples over a uniform distribution on the set
of matchings of size k and k<1, and we count the fraction that are matchings of size
k < 1; this gives us my_q/uy, and we use Equation 8 to get my/mi_1. Equation 7
then gets us perm(A).

The following two claims establish the connection between e-sampling of i) and
approximation of the permanent of A.

Random-23

O

Figure 9: Fach matching in U, has size either k or k < 1.

Claim 18 (Broder) I[f there is a fully polynomial e-sampling scheme for Uy = MU
Mi._1, then there exists a randomized approximation scheme for my/my_y that runs
in time that is polynomial in the values 1/¢, n, and ug/my,. [

Claim 19 If for each k = 2,3,... ,n, there is a fully polynomial e-sampling scheme
for Uy, then there exists a randomized approrimation scheme for the permanent of A
that runs in time that is polynomial in the values 1/e, n, and maxy(ug/my). n

For those graphs with maxy(ux/my) bounded by a polynomial in n, Claim 19
gives us a fully polynomial randomized approximation scheme for the permanent —
provided, of course, that we can produce an e-sampling scheme for U. In fact, it

o)~

max{ — ¢ = —.

k mg my,

This is because {my;} is log-concave (i.e. mymyq2 < mz_l_l). Thus, if we can develop
an e-sampling scheme for the matchings U for each £ = 2,3,... ,n, then for the
class of graphs with w,/m, bounded by a polynomial in n, we have an fpras for the

permanent. After developing an e-sampling scheme, we will look at such a class of
graphs.

turns out that

An e-sampling scheme for matchings

We now turn our attention to developing an e-sampling scheme for U, = M U M_q,
and it should come as no surprise that we will use the technique of rapidly mixing
Markov chains.

We now define a Markov chain whose states are matchings in Uy. Consider any
pair M;, M; of states (matchings) and create a transition between them according to
the following rules:

o If M; and M; differ by the addition or removal of a single edge, that is, M; AM; =

{e} for some edge e, then there is a transition from M; to M; and a transition

Random-24

from M; to M;. Both transitions have probability p;; = p;; = 1/2m where m
denotes the number of edges in the graph. (MiAMj = (M, &M;)U (M, <:>MZ))

o If M; and M; are both matchings of size k <1 and they differ by removing
one edge and adding another edge that has an endpoint in common with the
removed edge, that is, M;, M; € My_y and M;AM; = {(u,v), (v,w)} for some
pair of edges (u,v) and (v,w), then there is a transition from M, to M; and a
transition from M; to M;. Both transitions have probability p;; = p;; = 1/2m.

To complete the Markov chain, for each state M;, we add a loop transition from M;
to itself with probability py; set to ensure that 3=, p; = 1.

It is easy to see that this Markov chain is ergodic since the self-loops imply aperi-
odicity, and irreducibility can be seen from the construction. Irreducibility implicitly
assumes the existence of some matching of size k; otherwise the chain might not be
irreducible. The proof of irreducibility indeed stems on the fact that any matching of
size k can reach any matching of size k<1, implying that one can reach any matching
from any other matching provided a matching of size k exists. This Markov chain
is time reversible and has the desired uniform steady state probability distribution,
7 = 1/ug, since it is clearly symmetric. Furthermore, p; > 1/2 for each state M;,
and therefore, A\ax = A2 which means that we can bound the relative error after ¢

steps by:
2\’

Finally, this Markov chain also has the property that p;; = p = 1/2m for every
transition with ¢ # j, and this property allows us to compute ® by:

1
¢ = Byt ()
where we recall that v(H) is the magnification of the underlying graph H (not the
graph G on which we are sampling matchings).

If we could now lower bound v(H) by v(H) > 1/p(n) where p(n) is a polynomial
in n, then since m < n?, we would have ® > 1/p/(n) (p'(n) is also a polynomial in
n), and so we would have a fully polynomial e-sampling scheme for U;,. We cannot
actually show such a lower bound, but the following theorem gives us a lower bound
of ¥(H) > my/cuy (¢ is a constant), and this, by Claim 19, is sufficient to give us a
randomized approximation scheme that is polynomial in 1/¢, n, and u,/m,,.

Theorem 20 (Dagum, Luby, Mihail and Vazirani [5]) There exvists a constant

¢ such that |
my
S = L
C Up
Corollary 21 There exists a fully polynomial e-sampling scheme for Uy, provided that
U= O(n) for some .

mg

Random-25

A preliminary lemma is required.

Lemma 22 Let My, My be matchings in a bipartite graph. Then My/AM, is a union
of vertex disjoint paths and cycles which alternate between the edges of My and M;.

Sketch of the proof of main result: For each pair of states My, My with My € M _4
and My € My, we pick a random path from M; to M, in H as follows. By lemma 22
we can write the symmetric difference of the matchings M; and M; as

where each element of (' denotes a cycle or path in G with the same number of edges
from M; as from M;, each element of DD denotes a path in (G with one more edge
from M, than from M;, and each element of F denotes a path in G with one more
edge from M; than from M,. Notice that there must be exactly one more element
in D than in . We order the paths in each set at random so [C7,Cy, ... ,C,] is a
random permutation of the r paths (or cycles) in C, [Dy, Ds,...,D,] is a random
permutation of the ¢ paths in D, and [Fy, Fa, ..., F,_1] is a random permutation of
the ¢ &1 paths in E. A path from M; to M5 in H is then given by:

M, %
M = M,AD;
=
M'"= MNANF;
Dq
\ »
f
[
M,

Of course, My — (M7 A Dy) may not actually be a transition of the chain, but M; —
(M1 A D) does define a path of transitions if we use the edges of Dy two at a time.
The crucial part of this proof is showing that there exists a constant ¢ such that
for any edge e of H, the expected number of paths that go through e is upper bounded
by
E [number of paths through ¢] < emy_;.

Random-26

We will not do this part of the proof. Now if we consider any set S C V of vertices
from H, by linearity of expectation, the expected number of paths that cross from S
over to S is upper bounded by

E [number of paths crossing S| < emy_1 [6(.9)]
where we recall that 6(5) denotes the coboundary of S. Therefore, there exists some

choice for the paths such that not more than ¢my_y |6(.5)] of them cross the boundary
of 5.

Figure 10: Partitioning .

Each vertex of S is either a matching of M, or a matching of Mj_; and likewise

for S, so we can partition i), as shown in Figure 10. We assume, without loss of
generality, that

(9)

and therefore,

(10)

(otherwise, we exchange S and S). The number of paths that cross S must be at least
|S N M||S N Mj_q] since for any My € SN My_y, My € SN M, there must be a
path from M, to M, which crosses from S to S. By multiplying together Inequalities
9 and 10, we have

mephe_q |S| ‘?‘

u

1S 0 Mi| S0 M| >

Random-27

But we have already seen that we can choose paths so that the number of paths
crossing the boundary of S is not more than emy_y [6(5)|. Therefore, it must be the

case that
mephe_q |S| ‘?‘

emyg—1 |6(5)| > 22

Notice that this statement is unchanged if we replace S by S. So, without loss of

generality |S| < % which implies that ‘?‘ > . Hence

— S
LR P
uz up 2
which implies that

P o L my

|S] T 2¢ ug

1 mrg

oy > —F

VH) 2 5o

A class of graphs with u,, /m, polynomially bounded

We finish this discussion by considering a class of graphs for which w,,/m, is bounded
by a polynomial in n. Specifically, we consider the class of dense bipartite graphs. A
dense bipartite graph is a bipartite graph in which every vertex has degree at least n/2
(recall that n is number of vertices on each side of the bipartition).

We now show that for dense bipartite graphs, m,_1/m, < n®. Since u,/m, =
L4+my,—_1/m,, this bound gives us the desired result. Consider a matching M € M,,_4
with edges {(u1,v1), (u2,v3), ..., (Un-1,v4—1)} so that u, and v, are the two exposed
vertices. Since both w, and v, have degree at least n/2, there are the following two
possibilities.

o (un,v,)is an edge which implies that M’ := M U {(un,v,)} € M,,.

e There exists an ¢ for 1 < ¢ < n<1 such that both (u,,v;) and (u;,v,) are edges
(this follows from the pigeonhole principle). In this case M’ := M <{(u;,v;)} U
{(unv vi)v (uiv vn)} € M,.

Thus we can define a function f: M,y — M, by letting f(M) = M.
Now consider a matching M’ € M,,, and let f~'(M’) denote the set of matchings
M € M,,_q such that f(M) = M’'. For each M € M,y such that f(M) =M M

can be obtained from M’ in one of two different ways.

e Some pair of edges (u;,v;), (uj,v;) are removed from M’ and replaced with a
single edge that must be either (u;,v;) or (u;,v;). We can choose the pair of
edges to remove in (;) ways and we can choose the replacement edge in at most
2 ways.

Random-28

e An edge (u;,v;) is removed from M’. This edge can be chosen in n ways.

Thus, there are at most

Z(g) +n=n(n&l)+n=n’
matchings in M,,_; that could possibly map to M’. This means that |f~'(M')| < n?
for every matching M’ € M,,, and therefore, m,,_;/m, < n?.

Thus we have shown that for dense bipartite graphs, there exists a fully polynomial
randomized approximation scheme for the permanent. This result is tight in the sense
that graphs can be constructed such that =2=!
degree > 7 <¢. There is also a theorem of Broder which says that

is exponential and whose vertices have

Theorem 23 Counting perfect matchings on dense bipartite graphs is #P-complete.

Other applications of Markov Chains

There are other uses for Markov Chains in the design of algorithms. Of these the
most interesting is for computing the volume of convex bodies. It can be shown
that a fully polynomial randomized approximation scheme may be constructed for
this problem [6]. This is interesting because it can also be shown that one cannot
even approximate the volume to within an exponential factor of n"* for ¢ < 0.5 in
polynomial time, where n is the dimension [3].

References

[1] N. Alon. Eigenvalues and expanders. Combinatorica, 6:83-96, 1986.

[2] N. Alon and V. Milman. Aq, isoperimetric inequalities for graphs and supercon-

centrators. Journal of Combinatorial Theory B, 38:73-88, 1985.

[3] 1. Barany and Z. Fiiredi. Computing the volume is difficult. In Proceedings of the
18th Annual ACM Symposium on Theory of Computing, pages 442—-447, 1986.

[4] J. Cheeger. A lower bound for the smallest value of the Laplacian. In R. Gunning,
editor, Problems in analysis, pages 195-199. Princeton University Press, 1970.

[5] P. Dagum, M. Mihail, M. Luby, and U. Vazirani. Polytopes, permanents and
graphs with large factors. In Proceedings of the 29th Annual Symposium on
Foundations of Computer Science, pages 412-422, 1988.

[6] M. Dyer, A. Frieze, and R. Kannan. A random polynomial algorithm for ap-
proximating the volume of convex bodies. Journal of the ACM, pages 1-17,
1991.

Random-29

[7] R. Karp. An introduction to randomized algorithms. Discrete Applied Mathe-
matics, 34:165-201, 1991.

[8] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31:249-260, 1987.

[9] R. Motwani and P. Raghavan. Randomized Algorithms. 1994.

[10] K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7(1):105-113, 1987.

[11] A. Sinclair and M. Jerrum. Approximate counting, uniform generation and
rapidly mixing markov chains. Information and Computation, 82:93-133, 19809.

Random-30

18.415/6.854 Advanced Algorithms October 1994

Linear Programming
Lecturer: Michel X. Goemans

1 An Introduction to Linear Programming

Linear programming is a very important class of problems, both algorithmically and
combinatorially. Linear programming has many applications. From an algorithmic
point-of-view, the simplex was proposed in the forties (soon after the war, and was
motivated by military applications) and, although it has performed very well in prac-
tice, is known to run in exponential time in the worst-case. On the other hand, since
the early seventies when the classes P and NP were defined, it was observed that linear
programming is in NP co-NP although no polynomial-time algorithm was known at
that time. The first polynomial-time algorithm, the ellipsoid algorithm, was only dis-
covered at the end of the seventies. Karmarkar’s algorithm in the mid-eighties lead to
very active research in the area of interior-point methods for linear programming. We
shall present one of the numerous variations of interior-point methods in class. From
a combinatorial perspective, systems of linear inequalities were already studied at the
end of the last century by Farkas and Minkovsky. Linear programming, and especially
the notion of duality, is very important as a proof technique. We shall illustrate its
power when discussing approximation algorithms. We shall also talk about network
flow algorithms where linear programming plays a crucial role both algorithmically
and combinatorially. For a more in-depth coverage of linear programming, we refer
the reader to [1, 4, 7, 8, 5].

A linear program is the problem of optimizing a linear objective function in the
decision variables, x1 ... x,, subject to linear equality or inequality constraints on the
x;’s. In standard form, it is expressed as:

Min Zn: ¢ (objective function)
subject to: =

Zn: ajr;=b, i=1...m (constraints)

;;;12 0, J=1...n (non-negativity constraints)

where {a;;, b;,¢;} are given.
A linear program is expressed more conveniently using matrices:

b

.) A
minelz subject to { v
x 0

VAN

LP-1

where

L1

r = : e Rt
Ty
b

b = : e Rmx!
by
1

c = : e R™*!
Cp
a1

amn

2 Basic Terminology

Definition 1 If x satisfies Az = b,x > 0, then x is feasible.

Definition 2 A linear program (LP) is feasible if there exists a feasible solution,
otherwise it is said to be infeasible.

Definition 3 An optimal solution z* is a feasible solution s.t. ¢'x* = min{clz :

Az = b,z > 0}.
Definition 4 LP is unbounded (from below) if YA € R, 3 a feasible * s.t. ¢fz* <).

3 Equivalent Forms

A linear program can take on several forms. We might be maximizing instead of
minimizing. We might have a combination of equality and inequality contraints.
Some variables may be restricted to be non-positive instead of non-negative, or be
unrestricted in sign. Two forms are said to be equivalent if they have the same set of
optimal solutions or are both infeasible or both unbounded.

1. A maximization problem can be expressed as a minimization problem.

maxc! x < min<c z

2. An equality can be represented as a pair of inequalities.

o a;fr:zj < b
ale > b,
T

K3

a?x:bi ar <

i bi
salz

<b;

LP-2

3. By adding a slack variable, an inequality can be represented as a combination
of equality and non-negativity constraints.

a?:z;gbi@afx—l—sizbi, s; > 0.

4. Non-positivity constraints can be expressed as non-negativity constraints.

To express x; < 0, replace z; everywhere with &y; and impose the condition
Y; Z 0.

5. = may be unrestricted in sign.

It = is unrestricted in sign, i.e. non-positive or non-negative, everywhre replace
. +
x; by] &

;> adding the constraints xf x; > 0.

7

In general, an inequality can be represented using a combination of equality and
non-negativity constraints, and vice versa.
T2 s.t. Az > b} can be transformed into min {CT:L"" sclz

s.t. Azt ©Ar~ <Is=b, zt,27,s > 0}. The former LP is said to be in canonical
form, the latter in standard form.

Using these rules, min {c

Conversely, an LP in standard form may be written in canonical form. min{cT:L'

s.t. Az =0b, x > 0} is equivalent to min {CT:L' s.t. Az > b, @Az > <b, [z > 0}.

A b
This may be rewritten as A'z > b, where A" = [-4 | and b’ = | »
I 0
4 Example
Consider the following linear program:
1 Z 2
min x5 subject to oo o > 6
Ery + 2z, > 0

The optimal solution is (4,2) of cost 2 (see Figure 1). If we were maximizing x»
instead of minimizing under the same feasible region, the resulting linear program
would be unbounded since x5 can increase arbitrarily. From this picture, the reader
should be convinced that, for any objective function for which the linear program is
bounded, there exists an optimal solution which is a “corner” of the feasible region.
We shall formalize this notion in the next section.

LP-3

3X1-Xo2

(26)

(24

(1)

Figure 1: Graph representing primal in example.

An example of an infeasible linear program can be obtained by reversing some of
the inequalities of the above LP:

1 < 2
3r; & o > 0
1 + wp = 6
Ery + 2z, <0

5 The Geometry of LP
Let P={x:Ax=b, x >0} CR™
Definition 5 x is a vertex of P if Ay #0s.t.x+y, x &y € P.

Theorem 1 Assume min{c’z : x € P} is finite, then Vo € P,3 a vertex « such that
Ta < Ty

Proof:

If x is a vertex, then take 2’ = .

If = is not a vertex, then, by definition, dy # 0 s.t. = +y, v <y € P. Since
Alz4+y)=band A(x &y) =b, Ay = 0.

WLOG, assume ¢’y < 0 (take either y or &y). If ¢y = 0, choose y such that 3;
s.t. y; < 0. Since y # 0 and Ty = ¢ (&y) = 0, this must be true for either y or .

Consider = + Ay, A > 0. cI(x + \y) = cF'z + Ael'y < Tz, since ¢!y is assumed
non-positive.

LP-4

X2 &

A
Y

Figure 2: A polyhedron with no vertex.

Case 1 dj such that y; <0
As X increases, component j decreases until x + Ay is no longer feasible.

Choose A = mingj., <oy{z;/ <y} = 21/ <yr. This is the largest A such that
x+ Ay > 0. Since Ay =0, A(x + \y) = Av + Ny = Ax =b. Sox + Ay € P,

and moreover x + Ay has one more zero component, (z + Ay),, than .

Replace = by = 4+ Ay.

Case 2 y; >0V

By assumption, ¢!y < 0 and x + Ay is feasible for all A > 0, since A(z + \y) =
Ar+ XAy = Az =b,and 2+ \y >z > 0. But I (x + \y) = Ta+ ATy — &0
as A — oo, implying LP is unbounded, a contradiction.

Case 1 can happen at most n times, since + has n components. By induction on
the number of non-zero components of z, we obtain a vertex .
O
Remark: The theorem was described in terms of the polyhedral set P = {z :
Az = b: x > 0}. Strictly speaking, the theorem is not true for P = {z : Ax >
b}. Indeed, such a set P might not have any vertex. For example, consider P =
{(x1,29) : 0 < 29 < 1} (see Figure 2). This polyhedron has no vertex, since for any
x € P, we have +y, * &y € P, where y = (1, 0). It can be shown that P has a
vertex iff Rank(A) = n. Note that, if we transform a program in canonical form into
standard form, the non-negativity constraints imply that the resulting matrix A has
full column rank, since
A
Rank | -A | =n.
I

LP-5

Corollary 2 If min{cl'z : Ax = b,x > 0} is finite, There exists an optimal solution,

x*, which is a vertex.

Proof:
Suppose not. Take an optimal solution. By Theorem 1 there exists a vertex
costing no more and this vertex must be optimal as well. O

Corollary 3 If P = {a : Ax = b,x > 0} # 0, then P has a vertex.

Theorem 4 Let P = {z: Az = b,z > 0}. Forx € P, let A, be a submaltriz of A
corresponding to j s.t. x; > 0. Then x is a vertex iff A, has linearly independent
columns. (i.e. Ay has full column rank.)

, and x is a vertex.

O DD W

21 30
Example A= |7 3 2 1| x=
0005

O = O N

Proof:

Show —¢ — —ui.

Assume x is not a vertex. Then, by definition, 3y # 0 s.t. v +y, = &y € P.
Let A, be submatrix corresponding to non-zero components of y.

As in the proof of Theorem 1,

Ar 4+ Ay = b B
Az & Ay = b};‘Ay—O'

Therefore, A, has dependent columns since y # 0.

Moreover,

r +
r <

AVAIAY

Z 8 } = y; = 0 whenever z; = 0.

Therefore A, is a submatrix of A,. Since A, is a submatrix of A,, A, has
linearly dependent columns.

Show —it — —i.

Suppose A, has linearly dependent columns. Then Jy s.t. A,y = 0, y # 0.
Extend y to R™ by adding 0 components. Then dy € R" s.t. Ay =0, y #0
and y; = 0 wherever z; = 0.

Consider y' = Ay for small A > 0. Claim that « +y', © <y’ € P, by argument
analogous to that in Case 1 of the proof of Theorem 1, above. Hence, x is not
a vertex.

4

LP-6

6 DBases

Let @ be a vertex of P = {a : Az = b,x > 0}. Suppose first that |[{j : z; > 0}| =m
(where A is m x n). In this case we denote B = {j : x; > 0}. Also let Ap = A,; we
use this notation not only for A and B, but also for x and for other sets of indices.
Then Ap is a square matrix whose columns are linearly independent (by Theorem
4), so it is non-singular. Therefore we can express x as x; = 0 if j ¢ B, and since
Apxp = b, it follows that x5 = Aglb. The variables corresponding to B will be called
basic. The others will be referred to as nonbasic. The set of indices corresponding to
nonbasic variables is denoted by N = {1,... ,n} & B. Thus, we can write the above
as rg = Aglb and zny = 0.

Without loss of generality we will assume that A has full row rank, rank(A) = m.
Otherwise either there is a redundant constraint in the system Az = b (and we can
remove it), or the system has no solution at all.

If {j : x; > 0} < m, we can augment A, with additional linearly independent
columns, until it is an m x m submatrix of A of full rank, which we will denote Ag.
In other words, although there may be less than m positive components in z, it is
convenient to always have a basis B such that |B| = m and Apg is non-singular. This
enables us to always express z as we did before, zy = 0, x5 = Ag'b.

Summary z is a vertex of P iff thereis B C {1,...,n} such that |B| = m and
l.ay=0for N={1,... ,n} B
2. Ap is non-singular
3. xg = Az'6 >0

In this case we say that x is a basic feasible solution. Note that a vertex can have
several basic feasible solution corresponding to it (by augmenting {7 : ; > 0} in
different ways). A basis might not lead to any basic feasible solution since Agz'b is
not necessarily nonnegative.

Example:

1+ 2o+ 23=23
21’1 <:>$2—|—2$3 =1
1}171’271'320

LP-7

We can select as a basis B = {1,2}. Thus, N = {3} and

11
Ap = (2 @1)
1 1
Ag' = (% _%)
3 3
_ 2
- (3
r = (2,3,0)

Remark. A crude upper bound on the number of vertices of P is (:L) This number
is exponential (it is upper bounded by n™). We can come up with a tighter approx-

m
n—3

imation of (”), though this is still exponential. The reason why the number is
2

much smaller is that most basic solutions to the system Ax = b (which we counted)
are not feasible, that is, they do not satisty = > 0.

7 The Simplex Method

The Simplex algorithm [Dantzig,1947] [2] solves linear programming problems by
focusing on basic feasible solutions. The basic idea is to start from some vertex v and
look at the adjacent vertices. If an improvement in cost is possible by moving to one
of the adjacent vertices, then we do so. Thus, we will start with a bfs corresponding
to a basis B and, at each iteration, try to improve the cost of the solution by removing
one variable from the basis and replacing it by another.

We begin the Simplex algorithm by first rewriting our LP in the form:

min c¢gxrp + cNIN
s.t. ABJ}B + ANJ}N =5
B, TN Z 0

Here B is the basis corresponding to the bfs we are starting from. Note that, for
any solution z, v = Az'b & A" Ayzy and that its total cost, ¢Tx can be specified
as follows:

cx = cprp-+ceyTy
= CB(Aélb <:>A§1AN$N) + ey
= CBAélb—I- (CN <:>CBA§1AN)$N

We denote the reduced cost of the non-basic variables by ¢y, ¢y = ey <:>CBA]§1AN,
i.e. the quantity which is the coefficient of xx above. If there is a 7 € N such that

LP-8

¢; < 0, then by increasing x; (up from zero) we will decrease the cost (the value of
the objective function). Of course xp depends on xx, and we can increase ; only as
long as all the components of g remain positive.

So in a step of the Simplex method, we find a j € IV such that ¢; < 0, and increase
it as much as possible while keeping xg > 0. It is not possible any more to increase
xj, when one of the components of xp is zero. What happened is that a non-basic
variable is now positive and we include it in the basis, and one variable which was
basic is now zero, so we remove it from the basis.

If, on the other hand, there is no j € N such that ¢; < 0, then we stop, and
the current basic feasible solution is an optimal solution. This follows from the new

T

expression for ¢ x since xy is nonnegative.

Remarks:

1. Note that some of the basic variables may be zero to begin with, and in this
case 1t is possible that we cannot increase x; at all. In this case we can replace
say 7 by k in the basis, but without moving from the vertex corresponding to
the basis. In the next step we might replace k£ by j, and be stuck in a loop.
Thus, we need to specity a “pivoting rule” to determine which index should
enter the basis, and which index should be removed from the basis.

2. While many pivoting rules (including those that are used in practice) can lead
to infinite loops, there is a pivoting rule which will not (known as the minimal
index rule - choose the minimal j and k possible [Bland, 1977]). This fact was
discovered by Bland in 1977. There are other methods of “breaking ties” which
eliminate infinite loops.

3. There is no known pivoting rule for which the number of pivots in the worst
case is better than exponential.

4. The question of the complexity of the Simplex algorithm and the last remark
leads to the question of what is the length of the shortest path between two
vertices of a convex polyhedron, where the path is along edges, and the length
of the path in measured in terms of the number of vertices visited.

Hirsch Conjecture: For m hyperplanes in d dimensions the length of the
shortest path between any two vertices of the arrangement is at most m <d.

This is a very open question — there is not even a polynomial bound proven
on this length.

On the other hand, one should note that even if the Hirsch Conjecture is true,
it doesn’t say much about the Simplex Algorithm, because Simplex generates
paths which are monotone with respect to the objective function, whereas the
shortest path need not be monotone.

LP-9

Recently, Kalai (and others) has considered a randomized pivoting rule. The
idea is to randomly permute the index columns of A and to apply the Simplex
method, always choosing the smallest 7 possible. In this way, it is possible to
show a subexponential bound on the expected number of pivots. This leads to
a subexponential bound for the diameter of any convex polytope defined by m
hyperplanes in a d dimension space.

The question of the existence of a polynomial pivoting scheme is still open
though. We will see later a completely different algorithm which ¢s polynomial,
although not strongly polynomial (the existence of a strongly polynomial algo-
rithm for linear programming is also open). That algorithm will not move from
one vertex of the feasible domain to another like the Simplex, but will confine
its interest to points in the interior of the feasible domain.

A visualization of the geometry of the Simplex algorithm can be obtained from
considering the algorithm in 3 dimensions (see Figure 3). For a problem in the form
min{c’z : Az < b} the feasible domain is a polyhedron in R?, and the algorithm
moves from vertex to vertex in each step (or does not move at all).

Objective
function

Figure 3: Traversing the vertices of a convex body (here a polyhedron in R?).

LP-10

8 When is a Linear Program Feasible 7

We now turn to another question which will lead us to important properties of linear
programming. Let us begin with some examples.

We consider linear programs of the form Az = b, x > 0. As the objective function
has no effect on the feasibility of the program, we ignore it.

We first restrict our attention to systems of equations (i.e. we neglect the non-
negativity constraints).

Example: Consider the system of equations:
r1 + 22 + w23 = 6
21’1 + 31’2 + T3 = 8
201 + w9 4+ 3xz3 = 0
and the linear combination
&4 x o+ 1y oz =
1 x 21’1 + 31’2 + T3 =
1 x 21’1 + Ty + 31’3 =
The linear combination results in the equation

S o

01’1 + 01’2 + 01’3 = &l6

which means of course that the system of equations has no feasible solution.

In fact, an elementary theorem of linear algebra says that if a system has no
solution, there is always a vector y such as in our example (y = (&4,1,1)) which
proves that the system has no solution.

Theorem 5 FExactly one of the following is true for the system Ax = b:
1. There is x such that Az = b.

2. There is y such that ATy =0 but y'b = 1.

This is not quite enough for our purposes, because a system can be feasible,
but still have no non-negative solutions & > 0. Fortunately, the following lemma
establishes the equivalent results for our system Az = b, 2 > 0.

Theorem 6 (Farkas’ Lemma) FEzactly one of the following is true for the system
Az =b, 2 > 0:

1. There is x such that Ax = b, > 0.

2. There is y such that ATy >0 but bTy < 0.

LP-11

Proof:

We will first show that the two conditions cannot happen together, and then than
at least one of them must happen.

Suppose we do have both x and y as in the statement of the theorem.

Ar=b= yT Az = yTb = 2T ATy = y"b

but this is a contradiction, because y7b < 0, and since > 0 and ATy > 0, so
xT ATy > 0.

The other direction is less trivial, and usually shown using properties of the Sim-
plex algorithm, mainly duality. We will use another tool, and later use Farkas’ Lemma
to prove properties about duality in linear programming. The tool we shall use is the
Projection theorem, which we state without proof:

Theorem 7 (Projection Theorem) Let K be a closed convex (see Figure 4) non-
empty set in R”, and let b be any point in R™. The projection of b onto K is a point
p € K that minimizes the Fuclidean distance ||b<pl||. Then p has the property that
forall z € K, (z <p)T(b&p) <0 (see Figure 5) non-empty set.

not convex convex

Figure 4: Convex and non-convex sets in R?.

We are now ready to prove the other direction of Farkas’” Lemma. Assume that
there is no x such that Az = b, x > 0; we will show that there is y such that ATy > 0
but y7b < 0.

Let K = {Az:2 >0} CR™ (Ais an m x n matrix). K is a cone in R™ and it is
convex, non-empty and closed. According to our assumption, Az = b, * > 0 has no
solution, so b does not belong to K. Let p be the projection of b onto K.

Since p € K, there is a w > 0 such that Aw = p. According to the Projection
Theorem, for all z € K, (2 &p)T (b<p) < 0 That is, for all x > 0 (Az <p)L (bep) <0

We define y = p&b, which implies (Az <p)Ty > 0. Since Aw = p, (Az ©Aw)Ty >
0. (z &w)T(ATy) > 0 for all x > 0 (remember that w was fixed by choosing b).

LP-12

Figure 5: The Projection Theorem.

Set + = w + (w plus a unit vector with a 1 in the i-th row). Note that x

0
1s non-negative, because w > 0.

This will extract the 2-th column of A, so we conclude that the ¢-th component of
ATy is non-negative (ATy); > 0, and since this is true for all 7, ATy > 0.

Now it only remains to show that y7b < 0.

y'b = (pey)ly = plyeyTy Since (Azep)Ty > 0 for all z > 0, taking x to be zero
shows that pTy < 0. Sinceb g€ K,y =p&b# 0,50 yTy > 0. SoyTb = plyeyly < 0.
O

Using a very similar proof one can show the same for the canonical form:

Theorem 8 FExactly one of the following is true for the system Ax < b:
1. There is x such that Az < b.

2. There is y > 0 such that ATy =0 but yTb < 0.

The intuition behind the precise form for 2. in the previous theorem lies in the proof
that both cannot happen. The contradiction 0 = 0z = (y? A)z = yT(Az) = yTb < 0
is obtained if ATy = 0 and y7b < 0.

LP-13

9 Duality

Duality is the most important concept in linear programming. Duality allows to
provide a proof of optimality. This is not only important algorithmically but also it
leads to beautiful combinatorial statements. For example, consider the statement

In a graph, the smallest number of edges in a path between two spec-
ified vertices s and t is equal to the maximum number of s &1 cuts (i.e.
subsets of edges whose removal disconnects s and).

This result is a direct consequence of duality for linear programming.

Duality can be motivated by the problem of trying to find lower bounds on the
value of the optimal solution to a linear programming problem (if the problem is
a maximization problem, then we would like to find upper bounds). We consider
problems in standard form:

min 'z
st. Az =0
x>0

Suppose we wanted to obtain the best possible upper bound on the cost function.
By multiplying each equation A,,x = b,, by some number y,, and summing up the
resulting equations, we obtain that y? Az = bTy. if we impose that the coefficient of
z; in the resulting inequality is less or equal to ¢; then b7y must be a lower bound on
the optimal value since z; is constrained to be nonnegative. To get the best possible
lower bound, we want to solve the following problem:

max by
st. ATy <e

This is another linear program. We call this one the dual of the original one, called
the primal. As we just argued, solving this dual LP will give us a lower bound on the
optimum value of the primal problem. Weak duality says precisely this: if we denote
the optimum value of the primal by 2z, 2 = minc’z, and the optimum value of the
dual by w, then w < z. We will use Farkas’ lemma to prove strong duality which says
that these quantities are in fact equal. We will also see that, in general, the dual of
the dual is the problem.

Example:
z=min z; -+ 2 + 4z,
1 + 22 + 223 =5
201+ xo + 3z3 = 8§
The first equality gives a lower bound of 5 on the optimum value z, since x1 + 225 +
dxy > x1 + x5 + 223 = 5 because of nonnegativity of the x;. We can get an even

LP-14

better lower bound by taking 3 times the first equality minus the second one. This

gives xq + 2x5 + 3x3 = 7 < 21 + 229 + 43, implying a lower bound of 7 on z. For
3

x=| 2 |, theobjective function is precisely 7, implying optimality. The mechanism
0

of generating lower bounds is formalized by the dual linear program:

max dy; + 8ys
yi o+ 2y, <1
i o+ oy <

<

2y 4+ 3ye 4

17 represents the multiplier for the first constraint and y, the multiplier for the second
constraint, This LP’s objective function also achieves a maximum value of 7 at y =

3
sl)
We now formalize the notion of duality. Let P and D be the following pair of dual
linear programs:

(P) z=min{c"z: Az = b,z > 0}
(D) w =max{b'y: ATy < ¢}.

(P) is called the primal linear program and (D) the dual linear program.

In the proof below, we show that the dual of the dual is the primal. In other
words, if one formulates (D) as a linear program in standard form (i.e. in the same
form as (P)), its dual D(D) can be seen to be equivalent to the original primal (P).
In any statement, we may thus replace the roles of primal and dual without affecting
the statement.

Proof:

The dual problem D is equivalent to min{<by : ATy + Is = ¢,s > 0}. Changing
forms we get min{&<blyt +bly~ : ATyt ATy~ + s = ¢, and yT,y~,s > 0}. Taking
the dual of this we obtain: maX{<:>cT:1; s A(er) < b, eA(er) < b, [(<x) <0}. But
this is the same as min{c’x : Az = b,z > 0} and we are done. O

We have the following results relating w and =z.

Lemma 9 (Weak Duality) z > w.

Proof:
Suppose z is primal feasible and y is dual feasible. Then, ¢'z > yT Az = yTb,
thus z = min{cTz : Az = b,z > 0} > max{bTy: ATy < ¢} = w. O

From the preceding lemma we conclude that the following cases are not possible
(these are dual statements):

1. P is feasible and unbounded and D feasible.

LP-15

2. P is feasible and D is feasible and unbounded.

We should point out however that both the primal and the dual might be infeasible.
To prove a stronger version of the weak duality lemma, let’s recall the following
corollary of Farkas’ Lemma (Theorem 8):

Corollary 10 Fractly one of the following is true:
7. da’ Al < V.
2.3y >0: (A)Vy =0 and (¥)Ty <O0.
Theorem 11 (Strong Duality) If P or D is feasible then z = w.

Proof:

We only need to show that z < w. Assume without loss of generality (by duality)
that P is feasible. If P is unbounded, then by Weak Duality, we have that z = w =
&00. Suppose P is bounded, and let * be an optimal solution, i.e. Az* = b, * > 0
and c'z* = z. We claim that Jy s.t. ATy < ¢ and b'y > 2. If so we are done.

T
Suppose no such y exists. Then, by the preceding corollary, with A" = (<1:>46T)7

b/:(;Z)7$/:y7y/:(i),ﬂxZO,AZ()suchthat

Ax = b

and fa <)z

We have two cases

e Case 1:)\ # 0. Since we can normalize by A we can assume that A = 1. This
means that 3= > 0 such that Az = b and ¢!z < z. But this is a contradiction
with the optimality of =*.

e Case 2: A\ = 0. This means that 3z > 0 such that Az = 0 and ¢’z < 0. If this
is the case then Y > 0, z* + px is feasible for P and its cost is ¢! (2" + pz) =
La* + ,u(cT:I:) < z, which is a contradiction.

4

9.1 Rules for Taking Dual Problems

If P is a minimization problem then D) is a maximization problem. If P is a maxi-

mization problem then D is a minimization problem. In general, using the rules for

transforming a linear program into standard form, we have that the dual of (P):
z=min cl'zy + Lag + el as

LP-16

s.t.

Apay + Appas + Ases = by
Aoy + Aggwg + Agzzs > by
Az 4 Asgxe + Aszzs < bs

$1207$2§07$3UIS

(where UIS means “unrestricted in sign” to emphasize that no constraint is on the
variable) is (D)
W = max bipyl + bgyg + b3Ty3

s.t.
Airlyl + Agl?/? + A3le?> < ¢
A{zyl + A;Fzyz + Agsz:a >
Alsn + Alya + Alys = s

leIsvyZZovyBSO

10 Complementary Slackness

Let P and D be

(P) z=min{c"z: Az = b,z > 0}
(D) w=max{bTy: ATy < ¢},

and let @ be feasible in P, and y be fesible in D. Then, by weak duality, we know that
e’z > b'y. We call the difference ¢!z < by the duality gap. Then we have that the
duality gap is zero iff x is optimal in P, and y is optimal in D. That is, the duality
gap can serve as a good measure of how close a feasible and y are to the optimal
solutions for P and D. The duality gap will be used in the description of the interior
point method to monitor the progress towards optimality.

It is convenient to write the dual of a linear program as

(D) w=max{bTy: ATy + s =c for some s > 0}
Then we can write the duality gap as follows:

drebtly = deeastAly

= 2T(ceATy)
= als
since ATy +s=c.
The following theorem allows to check optimality of a primal and/or a dual solu-
tion.

LP-17

Theorem 12 (Complementary Slackness)
Let x*, (y*, s*) be feasible for (P), (D) respectively. The following are equivalent:

1. a* is an optimal solution to (P) and (y*,s*) is an optimal solution to (D).
2. (s ™ =

J.oalsi=0,Vj=1,... ,n

4. 1f 7 >0 then 2% = 0.

Proof:

Suppose (1) holds, then, by strong duality, ¢ z* = bTy*. Since ¢ = ATy* + s* and
Az = b, we get that (y*)T Az* + (s*)T2* = (2*)T ATy, and thus, (s*)T2* = 0 (i.e (2)
holds). It follows, since z%, s* > 0, that z¥s¥ = 0,V j = 1,... ,n (i.e. (3) holds).
Hence, if 57 > 0 then 27 =0,V j=1,... ,n (i.e. (4) holds). The converse also holds,
and thus the proof is complete. O

In the example of section 9, the complementary slackness equations corresponding
to the primal solution = = (3,2,0)” would be:

y1+ 2y, =1
Y1ty =2

Note that this implies that y; = 3 and y3 = <1. Since this solution satisfies the
other constraint of the dual, y is dual feasible, proving that z is an optimum solution
to the primal (and therefore y is an optimum solution to the dual).

11 Size of a Linear Program

11.1 Size of the Input

It we want to solve a Linear Program in polynomial time, we need to know what
would that mean, i.e. what would the size of the input be. To this end we introduce
two notions of the size of the input with respect to which the algorithm we present
will run in polynomial time. The first measure of the input size will be the size of
a LP, but we will introduce a new measure L of a LP that will be easier to work
with. Moreover, we have that [< size(LP), so that any algorithm running in time
polynomial in L will also run in time polynomial in size(LP).
Let’s consider the linear program of the form:

mincl z

where we are given as inputs the coefficients of A (an m x n matrix), b (an m x 1
vector), and ¢ (an n x 1 vector), whith rationial entries.

We can further assume, without loss of generality, that the given coefficients are
all integers, since any LP with rational coefficients can be easily transformed into an
equivalent one with integer coefficients (just multiply everything by l.c.d.). In the
rest of these notes, we assume that A, b, ¢ have integer coefficients.

For any integer n, we define its size as follows:

size(n) = 1+ [log,(|n| + 1]

where the first 1 stands for the fact that we need one bit to store the sign of n, size(n)
represents the number of bits needed to encode n in binary. Analogously, we define
the size of a p x 1 vector d, and of a p x [matrix M as follows:

size(v) 2 by stze(v;)
size(M) 2 P Zé‘:l size(m;;)

We are then ready to talk about the size of a LP.

Definition 6 (Size of a linear program)
size(LP) = size(A) + size(b) + size(c).

A more convenient definition of the size of a linear program is given next.

Definition 7

L = size(detmax) + Size(bmax) + SiZG(Cmax) +m+n

where

detmaz

max(| det(4)])

bmaz = max(|bi])

>

Cmax m]aX(|Cj|)

and A’ is any square submaltriz of A.
Proposition 13 L < size(LP), VA, b, c.

Before proving this result, we first need the following lemma:

Lemma 14 1. Ifn € Z then |n| < 2570~ &1,

LP-19

2. If v € Z" then ||v|| < o]y < 25" =1,
3- [fA [ZTLXTL then |d€t(A)| S 25ize(A)—n2 <:>1
Proof:

1. By definition.

2. 1+l <1+l = 143 o] < [T +]w]) < T 2077 = 2257 where
=1 =1 =1
we have used 1.

3. Let aq,... ,a, be the columns of A. Since |det(A)| represents the volume of the
parallelepiped spanned by aq,... ,a,, we have

|det(A)] < [T llai-
=1

Hence, by 2,

Ut ldet()] < 14 T ol < TT0 + ol < T2 = et
=1 =1 =1

We now prove Proposition 13.
Proof:
If B is a square submatrix of A then, by definition, size(B) < size(A). Moreover,
by lemma 14, 1 4 |det(B)| < 2°#B)~1 Hence,
(1) [log(1l + |det(B)|)] < size(B) <1 < size(B) < size(A).
Let v € ZP. Then size(v) > size(max; |v;]) + p <1 = [log(1 + max; |v;])] + p. Hence,

(2) size(b) + size(c) > [log(1 4+ max |¢;|)] + [log(1 + max |b;|)] + m + n.

J 7
Combining equations (1) and (2), we obtain the desired result. O
Remark 1 detmaz* bmaz* cmaz* 271" < 2V, since for any integer n, 9size(n) > |n|.

In what follows we will work with L as the size of the input to our algorithm.

LP-20

11.2 Size of the Output

In order to even hope to solve a linear program in polynomial time, we better make
sure that the solution is representable in size polynomial in L. We know already that
if the LP is feasible, there is at least one vertex which is an optimal solution. Thus,
when finding an optimal solution to the LP, it makes sense to restrict our attention
to vertices only. The following theorem makes sure that vertices have a compact
representation.

Theorem 15 Let x be a vertex of the polyhedron defined by Ax = b,x > 0. Then,

:(p_p_p_)
q 4q q

where p; (1 =1,...,n), ¢ € N,

and
0<p<2F
1 <q<2b
Proof:
Since x is a basic feasible solution, 3 a basis B such that xg = Aglb and zny = 0.
Thus, we can set p; = 0, V 5 € N, and focus our attention on the z;’s such that

J € B. We know by linear algebra that

1
= A_lb = — Ag)b
B = B det(AB)cof(5)

where cof(Ap) is the cofactor matrix of Ag. Every entry of Ap consists of a deter-
minant of some submatrix of A. Let ¢ = |det(Apg)|, then ¢ is an integer since Ag has
integer components, ¢ > 1 since Ap is invertible, and ¢ < detmax < 2". Finally, note
that pg = qup = |cof(Ap)b|, thus p; < Sy lcof(Ag)i;||b;| < m detmax bmax < oL,

O

12 Complexity of linear programming

In this section, we show that linear programming is in NPN co-NP. This will follow
from duality and the estimates on the size of any vertex given in the previous section.
Let us define the following decision problem:

Definition 8 (LP)
Input: Integral A, b, ¢, and a rational number A,
Question: Is min{clx : Az =b, 2 > 0} < \?

LP-21

Theorem 16 L£LP € NP N co-NP

Proof:

First, we prove that LP € NP.

If the linear program is feasible and bounded, the “certificate” for verification of
instances for which min{c’z : Az = b,z > 0} < X\ is a vertex ' of {Az = b,z > 0}
s.t. ¢T'2' < A. This vertex 2’ always exists since by assumption the minimum is finite.
Given 2/, it is easy to check in polynomial time whether Az’ = b and 2’ > 0. We also
need to show that the size of such a certificate is polynomially bounded by the size
of the input. This was shown in section 11.2.

If the linear program is feasible and unbounded, then, by strong duality, the dual
is infeasible. Using Farkas’ lemma on the dual, we obtain the existence of : Az = 0,
> 0and ¢ = —1 < 0. Our certificate in this case consists of both a vertex of
{Az = b, x > 0} (to show feasiblity) and a vertex of {Az = 0, x > 0, cfz = —1}
(to show unboundedness if feasible). By choosing a vertex 2’ of {Az = 0, « > 0,
c'x = —1}, we insure that 2’ has polynomial size (again, see Section 11.2).

This proves that LP € NP. (Notice that when the linear program is infeasible,
the answer to LP is “no”, but we are not responsible to offer such an answer in order

to show LP € NP).
Secondly, we show that LP € co-NP, i.e. LP € NP, where LP is defined as:

Input: A, b, ¢, and a rational number A,
Question: Is min{c?z : Az = b, >0} > \?
If {x : Az = b, x > 0} is nonempty, we can use strong duality to show that LP is

indeed equivalent to:
Input: A, b, ¢, and a rational number A,
Question: Is max{bly : ATy <c} > A7
which is also in NP, for the same reason as LP is.
If the primal is infeasible, by Farkas’ lemma we know the existence of a y s.t.
ATy >0 and b7y = —1 < 0. This completes the proof of the theorem. O

13 Solving a Liner Program in Polynomial Time

The first polynomial-time algorithm for linear programming is the so-called ellipsoid
algorithm which was proposed by Khachian in 1979 [6]. The ellipsoid algorithm was in
fact first developed for convex programming (of which linear programming is a special
case) in a series of papers by the russian mathematicians A.Ju. Levin and, D.B. Judin
and A.S. Nemirovskii, and is related to work of N.Z. Shor. Though of polynomial
running time, the algorithm is impractical for linear programming. Nevertheless it
has extensive theoretical applications in combinatorial optimization. For example,
the stable set problem on the so-called perfect graphs can be solved in polynomial
time using the ellipsoid algorithm. This is however a non-trivial non-combinatorial
algorithm.

LP-22

In 1984, Karmarkar presented another polynomial-time algorithm for linear pro-
gramming. His algorithm avoids the combinatorial complexity (inherent in the sim-
plex algorithm) of the vertices, edges and faces of the polyhedron by staying well
inside the polyhedron (see Figure 13). His algorithm lead to many other algorithms

for linear programming based on similar ideas. These algorithms are known as interior
point methods.

Figure 6: Exploring the interior of a convex body.

It still remains an open question whether there exists a strongly polynomial algo-
rithm for linear programming, i.e. an algorithm whose running time depends on m
and n and not on the size of any of the entries of A, b or c.

In the rest of these notes, we discuss an interior-point method for linear program-
ming and show its polynomiality.

High-level description of an interior-point algorithm:

1. If « (current solution) is close to the boundary, then map the polyhedron onto
another one s.t. x is well in the interior of the new polyhedron (see Figure 7).

2. Make a step in the transformed space.
3. Repeat (a) and(b) until we are close enough to an optimal solution.

Before we give description of the algorithm we give a theorem, the corollary of
which will be a key tool used in determinig when we have reached an optimal solution.

LP-23

Theorem 17 Let x1, x5 be vertices of Ax = b,
x> 0.

If ey # Tay then |y — cTay| > 272,

Proof:
By Theorem 15, 3 ¢;, ¢, such that 1 < ¢, g, < 2%, and ¢,21, ¢ux5 € N*. Further-
more,

T T
q1¢" 21 q2C" 2

Ay — cT:L'2| =

41 q2
_ 9192(CT51?1 - CTII?z)
4192
1 : T T
> — since ¢’ vy — ' xy #£ 0, ¢1,q2 > 1
4192
1 _ .
> Lol — 272k since qi,qa < 2%
O
Corollary 18 Assume z = min{clz : Az = b,z > 0}.
—_———
polyhedron P
Assume x is feasible to P, and such that "2 < z + 27,
Then, any vertex x' such that ¢'x' < ¢'x is an optimal solution of the LP.
Proof:
Suppose ' is not optimal. Then, Jz*, an optimal vertex, such that ¢’2* = 2.
Since 2’ is not optimal, ¢f 2’ # ¢Tz*, and by Theorem 17
= =y > 272
= e > clax 4272
= 7427
> g by definition of x
> Iy’ by definition of z’
= el >
a contradiction. O

What this corollary tells us is that we do not need to be very precise when choosing
an optimal vertex. More precisely we only need to compute the objective function
with error less than 272, If we find a vertex that is within that margin of error, then
it will be optimal.

LP-24

P P

Figure 7: A centering mapping. If x is close to the boundary, we map the polyhedron
P onto another one P’, s.t. the image 2’ of x is closer to the center of P'.

13.1 Ye’s Interior Point Algorithm

In the rest of these notes we present Ye’s [9] interior point algorithm for linear pro-
gramming. Ye's algorithm (among several others) achieves the best known asymptotic
running time in the literature, and our presentation incorporates some simplifications

made by Freund [3].

We are going to consider the following linear programming problem:

minimize Z = 'z

(P){ subject to Az =0,

x>0
and its dual
maximize W = by
(D)< subject to ATy +s=rc,
s > 0.

The algorithm is primal-dual, meaning that it simultaneously solves both the
primal and dual problems. It keeps track of a primal solution T and a vector of dual
slacks 5 (i.e. 37 : ATy = ¢ —) such that T > 0 and 3 > 0. The basic idea of this
algorithm is to stay away from the boundaries of the polyhedron (the hyperplanes
x;>0and s; > 0,5 =1,2,...,n) while approaching optimality. In other words, we
want to make the duality gap

AT -y =7"3>0

very small but stay away from the boundaries. Two tools will be used to achieve this
goal in polynomial time.

Tool 1: Scaling (see Figure 7)

Scaling is a crucial ingredient in interior point methods. The two types of scaling
commonly used are projective scaling (the one used by Karmarkar) and affine scaling
(the one we are going to use).

LP-25

Suppose the current iterate is T > 0 and 3 > 0, where T = (T3, Ta,... ,T,)., then
the affine scaling maps = to 2’ as follows.

1 =

T
T2 ;—2
x = — 2’ = '
Notice this transformation maps T to e = (1,...,1).
We can express the scaling transformation in matrix form as =’ = X 'zorz=
Xa', where
zy 00 ... 0
0 7, 0 ... 0
0 0 Tpo1 O
0 0 0 Ty,

Using matrix notation we can rewrite the linear program (P) in terms of the trans-
formed variables as:

minimize Z = ¢! Xz
subject to AXa' = b,
' > 0.
If we define ¢ = X¢ (note that X = YT) and A = AX we can get a linear program
in the original form as follows.

minimize Z =¢la’
subject to Az’ = b,

' > 0.

We can also write the dual problem (D) as:

maximize W =bly
subject to (AX)Ty + Xs =g,
Xs>0
or, equivalently,
maximize W = by

subject to ZTy +s =g,
>0

LP-26

where s’ = Xs, i.e.

5171
SQEQ
s =
STLTTL
One can easily see that
(3) rjs; = s Vie{l,...,n}

and, therefore, the duality gap 7s = >, x;s; remains unchanged under affine scaling.
As a consequence, we will see later that one can always work equivalently in the
transformed space.

Tool 2: Potential Function

Our potential function is designed to measure how small the duality gap is and
how far the current iterate is away from the boundaries. In fact we are going to use
the following “logarithmic barrier function”.

Definition 9 (Potential Function, G(z,s))

Gz, s) 2 gIn(zTs) — > ln(z;s;), for some q,
7=1

where ¢ is a parameter that must be chosen appropriately.

Note that the first term goes to —oo as the duality gap tends to 0, and the second
term goes to 400 as x; — 0 or s; — 0 for some :. Two questions arise immediately
concerning this potential function.

Question 1: How do we choose q?

Lemma 19 Let x,s > 0 be vectors in R™*Y, Then

n
ninzls — Zlnxjsj > nlnn.
i=1

Proof:
Given any n positive numbers ¢, ... ,t,, we know that their geometric mean does
not exceed their arithmetic mean, i.e.

Taking the logarithms of both sides we have

1 n n
-~ (Zlntj) <In (th) — Inn.
7=1 7=1

Rearranging this inequality we get

nln th — Zlntj > nlnn.
7=1 7=1

(In fact the last inequality can be derived directly from the concavity of the logarith-
mic function). The lemma follows if we set ¢; = x;s;. O

Since our objective is that G — —oo as #7s — 0 (since our primary goal is to get
close to optimality), according to Lemma 19, we should choose some ¢ > n (notice
that InzTs — —co as s — 0) . In particular, if we choose ¢ = n + 1, the algorithm
will terminate after O(nL) iterations. In fact we are going to set ¢ = n + y/n, which
gives us the smallest number — O(y/nL) — of iterations by this method.

Question 2: When can we stop?

Suppose that z7s < 2720 then ¢T'e — Z < o — by = 275 < 272
the optimum value to the primal problem. From Corollary 18, the following claim
follows immediately.

, where Z is

Claim 20 If 27s < 272% then any vertex x* satisfying ¢ a* < ¢’z is optimal.

In order to find z* from z, two methods can be used. One is based on purely
algebraic techniques (but is a bit cumbersome to describe), while the other (the
cleanest one in literature) is based upon basis reduction for lattices. We shall not
elaborate on this topic, although we’ll get back to this issue when discussing basis
reduction in lattices.

Lemma 21 Let x,s be feasible primal-dual vectors such that G(x,s) < —k\/nL for

some constant k. Then

zls < ek,

Proof:

By the definition of G/(x,s) and the previous theorem we have:
—kyvnL > G(x,s)
= (n—l—\/ﬁ)lnsz—anlnxjsj
j=1
> \/ﬁlnsz—l—nlnn.

LP-28

Rearranging we obtain

Inzls < —kL—+/nlnn
< —kL.

Therefore
als < e7*, U
The previous lemma and claim tell us that we can stop whenever G(x,s) <
—2y/nL. In practice, the algorithm can terminate even earlier, so it is a good idea to
check from time to time if we can get the optimal solution right away.

Please notice that according to Equation (3) the affine transformation does not
change the value of the potential function. Hence we can work either in the original
space or in the transformed space when we talk about the potential function.

14 Description of Ye’s Interior Point Algorithm

Initialization:

Set ¢ = 0.

Choose z° > 0, s° > 0, and y° such that Az® = b, ATy" + s = c and G(2°,5°) =
O(v/nL). (Details are not covered in class but can be found in the appendix. The
general idea is as follows. By augmenting the linear program with additional variables,
it is easy to obtain a feasible solution. Moreover, by carefully choosing the augmented
linear program, it is possible to have feasible primal and dual solutions = and s such
that all z;’s and s;’s are large (say 2¥). This can be seen to result in a potential of

O(vnlL).)

Iteration:

while G(a',s') > —2/nL
either a primal step (changing x! only)
do{ or a dual step (changing s' only)
=174+ 1

}to get (z'F1, s 1)

The iterative step is as follows. Affine scaling maps (z',s%) to (¢,s'). In this
transformed space, the point is far away from the boundaries. Either a dual or
primal step occurs, giving (&, 3) and reducing the potential function. The point is
then mapped back to the original space, resulting in (z*F!, s*1).

Next, we are going to describe precisely how the primal or dual step is made such
that

1+1 1y 7 7 < _
G(a™,s™) = Ga', s') < —120<0

holds for either a primal or dual step, yielding an O(y/nL) total number of iterations.

LP-29

g;\
g)\

I
o
I _
\L ! — Null space of A
d {x: Ax=0}

Figure 8: Null space of A and gradient direction g.

In order to find the new point (&,3) given the current iterate (e, s’) (remember
we are working in the transformed space), we compute the gradient of the potential
function. This is the direction along which the value of the potential function changes
at the highest rate. Let g denote the gradient. Recall that (e,s’) is the map of the
current iterate, we obtain

I
2T :
1/:1;7% (675/)
q9
4 — _
() eTS/S €

We would like to maximize the change in G, so we would like to move in the
direction of —g. However, we must insure the new point is still feasible (i.e. Az = b).
Let d be the projection of g onto the null space {x : Az = 0} of A. Thus, we will
move in the direction of —d.

Claim 22 d = (I — A(AA")1 A)g.

Proof:
Since g — d is orthogonal to the null space of A, it must be the combination of
some row vectors of A. Hence we have

Ad=0
Jw, s.t. Aw = g —d.

This implies

LP-30

and

O
A potential problem arises if ¢ is nearly perpendicular to the null space of A. In
this case, ||d|| will be very small, and each primal step will not reduce the potential

greatly. Instead, we will perform a dual step.
In particular, if ||d|| = ||d||z = VdTd > 0.4, we make a primal step as follows.

N 1
I = e— ——
Al]d||
5 = §.
Claim 23 = > 0.
Proof:
. d
xj:1—§WTJHz§>0. O

This claim insures that the new iterate is still an interior point. For the similar
reason, we will see that § > 0 when we make a dual step.

-

Proposition 24 When a primal step is made, G(Z,5) — G(e,s') < —155.

If ||d|] < 0.4, we make a dual step. Again, we calculate the gradient
h = vsG(xvs)“e,s’)

(5) VI

1/s!

n

Notice that h; = g¢;/s;, thus h and g can be seen to be approximately in the same
direction.
Suppose the current dual feasible solution is y’, s’ such that

ZTy’ + s ==¢

LP-31

Again, we restrict the solution to be feasible, so

_Ty—|—§ = C

~ /
S — S =

e

=)

N

Thus, in the dual space, we move perpendicular to the null space and in the direction
of —(g — d).

Thus, we have
S=s"—(g—dp

For any pu, dy ZTy—|—§ =c

So, we can choose y = 625/ and get ZT(y’ + pw) + 5 =c.

Therefore,
els!
~ /
5 = 5 — g—d
. ()
els! g
= 5 — . (quS/—e—d)
els!
- o
¥ = 2 =e

One can show that 5§ > 0 as we did in Claim 23. So such move is legal.

Y Y

Proposition 25 When a dual step is made, G(%,3) — G(e,s') < —

According to these two propositions, the potential function decreases by a con-
stant amount at each step. So if we start from an initial interior point (2%, s°) with

G(2°,8°) = O(y/nlL), then after O(\/nL) iterations we will obtain another interior
point (z7,s7) with G(27,s7) < —ky/nL. From Lemma 21, we know that the duality
gap (27)1s satisfies

(xj)TSj S Q_kL,

and the algorithm terminates by that time. Moreover, each iteration requires O(n?)
operations. Indeed, in each iteration, the only non-trivial task is the computation of
the projected gradient d. This can be done by solving the linear system (AAT)w = Ag
in O(n?) time using Gaussian elimination. Therefore, the overall time complexity of
this algorithm is O(rn*?L). By using approximate solutions to the linear systems, we
can obtain O(n*?) time per iteration, and total time O(n®L).

LP-32

15 Analysis of the Potential Function

In this section, we prove the two propositions of the previous section, which concludes
the analysis of Ye’s algorithm.
Proof of Proposition 24:

1
G(2,3) — G(e,s') = Gle— md, 5) — G(e,s)
T dTS/ n
= qln(e 3'——)— ln(l) In s’
i)~ %0 () X
—qln (eTS’) + Zlnl + ZIHS;
dT ! d;
e gin) £l)
o) ~ 5 (= 7
Using the relation
22
—rx— —— < In(l1 — < —
(6) x 2(1_a)_n(r) < —ux
which holds for |z]| < a < 1, we get:
, daS/ n
T,5) — < - — =1/4
Glond) - Gled) < e+ S+ Y e e
L qd’s' N er -I-i
o A||d]|eTs T 4fld|] 24
1 q 7 1
- _ d+ —
e ae) 4t g
1
- d+ —
a9 4t o
_ ap 1
4]l
o,
4 24
PR
- 10 24
__T
120
Note that g7d = ||d||?, since d is the projection of g. (This is where we use the
fact that d is the projected gradient!) O

Before proving Proposition 25, we need the following lemma.

LP-33

Lemma 26

Proof:
Using the equality § = %(e + d) and Equation 6, which holds for |z| < a < 1, we
see that

Y () = nin(SE) = X In(2(1+d;) —nn(2(1 + 54))

n d]2 BT
> Y (dj = sm) — st

_ ldlP

= 6/5

=2
— 15

Proof of Proposition 25:
Using Lemma 26 and the inequality

€TS

Zn: In(s;) < nln(—),

i=1 "

which follows from the concavity of the logarithm function, we have

G(e,3) = Gle,s') = gqIn() = Tioy In(s) + Tz In(s))

< qln(5

€

)+ 2 —nln(22) +nln(=2)

s’ n

eLs
- % + \/EIH(BTS/)

On the other hand,

A
els = —(n + er)
q
and recall that A = eTs’,
i1, 1
—_— = - d) < 0.4
eTS/ q(n—l—e)_n—l—\/ﬁ(n—l_ \/ﬁ)v
since, by Cauchy-Schwartz inequality, |eTd| < ||e]|||d|] = /n]||d||. Combining the
above inequalities yields

G(e,5) — Gle,s') <&+ nlin(l - M)

— n—I—\/ﬁ
2 _ _06n

— 15 n—I—\/ﬁ
2 3 1

S 15 10 6

since n + \/ﬁ < 2n.]
This completes the analysis of Ye’s algorithm.

16 Bit Complexity

Throughout the presentation of the algorithm, we assumed that all operations can
be performed exactly. This is a fairly unrealistic assumption. For example, notice
that ||d|| might be irrational since it involves a square root. However, none of the
thresholds we set were crucial. We could for example test whether ||d|| > 0.4 or
|d|] < 0.399. To test this, we need to compute only a few bits of ||d||. Also, if
we perform a primal step (i.e. ||d|| > 0.4) and compute the first few bits of ||d|| so
that the resulting approximation ||d||,, satisfies (4/5)||d|| < ||d||sp < ||d|| then if we go
through the analysis of the primal step performed in Proposition 1, we obtain that the
reduction in the potential function is at least 19/352 instead of the previous 7/120.
Hence, by rounding ||d|| we can still maintain a constant decrease in the potential
function.

Another potential problem is when using Gaussian elimination to compute the pro-
jected gradient. We mentioned that Gaussian elimination requires O(n?) arithmetic
operations but we need to show that, during the computation, the numbers involved
have polynomial size. For that purpose, consider the use of Gaussian elimination to
solve a system Ax = b where

(1) (1) (1)

all a12 .« . o aln
1 1 1
oo |l
A

Assume that a7 # 0 (otherwise, we can permute rows or columns). In the first
(1)

iteration, we substract a;; /aﬁ) times the first row from row ¢ where ¢ = 2,... ,m,
resulting in the following matrix:

(2) (2) (2)

all alz o« .. aln

2 2

o &
0 aff) al?)

(),

In general, A+Y is obtained by subtracting aj?/aﬁ times row ¢ from row j of A®
foryg=¢+1,... ,m.

i+1)

Theorem 27 For all i < j. k, aﬁ) can be written in the form det(B)/ det(C) where
B and C are some submatrices of A.

LP-35

Proof:

Let B; denote the ¢ x 7 submatrix of AW consisting of the first i entries of the first
¢t rows. Let B](Q denote the 7 x 7 submatrix of A% consisting of the first ¢ — 1 rows
and row j, and the first ¢ — 1 columns and column k. Since B; and B](Q are upper
triangular matrices, their determinants are the products of the entries along the main

diagonal and, as a result, we have:

a(l) _ det(BZ)
¢ det(Bi_l)

and '
20— det(B](Q) ‘
J det(Bi_l)

Moreover, remember that row operations do not affect the determinants and, hence,
the determinants of B](Q and B;_; are also determinants of submatrices of the original
matrix A. O

Using the fact that the size of the determinant of any submatrix of A is at most the
size of the matrix A, we obtain that all numbers occuring during Gaussian elimination
require only O(L) bits.

Finally, we need to round the current iterates x, y and s to O(L) bits. Otherwise,
these vectors would require a constantly increasing number of bits as we iterate. By
rounding up x and s, we insure that these vectors are still strictly positive. It is
fairly easy to check that this rounding does not change the potential function by a
significant amount and so the analysis of the algorithm is still valid. Notice that now
the primal and dual constraints might be slightly violated but this can be taken care
of in the rounding step.

A Transformation for the Interior Point Algorithm

In this appendix, we show how a pair of dual linear programs

Min 'z Maz by
(P) st Ax=1b (D) s.t. ATy + s = ¢
x>0 s > 0

can be transformed so that we know a strictly feasible primal solution xy and a strictly

feasible vector of dual slacks sq such that G(xg; s0) = O(y/nL) where
G(x;s) = qln(als) — > In(z;s;)
7=1

and ¢ = n 4+ /n.

LP-36

Consider the pair of dual linear programs:

Min e + kenqr
(P") s.t. Az + (b—2LAe)x, 4y = b
(218¢ — o)Tx + 2Ma, = &
J}ZO $n+120 $n+220
and
Min by + kyYma
(D) s.t. ATy + (24Le —) Ymt1 + S = ¢
(b—22LAe)Ty + Spq1 = k.
2yt + Snp2 = 0
s, Snt1, Spp2 = 0

where k, = 25F(n + 1) — 22EcTe is chosen in such a way that 2’ = (2, 2,41, Tny2) =
(22F¢, 1,22F) is a (strict) feasible solution to (P') and k. = 2. Notice that (y',s') =
(Y, Yma1s S Snats Snpz) = (0, —1,24¢ k. 2*1) is a feasible solution to (D) with s’ > 0.
z' and (y', s') serve as our initial feasible solutions.

We have to show:

1. G(a';s") = O(v/n'L) where n' =n + 2,
2. the pair (P') — (D') is equivalent to (P) — (D),

3. the input size L’ for (P') as defined in the lecture notes does not increase too
much.

The proofs of these statements are simple but heavily use the definition of L and
the fact that vertices have all components bounded by 2%,
We first show 1. Notice first that 2’s’ = 26L for all j, implying that

Gays') = (n'+ \/ﬁ) hﬁ(l’/TS/) - Zln(x;S;)
7=1

= (n'+ ﬁ) ln(ZGLn’) —n' ln(ZGL)
= \/ﬁln(ZGL) + (n' + \/ﬁ) In(n')
= O(Vn'L)

In order to show that (P') — (D) are equivalent to (P) — (D), we consider an
optimal solution 2* to (P) and an optimal solution (y*,s*) to (D) (the case where
(P) or (D) is infeasible is considered in the problem set). Without loss of generality,
we can assume that @™ and (y*, s*) are vertices of the corresponding polyhedra. In
particular, this means that 27, |y], s¥ < 2L

LP-37

Proposition 28 Leta' = (2*,0, (ky— (2% e—c)T2*) /20 and let (y', s') = (y*,0,, 8%, k.—
(b — 22 Ae)Ty*,0). Then

1. 2" is a feasible solution to (P') with x|, >0,

2. (y',s") is a feasible solution to (D') with s, >0,

3. 2" and (y',s") satisfy complementary slackness, i.e. they constitute a pair of
optimal solutions for (P') — (D).

Proof:

To show that z’ is a feasible solution to (P’) with #/,, > 0, we only need to
show that k, — (2%¢ — ¢)T2* > 0 (the reader can easily verify that 2’ satisfy all the
equalities defining the feasible region of (P’)). This follows from the fact that

(24L€ o C)TIL'* S n(24L T 2L)2L — n(25L T 22L) < n26L
and

ky = 26L(n +1)— 22ele > 26L(n +1)— 22y max |¢;| > 96l 1 968 93l - 98l
j

where we have used the definition of L. and the fact that vertices have all their entries

bounded by 2F.
To show that (y’,s’) is a feasible solution to (D) with s/, > 0, we only need to

show that k. — (b — 222 Ae)Ty* > 0. This is true since
(b . 22LA6)Ty* S bTy* . 22L6TATy*
< mmax|b|2" + 22 nm max |a;; 2"
7 7

22L + 24L < 26L — kc‘

z' and (y', s') satisfy complementary slackness since
o 2*1s* = 0 by optimality of z* and (y*, s*) for (P) and (D)
o x5, ., =0and

® 2 ,5,.,=0
0
This proposition shows that, from an optimal solution to (P)— (D), we can easily
construct an optimal solution to (P’') — (D) of the same cost. Since this solution
has s/, > 0, any optimal solution & to (P’) must have #,1; = 0. Moreover, since
2! o > 0, any optimal solution (g, 8) to (D') must satisfy 5,1, = 0 and, as a result,
Ym+1 = 0. Hence, from any optimal solution to (P") — (D'), we can easily deduce an
optimal solution to (P) — (D). This shows the equivalence between (P) — (D) and
()~ (D).
By some tedious but straightforward calculations, it is possible to show that L’
(corresponding to (P')—(D’)) is at most 24 L. In other words, (P)—(D) and (P")—(D")

have equivalent sizes.

LP-38

References

1]
2]

7]
[3]

[9]

V. Chvatal. Linear Programming. W.H. Freeman and Company, 1983.

G. Dantzig. Maximization of a linear function of variables subject to linear in-
equalities. In T. Koopmans, editor, Activity Analysis of Production and Allocation,
pages 339-347. John Wiley & Sons, Inc., 1951.

R. M. Freund. Polynomial-time algorithms for linear programming based only
on primal scaling and project gradients of a potential function. Mathematical
Programmaing, 51:203-222, 1991.

D. Goldfarb and M. Todd. Linear programming. In Handbook in Operations Re-
search and Management Science, volume 1, pages 73-170. Elsevier Science Pub-

lishers B.V., 1989.

C. C. Gonzaga. Path-following methods for linear programming. SIAM Review,
34:167-224, 1992.

L. Khachian. A polynomial algorithm for linear programming. Doklady Akad.
Nauk USSR, 244(5):1093-1096, 1979.

K. Murty. Linear Programming. John Wiley & Sons, 1983.

A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
1986.

Y. Ye. An O(n®L) potential reduction algorithm for linear programming. Math-
ematical Programming, 50:239-258, 1991.

LP-39

LP-40

18.415/6.854 Advanced Algorithms November 1994

Network flows
Lecturer: Michel X. Goemans

In these notes, we study some problems in ”Network Flows”. For a more compre-
hensive treatment, the reader is referred to the surveys [12, 1], or to the recent book [2].
Network flow problems arise in a variety of settings; the underlying networks might
be transportation networks, communication networks, hydraulic networks, computer
chips, or some abstract network. The field was born from applications in the 40’s
and 50’s and has since developed into a strong methodological core with numerous
algorithmic issues. The first polynomial time algorithms for network flow problems
have been developed in the 70’s, and constant progress towards faster and faster al-
gorithms has been made in the 80’s. Network flow problems can be formulated as
linear programs and, as a result, all the methodology of linear programming can be
applied. Duality plays a crucial role, and the simplex algorithm can take advantage
of the structure of network flow problems (bases can be nicely characterized).

Some of the basic problems in this area include the single source shortest path
problem, the maximum flow problem, and the minimum cost flow problem. First,
we shall briefly review each of them and then we shall describe a polynomial time
algorithm due to Goldberg and Tarjan [14] for the minimum cost flow problem.

1 Single Source Shortest Path Problem

We are interested in the following problem:
Given

e a directed graph G = (V| F) where V is the set of vertices and F is the set of
edges,

e and a length function [: I — Z,
e a distinguished vertex s € V' (the source vertex),

Find for all v € V the length é6(v) of the shortest path from s to v.

This is NP-hard if we allow negative length cycles (i.e. cycles for which the sum of
the lengths of its edges is negative). However, if all lengths are nonnegative ({(u,v) >
0 for all edges (u,v) € F) then a standard algorithm that solves this problem is
Dijkstra’s algorithm [6] (see also [4]). The implementation of Dijkstra’s algorithm is
based on the implementation of a priority queue and various implementations of this
priority queue lead to different worst-case running times. Using a Fibonacci heap
implementation [10] of the priority queue, it can be shown that the algorithm has a

Flow-1

total running time of O(m 4 nlogn) where m = |E| and n = |V|. This is the best
known strongly polynomial algorithm for the single-source shortest path problem. An
algorithm is said to be strongly polynomial if

1. It performs a polynomially bounded number of operations in the number of
input data (in this case m and n). We allow the operations +,-,*,< and rational
division.

2. The sizes of the numbers occurring during the algorithm are polynomially
bounded in the size of the input.

There are also single-source shortest path algorithms which may not be strongly
polynomial, i.e. algorithms whose running time depends on L = max{(u,v)+1. These
algorithms may achieve a better running time than Dijkstra’s algorithm, provided L
is not too large. Listed below are four such algorithms:

Dial [5] O(m +nl)

Johnson [16] O(mloglog L)

Gabow [11] O(mlog, L) where d = max(2, [m/n])
Ahuja, Mehlhorn, Orlin, Tarjan [3] O(m + ny/Tog L)

Observe that all these algorithms except Dial’s algorithm are polynomial since the
size of the input is at least log L.

If negative lengths are allowed then the problem can still be solved in polynomial
time provided that no negative length cycle exists. The algorithm of Bellman-Ford
solves this problem in O(nm) time.

We would like to point out that these problems are defined on a directed graph.
An undirected shortest path problem can easily be reduced to a directed instance
by replacing every edge by bidirected edges. This reduction is fine if all lengths are
nonnegative (in which case Dijkstra’s algorithm can be used), but does not work if
there are edges of negative length. In this case, indeed, a negative length cycle would
be created. However, the undirected shortest path problem on an undirected graph
with possibly negative edge lengths but no negative length cycle can still be solved
in polynomial time. The algorithm is, however, fairly complicated and is based on a
reduction of the problem to nonbipartite matching.

2 The Maximum Flow Problem

Given

e a directed graph G = (V| F) where V is the set of vertices and F is the set of
edges,

e capacity u(v,w) > 0 for (v,w) € F,

e source s € V,

Flow-2

o sinkt eV,

a flow f is an assignment of values to the edges which satisfies f(v,w) < u(v,w) for
all edges (v, w) and which satisfies the flow conservation constraints

Z f(vvw) = Z f(wvv)

wi(v,w)EE wi(w,w)EE

for all vertices v except s and ¢t. The goal is to find a flow such that the net flow
> f(s,w) out of s (3,(5m)ep [(5,v)) is maximum. One can easily derive that the
net flow out of s is equal to the net flow into ¢, and thus we could maximize this latter
quantity as well.

All these constraints are linear constraints and the objective function is linear, so
the maximum flow problem (MAX FLOW) is a linear program. We could therefore
exploit the structure of the linear program to tailor the simplex algorithm. This has
been done and, in fact, although no version of the simplex algorithm is known to run
in polynomial time for general linear programs, it is known that it can be made to
run in polynomial time (or even in strongly polynomial time) for the maximum flow
problem. Goldfarb and Hao [15] have developed a version of the simplex which makes
at most nm pivots and run in O(n*m) time. However, there are some more efficient
combinatorial algorithms which exploit the structure of the problem. Most known
algorithms are based on the concept of "augmenting paths”, introduced by Ford and
Fulkerson [8]. There are a variety of algorithms with different running times. The
best strongly polynomial running time of a max flow algorithm is O(nmlogn?/m)

(due to Goldberg and Tarjan [13]).

3 Minimum Cost Circulation Problem

In the minimum cost circulation problem, we are given a directed graph G = (V,).
For each arc (v,w) € E, we are given a cost ¢(v,w), a lower bound [(v,w) and an
upper bound u(v,w). Throughout, we assume that [(.,.), u(.,.) and ¢(.,.) are integral
unless mentioned otherwise. We will associate a flow f with each arc of the graph.
This flow will be required to satisfy (v, w) < f(v,w) < u(v,w) and the cost of the
flow on (v, w) is defined to be ¢(v,w)f(v,w). This is the classical notation. However,
in our lectures, we adopt Goldberg and Tarjan’s notation [14] in which every directed
arc (v,w) is represented by arcs (v,w) and (w,v) (see Figure 1).

This will simplify the proofs later on. In this notation, the flow f(w,v) on (w,v)
is assumed to be equal to —f(v,w), i.e. the flow is antisymmetric. Using this anti-
symmetry assumption, the lower bound on the flow f(v,w) is equivalent to an upper
bound of —I(v,w) on f(w,v). Also, the cost ¢(w,v) on the arc (w,v) is defined to be
—c(v,w). This ensures that, if we push some flow on (v, w) and then decide to push
it back from w to v, we get a full refund of the cost incurred (i.e. ¢(v,w)f(v,w)).
Notice that the total cost of the flow on the arcs (v,w) and (w,v) is equal to

Flow-3

Figure 1: Standard notation vs. Goldberg-Tarjall notation.

c(v,w) f(v,w) + c(w,v) f(w,v) = e(v,w) f(v,w) — e(v,w) f(w,v) = 2¢(v,w) f(v,w) =
2¢(w,v) f(w,v).

To recapitulate, we are given a bidirected! graph G = (V, E), a capacity function
u: F — Z and a cost function ¢ : £ — Z. The cost function is assumed to be
antisymmetric:

c(v,w) = —c(w,v) V(v,w) € E.
A flow is a function f: £ — R, which is assumed
1. to be antisymmetric, i.e. f(v,w) = —f(w,v), and
2. to satisfy the capacity constraints: f(v,w) < u(v,w) for all (v,w) € E.

The cost of a flow is defined as:

c- f= Z): c(v, w)u(v, w).

(v E

A flow is said to be a circulation if
Y flo,w)=0

for all v € V. Using the antisymmetry constraints, this is equivalent to saying that
the flow out of vertex v minus the flow into v is equal to 0 for all v € V. These
conditions are thus the flow conservation constraints. The minimum cost circulation
problem is the problem of finding a circulation of minimum cost.

A closely related problem to the minimum cost circulation problem is the minimum
cost flow problem. In this problem, we are also given a supply function b : V — Z
satisfying 3 ,cy b(v) = 0 and the flow is required to satisfy

(1) > fv,w) = b(v)

for all v € V. The goal is to find a flow satisfying (1) of minimum cost. The minimum
cost circulation problem is clearly a special case of the minimum cost flow problem
(simply take b(v) = 0 for all v € V). However, the converse is also true. Consider

Flow-4

f(sv) < b(v)
c(sv)=c(v,5) =0

f(v,s) < -b(v)

Figure 2: How to convert a minimum cost flow problem into a minimum cost circu-
lation problem.

the following transformation that converts any instance of the minimum cost flow
problem into an instance of the minimum cost circulation problem (see Figure 3).

Let G' = (V', E') be the graph obtained by extending G with one extra vertex, say
s, linked to all other vertices,i.e. V' = VU{s} and £’ = EU{(s,v):v € V}U{(v,s):
v € V}. For these new edges, let ¢(s,v) = ¢(v,s) = 0 and u(s,v) = b(v) = —u(v,s),
the other costs and capacities remaining unchanged. The capacities on the bidirected
edges incident to s have been chosen in such a way that, for any flow f on this
extended graph, we have f(s,v) = b(v). Therefore, any circulation f on G’ induces
a flow on (G satisfying (1) and vice versa. Since this circulation on G/ and this flow
on (& have the same cost, we can solve the minimum cost flow problem by solving a
minimum cost circulation problem.

In these notes, we develop a purely combinatorial algorithm to solve the mini-
mum cost circulation problem and we will also show that this problem can be solved
in strongly polynomial time. (We’d like to point out that for the minimum cost flow
or circulation problem, it is not known whether the simplex method can be adapted
to run in strongly polynomial time (contrary to the case for the maximum flow prob-
lem).)

In many situations, the circulation is required to be integral. This additional re-
striction is not restrictive as indicated in the following Theorem — sometimes referred
to as the integrality theorem.

Theorem 1 [fu(v,w) € Z for all (v,w) € F then there exists an optimal circulation
(or flow) with f(v,w) € Z.

Although there are several ways to prove this result, we will deduce it later in the notes
from a simple algorithm for the minimum cost circulation problem. More precisely, we
will show that, at every iteration of the algorithm, the current circulation is integral
and, hence, it is also integral when the algorithm terminates.

The minimum cost circulation problem has some interesting special cases as de-
scribed in the next sections. Our strongly polynomial time algorithm for the mini-
mum cost circulation problem will thus lead to strongly polynomial time algorithms

Yv,w) € E implies (w,v) € E.

Flow-5

for these special cases (although more efficient algorithms can be designed for these
special cases).

3.1 The Maximum Flow Problem

The maximum flow problem is a special case of the minimum cost circulation problem.
Indeed, given an instance of the maximum flow problem, add an edge between s and
t (see Figure 3.1) and define u(t,s) = oo, u(s,t) = 0, ¢(t,s) = —1 = —¢(s,t) and
c(v,w) =0 for all (v,w) # (s,1).

G
(=) (1)
X y
cst)=1

Figure 3: How to transform a maximum flow problem into a minimum cost circulation
problem.

The capacities on the bidirected edge (s,t) is such that f(¢,s) > 0, implying that
the flow goes from ¢ to s. There is a one-to-one correspondence between circulations
in this extended graph and flows in the original graph satisfying all low conservation
constraints in V'\ {s,¢}. Moreover, the cost of any circulation in this extended graph
is exactly equal to minus the net flow out of s (or into t) in the original graph. As a
result, the maximum flow problem in G is equivalent to the minimum cost circulation
problem in the extended graph.

Using the integrality theorem (Theorem 1), we obtain that the flow of maximum
value can be assumed to be integral whenever the capacities are integral.

3.2 Bipartite Matching

The maximum cardinality matching problem on a bipartite graph G = (A, B, E)
(A and B denotes the bipartition of the vertex set) is the problem of finding the
largest number of disjoint edges. This problem is a special case of the maximum
flow problem and, hence, of the minimum cost circulation problem. To transform the
maximum cardinality bipartite matching problem into a maximum flow problem (see
Figure 3.2), we

1. direct all the edges from A to B,

2. add a source vertex s, a sink vertex ,

Flow-6

3. add the edges (s,a) for all vertices ¢ € A and the edges (b,t) for all vertices
be B and

4. define the capacity of all existing edges to be 1 and the capacity of their reverse
edges to be 0 (in other words, the flow on the existing edges have a lower bound

of 0).

By the integrality theorem, we know that the flow on any existing edge can be assumed
to be either 0 or 1. Therefore, to any flow f, there corresponds a matching M =
{(v,w) € E: f(v,w) = 1} whose cardinality is precisely equal to the net amount of
flow out of vertex s.

u(w,v) =0

Figure 4: Maximum cardinality bipartite matching is a special case of maximum-flow.

[t is also easy to construct from a matching M a flow of value |M|]. As a result, any
integral flow of maximum value will correspond to a matching of maximum cardinality.

In fact, the minimum weighted bipartite matching problem is also a special case
of the minimum cost circulation problem. We can modify the above transformation
in the following way. Define the cost of any edge of the original graph to be its
original cost and the cost of any new edge to be 0. Now, we can model three versions
of the minimum weighted bipartite matching problem by appropriately defining the
capacities on the edges (¢, s) and (s,1):

L. If u(t,s) = n and u(s,t) = —n where n = |A| = |B|, we get the minimum
weighted perfect (a perfect matching is a matching that covers all the vertices)
matching.

2. If u(t,s) =n and u(s,t) = 0, we obtain the minimum weighted matching.

3. If u(t,s) = k and u(s,t) = —k, we obtain the minimum weighted matching of
size k.

Flow-7

3.3 Shortest paths

The single source shortest path problem is also a special case of the minimum cost
flow problem. Indeed, by setting I(v,w) = 0 and u(v,w) = 1 for every edge (and
letting their cost be the original cost), and introducing an edge from ¢ to s with
u(t,s) =1(t,s) =1 and ¢(t,s) = 0, we obtain an equivalent instance of the minimum
cost circulation problem.

4 Some Important Notions

We now go back to the minimum cost circulation problem, and before describing a
polynomial time algorithm for it, we present some useful tools.

4.1 Residual Graph

Given a minimum cost circulation problem and a circulation f, we define the residual
graph Gy = (V, Ey) with respect to f by Ey = {(v,w) : f(v,w) < u(v,w)}. For
example, if u(v,w) = 5, u(w,v) = —1 and f(v,w) = 3 (hence, f(w,v) = —3 by
antisymmetry) then both (v, w) and (w, v) will be present in E¢. However, if f(v,w) =
1 (ie. f(w,v) = —1), only (v,w) will be in F;. With respect to f, we define the
residual capacity of the edge (v, w) by

us(v,w) = u(v,w) — f(v,w).

Notice that the edges of the residual graph have a positive residual capacity.

4.2 Potentials

We associate with each vertex v a vertex potential p(v). The potential of a vertex can
be interpreted as the dual variable corresponding to the flow conservation constraints
in the linear programming formulation of the problem. The reduced cost of the edge
(v,w) is then defined as ¢,(v,w) := ¢(v,w)+ p(v) — p(w). Note that the reduced costs
are still antisymmetrici.e. ¢ (w,v) = ¢(w,v)+p(w) —p(v) = —c(v,w) —p(v) +plw) =
—¢,(v,w). Note also that the cost

e,)= Z c(v,w)

(v,w)el

of a directed cycle , is equal to its reduced cost

cp(v) = Z cp(vvw)

(v,w)el

since the vertex potential of any vertex v on the cycle is added and subtracted exactly
once. More generally, we have the following result.

Flow-8

Theorem 2 For any p:V — Z and any circulation f, we have c¢- f =¢, - [.

Proof: By definition,

e f= Z ep(v,w)f(v,w) = Z c(v,w)f(v,w) + Z p(v)f(v,w)

(vw)eE (vw)eE (vw)eE
= > p(w)f(v,w)
(vw)eE
= c [+ po) D flo,w)
veV wi(v,w)EE
- Z p(w) Z f(vv w)
weV vi(v,w)EE
= c- f+0-0=c-/,
since by definition of a circulation Y f(v,w) = 0. O
wi(v,w)EE

5 When is a circulation Optimal?

The next theorem characterizes a circulation of minimum cost.
Theorem 3 For a circulation f, the following are equivalent:
1. f is of minimum cost,
2. there are no negative (reduced) cost cycles in the residual graph,
3. there exist potentials p such that c,(v,w) > 0 for (v,w) € Ey.

This is essentially strong duality, but we will not refer to linear programming in
the proof. Proof:

o (42) = (—1).

Let , be a negative cost cycle in Fy. Let

§= mi > 0.
(min (v, w)

By pushing 6 units of flow along , , we mean replacing f by f where

. flo,w)+6 (v,w) €,
flv,w) =1 flv,w)—06 (w,v) e,

flv,w) otherwise

Notice that, as defined, fNalso satisfies the antisymmetry constraints and is a
circulation. Moreover, ¢- f =c- f+6-¢(,) < ¢- f. This implies that f is not
of minimum cost.

Flow-9

o 2= 3.
Let G’ be obtained from the residual graph Gy by adding a vertex s linked to
all other vertices by edges of cost 0 (the costs of these edges do not matter).
Let p(v) be the length of the shortest path from s to v in G/ with respect to
the costs ¢(.,.).

This quantities are well-defined since Gy does not contain any negative cost
directed cycle. By definition of the shortest paths, we have p(w) < p(v)+¢(v, w)
for all edges (v,w) € E¢. This implies that ¢,(v,w) > 0 whenever (v,w) € Ey.

e 3= 1.
The proof is by contradiction. Let f* be a circulation such that ¢- f* < ¢- f.
Consider f'(v,w) = f*(v,w) — f(v,w). By definition of the residual capacities,
[is a feasible circulation with respect to uy(.,.). Its cost is

C'f/:Cp‘f/ = Z cp(vvw)f/(vvw)

(vw)eE
—0 Y ae ol
(vyw)EE: f!(v,w)>0
> 0,

since f'(v,w) > 0 implies that (v,w) € E; and, hence, ¢,(v,w) > 0. This
contradicts the fact that ¢- f' =¢- f*—c¢- [<.

O

A problem is well characterizedif its decision version belongs to N PNco— N P. The

above theorem gives a good characterization for the minimum cost circulation problem

(to be precise, we would also need to show that the potentials can be compactly

encoded). It also naturally leads to a simple algorithm, first discovered by Klein [17]
also known as the ‘Cycle Cancelling Algorithm’.

6 Klein’s Cycle Canceling Algorithm
Cycle canceling algorithm (Klein):
1. Let f be any circulation.

2. While G5 contains a negative cycle , do
h 6= mi 1 :
pus (Urgl)rér us(v,w) along ,
Recall that in the previous code “push” means that we increase the flow by é
along the well oriented edges of , and decrease it by 6 along the other edges of , .
In Step 1, we will assume that f = 0 satisfies the capacity constraints (i.e. f =10
is a circulation). If this is not the case then a circulation can be obtained by solving

Flow-10

one maximum flow problem or by modifying the instance so that a circulation can
easily be found.

The cycle canceling algorithm can be used to prove Theorem 1. The proof is by
induction. Assume that the initial circulation is chosen to be integral. Now, if at
iteration k the circulation is integral, then the residual capacities as well as ¢ are also
integral. Therefore, the circulation remains integral throughout the algorithm.

For the maximum flow problem as discussed in Section 3.1, any negative cost
directed cycle must consist of a directed path from s to ¢ along with the arc (¢, s) since
the only negative cost arc is (¢,s). Therefore, in this special case, Klein’s algorithm
reduces to the well-known Ford-Fulkerson’s augmenting path algorithm [8].

Ford-Fulkerson’s augmenting path algorithm:
1. Start with the zero flow: f = 0.

2. While (G5 contains a directed path P from s to ¢ do
ush 6 = min uys(v,w) along P.
P () el f()) g
In the next Theorem, we show that the cycle canceling algorithm is correct if the
costs and capacities are integral.

Theorem 4 Ifc: F — Z and u : £ — Z then Klein’s algorithm terminates after
O(mCU) iterations where m = |E|, C is an upper bound on the absolute value of any
cost and U is an upper bound on the absolute value of any capacity. Moreover, the
resulting circulation is optimal.

Proof: Since the costs are integral, any cycle of negative cost has a cost of at most
-1. Moreover, if (v,w) € Gy then us(v,w) > 1 which implies that 6 > 1. Therefore,
at each iteration, the cost of the current circulation decreases by at least 1 unit. On
the other hand, since |¢(v,w)| < C and |f(v,w)| < U, the absolute value of the cost
of the optimal circulation is at most mC'U. Therefore, the algorithm terminates after
O(mCU) iterations. At that point, the residual graph does not contain any negative
cycle and, hence, by Theorem 3, the circulation is optimal. g

The bound given in Theorem 4 is however not polynomial. In fact, if the negative
cycles (or the directed paths in Ford and Fulkerson’s algorithm) are not appropriately
chosen, the worst-case running time of the algorithm is exponential. In Figure 6, we
have an instance of the maximum flow problem in which if we augment alternatively
along the paths s — 1 —2 — ¢ and s — 2 — 1 — ¢, the number of iterations will be 2C
since at each iteration we push only one additional unit of flow from s to ¢t. If ¢’ = 27,
this gives an exponential bound.

Even more surprisingly, the cycle canceling algorithm and the augmenting path
algorithm without any specification of which negative directed cycle or which directed
st-path to select are not correct if the capacities are irrational. In [9], it is shown that

Flow-11

Figure 5: Numbers on the arcs represent the capacities. The reverse arcs have zero
capacities.

the augmenting path algorithm can converge to a suboptimal flow if the capacities
are irrational and the directed paths are selected in an unfortunate way.

To obtain a polynomial running time, we therefore need to specify which negative
directed cycle to cancel. If the negative cycle resulting in the maximum cost im-
provement is selected, the number of iterations becomes polynomial. Unfortunately,
finding this cycle is NP-hard. For the maximum flow problem, however, this selection
rule reduces to finding the st-path with maximum residual capacity. Such a path can
be found in polynomial time (for example, by adapting Dijkstra’s algorithm). The
resulting algorithm, due to Edmonds and Karp [7], requires O(mlogU) iterations.
The time per iteration is O(m) (amortized). Hence we can implement the algorithm
with a total running time of O(m?*log U) (Tarjan [20]).

For a long time the question of finding a strongly polynomial algorithm (and even
its existence) for the minimum cost circulation problem was kept open. In 1985,
va Tardos [19] devised the first such algorithm. In 1987, Goldberg and Tarjan [14]

produced an improved version that we will now present.

7 The Goldberg-Tarjan Algorithm

Define the mean cost of a cycle , to be

0(7) _ Z(v,w)EF c(v,w)
- | 5 |

where |, | represents the number of arcs in , . The minimum mean cost cycle of a
graph can be found in strongly polynomial time, namely in O(nm) time, by adapting
the Bellman-Ford algorithm for the all pairs shortest path problem. Let

u()= min

cycles T in 5 | |

denote the minimum mean cost of all cycles in GY.

Goldberg-Tarjan algorithm [14]:

Flow-12

1. Let f=0.
2. While u(f) <0 do

push 6 = (mi)lgF us(v,w) along a minimum mean cost cycle , of Gy.

The Goldberg-Tarjan algorithm is a cycle canceling algorithm since G has a
negative directed cycle iff p(f) < 0.

For the maximum flow problem, this algorithm reduces to the Edmonds-Karp
shortest augmenting path algorithm [7] in which the st-path with the fewest number
of arcs is selected. The Edmonds-Karp shortest augmenting path algorithm requires
O(m) time per augmentation and the number of augmentations is O(nm). This
results in a running time of O(nm?).

8 Analysis of the Goldberg-Tarjan Algorithm

Before analyzing the Goldberg-Tarjan cycle canceling algorithm, we need some defi-
nitions.

Definition 1 A circulation f is e-optimal if there exvists p such that ¢,(v,w) > —¢
for all (v,w) € Fy.

For e = 0, this definition reduces to the condition 3 of Theorem 3, and, therefore, a
0-optimal circulation is a minimum cost circulation.

Definition 2 ¢(f) = minimum € such that f is e-optimal.
We now show that approximate optimality is sufficient when the costs are integral.
Theorem 5 If [is a circulation with €(f) < % then f is optimal.

Proof: ¢(f) < = implies that, for some potentials p, ¢,(v,w) > —= for all (v,w) €
FE;. Therefore, any cycle , of GGy has reduced cost greater than —|, |% > —1. Since
the costs are integral and the cost of any cycle is equal to its reduced cost, we obtain
that any directed cycle of Gy has nonnegative cost. Theorem 3 implies that f is
optimal. O

The following Theorem shows that the minimum mean cost p(f) of all cycles in

Gy represents how close the circulation f is from optimality.
Theorem 6 For any circulation f, u(f) = —e(f).
Proof:

o u(f) = —e(f).
By definition, there exists p such that ¢,(v,w) > —¢(f) for all (v,w) € Ey.
This implies that ¢,(,) > —¢(f)], | for any directed cycle , of Gy. But, for any
directed cycle , , ¢(,) = ¢,(,). Therefore, dividing by |, |, we obtain that the
mean cost of any directed cycle of Gy is at least —e(f). Hence, pu(f) > —e(f).

Flow-13

o —u(f) = elf).
To show that —u(f) > e(f), we want to construct a function p such that

cp(v,w) > p(f) for all (v,w) € Ey. Let é(v,w) = ¢(v,w) + (—p(f)) for all

(v,w) € Ef. Notice that GGy has no negative cost cycle with respect to ¢&(.,.)

since the mean cost of any directed cycle of (s is increased by —u(f). Next,

add a new node s to Gy and also arcs from s to v for all v € V. Let ¢&(s,v)

be any value, say 0. Let p(v) be the cost with respect to é(.,.) of the shortest

path from s to v in this augmented graph. Hence, for all (v,w) € Fy, we have
(

p() < p(v) + (v, w) = p(v) + c(v,10) — u(F) implying that c,(v, w) = p(f).
O
We are now ready to analyze the algorithm. First, we show that, using €(f) as a

measure of near-optimality, the algorithm produces circulations which are closer and
closer to optimal.

Theorem 7 Let f be a circulation and let [’ be the circulation obtained by canceling
the minimum mean cost cyele | in Ey. Then e(f) > e(f').

Proof: By definition, there exists p such that
(2) cp(v,w) > —¢(f)

for all (v,w) € Ef. Moreover, for all (v,w) € ,, we have ¢,(v,w) = —e(f) since,

otherwise, its mean cost would not be —e(f). We claim that, for the same p, (2) holds

for all (v,w) € Ey. Indeed, if (v,w) € EpNEy, (2) certainly holds. If (v, w) € Ep\ Fy

then (w,v) certainly belongs to , . Hence, ¢,(v,w) = —¢,(w,v) = €(f) > 0 and (2) is

also satisfied. O
Next, we show that €(f) decreases after a certain number of iterations.

Theorem 8 Let [be any circulation and let [’ be the circulation obtained by per-
forming m iterations of the Golberg-Tarjan algorithm. Then

() < (1=)elf).
Proof: Let p be such that c,(v,w) > —e(f) for all (v,w) € F;. Let ,; be the
cycle canceled at the ith iteration. Let k& be the smallest integer such that there
exists (v,w) € , py1 with ¢,(v,w) > 0. We know that canceling a cycle removes at
least one arc with negative reduced cost from the residual graph and creates only arcs
with positive reduced cost. Therefore k& < m. Let [’ be the flow obtained after &
iterations. By Theorem 6, —e(f’) is equal to the mean cost of , y41 which is:

Z(v,w)EFkH cp(vv w) > _(l - 1)

c(f)

l - l
1 1
= (L=)f) = =(1 = —)e(f),
where [= |, y11|. Therefore, by Theorem 7, after m iterations, €(f) decreases by a
factor of (1 —1). O

Flow-14

Theorem 9 Let C' = (m&)LXE|c(v,w)|. Then the Goldberg-Tarjan algorithm finds a
€

)

minimum cost circulation after canceling nmlog(nC') cycles (log = log,).

Proof: The initial circulation f = 0 is certainly C-optimal since, for p = 0,
we have ¢,(v,w) > —C. Therefore, by Theorem 8, the circulation obtained after
nmlognC iterations is e—optimal where:

nlog(nC)
¢ < (1_1) O < otostnryr - €1

n nC n’

where we have used the fact that (1— %)” < e Mor all n > 0. The resulting circulation
is therefore optimal by Theorem 5. g

The overall running time of the Goldberg-Tarjan algorithm is therefore O(n*m?log(n('))
since the minimum mean cost cycle can be obtained in O(nm) time.

9 A Faster Cycle-Canceling Algorithm

We can improve upon the algorithm presented in the previous sections by using a
more flexible selection of cycles for canceling and explicitly maintaining potentials
to help identify cycles for canceling. The idea is to use the potentials we get from
the minimum mean cost cycle to compute the edge costs ¢,(v,w) and then push flow
along all cycles with only negative cost edges. The algorithm Cancel and Tighten is
described below.

Cancel and Tighten:

1. Cancel: As long as there exists a cycle , in Gy with ¢,(v,w) < 0,V(v,w) €,
push as much flow as possible along , .

2. Tighten: Compute a minimum mean cost cycle in (G5 and update p.

We now show that the Cancel step results in canceling at most m cycles each iteration
and the flow it gives is (1 — 1/n)e(f) optimal.

Theorem 10 Let | be a circulation and let f' be the circulation obtained by perform-
ing the Cancel step. Then we cancel at most m cycles to get f' and

1
() < (L= Dyeth).
Proof: Let p be such that ¢,(v,w) > —e(f) for all (v,w) € Es. Let , be any
cycle in f" and let [be the length of ,. We know that canceling a cycle removes
at least one arc with negative reduced cost from the residual graph and creates only
arcs with positive reduced cost. Therefore we can cancel at most m cycles. Now G/

Flow-15

has no negative cycles therefore every cycle in (G4 contains an edge (v, w) such that
¢y(v,w) > 0. Hence the mean cost of , is at least:

> (vw)er Cp(v, W) - —(1=1)
[- [

O

The above result implies that the Cancel and Tighten procedure finds a minimum
cost circulation in at most nlog(nC') iterations (by an analysis which is a replication
of Theorem 9). It also takes us O(n) time to find a cycle on the admissible graph.
This implies that each Cancel step takes O(nm) steps due to the fact that we cancel
at most m cycles and thus a running time of O(nm) for one iteration of the Cancel
and Tighten Algorithm. Therefore the overall running time of Cancel and Tighten is
O(n*mlog(nC)) (i.e. an amortized time of O(n) per cycle canceled). We can further
improve this by using dynamic trees [14] to get an amortized time of O(logn) per
cycle canceled and this results in an O(nmlognlog(nC')) algorithm.

10 Alternative Analysis: A Strongly Polynomial
Bound

In this section, we give another analysis of the algorithm. This analysis has the
advantage of showing that the number of iterations is strongly polynomial, i.e. that
it is polynomial in n and m and does not depend on C'. The first strongly polynomial
algorithm for the minimum cost circulation problem is due to Tardos [19].

Definition 3 An arc (v,w) € E is e—fized if f(v,w) is the same for all e—optimal
circulations.

There exists a simple criterion for deciding whether an arc is e—fixed.

Theorem 11 Let € > 0. Let [be a circulation and p be node potentials such that f
is e-optimal with respect to p. If |c,(v,w)| > 2ne then (v,w)is e—fized.

Proof: The proof is by contradiction. Let f’ be an e-optimal circulation for
which f'(v,w) # f(v,w). Assume that |c,(v,w)| > 2ne. Without loss of generality,
we can assume by antisymmetry that ¢,(v,w) < —2ne. Hence (v,w) ¢ FEy, i.e.
f(v,w) = u(v,w). This implies that f'(v,w) < f(v,w). Let E. = {(z,y) € E :
Fany) < flern)).

Claim 12 There exists a cycle , in (V, E<) that contains (v, w).

Flow-16

Proof: Since (v,w) € E., it is sufficient to prove the existence of a directed path
from w to v in (V, E.). Let S C V be the nodes reachable from w in (V, E.). Assume
v ¢ S. By flow conservation, we have

> Ulwy) = [y =2 > (flay) = ['(w,y)) = 0.

z€Sy¢S €S yeEV

However, f(v,w)— f'(v,w) > 0,i.e. f(w,v)— f(w,v) <0, and by assumption w € 5
and v ¢ S. Therefore, there must exists @ € S and y ¢ S such that f(z,y)—f'(x,y) >
0, implying that (z,y) € F<. This contradicts the fact that y ¢ S. O

By definition of E., we have that F. C Ey. Hence, the mean cost of , is at least
w(f') = —e(f') = —e. On the other hand, the mean cost of , is (I = |, |):

c(,) (s) 1
T 7 (cp(v,w) + Z(uw)} cp(xvy))

(=,y)eT\{
1 1
7(—2716 +(I—1)) < 7(—[6) = —¢,

IA

a contradiction. O

Theorem 13 The Goldberg-Tarjan algorithm terminates after O(m*nlogn) itera-
tions.

Proof: If an arc becomes fixed during the execution of the algorithm, then it will
remain fixed since €(f) does not increase. We claim that, as long as the algorithm has
not terminated, one additional arc becomes fixed after O(mnlogn) iterations. Let
f be the current circulation and let , be the first cycle canceled. After mnlog(2n)
iterations, we obtain a circulation f’ with

c(f)

1 nlog(2n)
) dn < ety = S
2n

(< (1--

n

by Theorem 10. Let p’ be potentials for which f’ satisfies the e(f’)-optimality con-
straints. By definition of , |

Hence,

% < —2ne(f).
Therefore, there exists (v,w) € , such that |c¢y(v,w)| > —2ne(f'). By the previous
Theorem, (v,w) is €(f')—fixed. Moreover, (v,w) is not €(f)—fixed since canceling
, increased the flow on (v,w). This proves that, after mnlog(2n) iterations, one
additional arc becomes fixed and therefore the algorithm terminates in m?nlog(2n)
iterations. g

Flow-17

Using the O(mn) algorithm for the minimum mean cost cycle problem, we obtain
a O(m°n*logn) algorithm for the minimum cost circulation problem. Using the
Cancel and Tighten improvement we obtain a running time of O(m?*n*logn). And
if we implement Cancel and Tighten with the dynamic trees data structure we get a
running time of O(m?nlog’n).

The best known strongly polynomial algorithm for the minimum cost circulation
problem is due to Orlin [18] and runs in O(mlogn(m + nlogn)) = O(m?*logn +
mn log® n) time.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Some recent advances in network
flows. SIAM Review, 33:175-219, 1991.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: Theory, algorithms,
and applications. Prentice Hall, 1993.

[3] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Faster algorithms for
the shortest path problem. Journal of the ACM, 37:213-223, 1990.

[4] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press,
Cambridge, MA, 1990.

[5] R. Dial. Shortest path forest with topological ordering. Communications of the
ACM, 12:632-633, 1969.

[6] E. W. Dijkstra. A note on two problems in connection with graphs. Numer.
Math., 1:269-271, 1959.

[7] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. Journal of the ACM, 19:248-264, 1972.

[8] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canad. J.
Math., 8:399-404, 1956.

[9] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press,
Princeton, NJ, 1963.

[10] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization problems. Journal of the ACM, 34:569-615, 1987.

[11] H. N. Gabow. Scaling algorithms for network problems. Journal of Computer
and System Sciences, 31:148-168, 1985.

Flow-18

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A. V. Goldberg, E. Tardos, and R. E. Tarjan. Network flow algorithms. In
B. Korte, L. Lovasz, H. J. Promel, and A. Schrijver, editors, Paths, flows,
and VLSI-layout, volume 9 of Algorithms and Combinatorics, pages 101-164.
Springer-Verlag, 1990.

A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow prob-
lem. Journal of the ACM, 35:921-940, 1988. Preliminary version in Proc. 18th
Symposium on Theory of Computing, pages 136146, 1986.

A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by cancel-
ing negative cycles. Journal of the ACM, 36:873-886, 1989. Preliminary version
in Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
pages 388-397, 1987.

D. Goldfarb and J. Hao. A primal simplex algorithm that solves the maximum
flow problem in at most nm pivots and o(n?*m) time. Mathematical Programming,

47:353-365, 1990.

D. Johnson. A priority queue in which initialization and queue operations take

O(loglog D). Math. Systems Theory, 15:295-309, 1982.

M. Klein. A primal method for minimal cost flows with applications to the as-
signment and transportation problems. Management Science, 14:205-220, 1967.

J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. In
Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pages
377-387, 1988.

E. Tardos. A strongly polynomial minimum cost circulation algorithm. Combi-

natorica, 5:247-255, 1985.

R. E. Tarjan. Algorithms for maximum network flow. Mathematical Programming

Study, 26:1-11, 1986.

Flow-19

Flow-20

18.415/6.854 Advanced Algorithms November 1994

Approximation Algorithms
Lecturer: Michel X. Goemans

1 Introduction

Many of the optimization problems we would like to solve are NP-hard. There are
several ways of coping with this apparent hardness. For most problems, there are
straightforward exhaustive search algorithms, and one could try to speed up such an
algorithm. Techniques which can be used include divide-and-conquer (or the refined
branch-and-bound which allows to eliminate part of the search tree by computing, at
every node, bounds on the optimum value), dynamic programming (which sometimes
leads to pseudo-polynomial algorithms), cutting plane algorithms (in which one tries
to refine a linear programming relaxation to better match the convex hull of integer
solutions), randomization, etc. Instead of trying to obtain an optimum solution, we
could also settle for a suboptimal solution. The latter approach refers to heuristic
or “rule of thumb” methods. The most widely used such methods involve some sort
of local search of the problem space, yielding a locally optimal solution. In fact,
heuristic methods can also be applied to polynomially solvable problems for which
existing algorithms are not “efficient” enough. A ©(n'%) algorithm (or even a linear
time algorithm with a constant of 10'°), although efficient from a complexity point
of view, will probably never get implemented because of its inherent inefficiency.

The drawback with heuristic algorithms is that it is difficult to compare them.
Which is better, which is worse? For this purpose, several kinds of analyses have
been introduced.

1. Empirical analysis. Here the heuristic is tested on a bunch of (hopefully
meaningful) instances, but there is no guarantee that the behavior of the heuris-
tic on these instances will be “typical” (what does it mean to be typical?).

2. Average-case analysis, dealing with the average-case behavior of a heuristic
over some distribution of instances. The difficulty with this approach is that it
can be difficult to find a distribution that matches the real-life data an algorithm
will face. Probabilistic analyses tend to be quite hard.

3. Worst-case analysis. Here, one tries to evaluate the performance of the
heuristic on the worst possible instance. Although this may be overly pes-
simistic, it gives a stronger guarantee about an algorithm’s behavior. This is
the type of analysis we will be considering in these notes.

To this end, we introduce the following definition:

Approx-1

Definition 1 The performance guarantee of a heuristic algorithm for a minimization
(maximization) problem is o if the algorithm is guaranteed to deliver a solution whose
value is at most (at least) « times the optimal value.

Definition 2 An a-approximation algorithm is a polynomial time algorithm with a
performance guarantee of a.

Before presenting techniques to design and analyze approximation algorithms as
well as specific approximation algorithms, we should first consider which performance
guarantees are unlikely to be achievable.

2 Negative Results

For some hard optimization problems, it is possible to show a limit on the performance
guarantee achievable in polynomial-time (assuming P # NP). A standard method
for proving results of this form is to show that the existence of an a-approximation
algorithm would allow you to solve some NP-complete decision problem in polynomial
time. Even though NP-complete problems have equivalent complexity when exact
solutions are desired, the reductions don’t necessarily preserve approximability. The
class of NP-complete problems can be subdivided according to how well a problem
can be approximated.

As a first example, for the traveling salesman problem (given nonnegative lengths
on the edges of a complete graph, find a tour — a closed walk visiting every vertex
exactly once — of minimum total length), there is no a-approximation for any «
unless P = NP. Indeed such an algorithm could be used to decide whether a graph
(V, E') has an Hamiltonian cycle (simply give every edge e a length of 1 and every
non-edge a very high or infinite length).

As another example, consider the bin packing problem. You have an integer T
and weights xq,...,z, € [0,7], and you want to partition them into as few sets
(“bins”) as possible such that the sum of the weights in each set is at most T It is
NP-complete to decide whether & bins are sufficient.

In fact, there is no a-approximation algorithm for this problem, for any a < 3/2.
To see this, consider the partition problem: given weights xq,...,z, € [0,S5] whose
total sum is 2.9, is there a partition of the weights into two sets such that the sum in
each set 18 S7 This is the same as asking: are two bins sufficient when each bin has
capacity S7 If we had an a-approximation algorithm (o < 3/2), we could solve the
partition problem?!. In general, if the problem of deciding whether a value is at most
k is NP-complete then there is no a-approximation algorithm with o < kki for the
problem of minimizing the value unless P = NP.

! But wait, you exclaim — isn’t there a polynomial-time approximation scheme for the bin packing
problem? In fact, very good approximation algorithms can be obtained for this problem if you allow
additive as well as multiplicative constants in your performance guarantee. It is our more restrictive
model that makes this negative result possible. See Section 6 for more details.

Approx-2

Until 1992, pedestrian arguments such as this provided essentially the only known
examples of non-approximability results. Then came a string of papers culminating
in the result of Arora, Lund, Motwani, Sudan, and Szegedy|[1] (based on the work of
Arora and Safra [2]). They introduced a new characterization of NP in terms of prob-
abilistically checkable proofs (PCP). In the new characterization, for any language L
in NP, given the input and a “proof” y of polynomial length in x, the verifier will
toss O(logn) coins (where n is the size of x) to determine k = O(1) positions or bits
in the string y to probe; based on the values of these k£ bits, the verifier will answer
“yes” or “no”. The new characterization shows the existence of such a verifier V' and
a proof y such that (i) if © € L then there exists a proof y such that V outputs “yes”
independently of the random bits, (ii) if ¢ L then for every proof y, V outputs “no”
with probability at least 0.5.

From this characterization, they deduce the following negative result for MAX
3SAT: given a set of clauses with at most 3 literals per clause, find an assignment
maximizing the number of satisfied clauses. They showed the following:

Theorem 1 For some ¢ > 0, there is no 1 — c-approvimation algorithm?® for MAX

S3SAT unless P = NP.

The proof goes as follows. Take any N P-complete language L. Consider the
verifier V' given by the characterization of Arora et al. The number of possible
output of the O(logn) toin cosses is S = 200°87) which is polynomial in n. Consider
any outcome of these coin tosses. This gives k bits, say ¢1,... ,2; to examine in the
proof y. Based on these k bits, V will decide whether to answer yes or no. The
condition that it answers yes can be expressed as a boolean formula on these k bits
(with the Boolean variables being the bits of y). This formula can be expressed as
the disjunction (“or”) of conjunctions (“and”) of k literals, one for each satisfying
assignment. Equivalently, it can be written as the conjunction of disjunction of k
literals (one for each rejecting assignment). Since k is O(1), this latter k-SAT formula
with at most 2% clauses can be expressed as a 3-SAT formula with a constant number
of clauses and variables (depending exponentially on k). (More precisely, using the
classical reduction from SAT to 3-SAT, we would get a 3-SAT formula with at most
k2% clauses and variables.) Call this constant number of clauses M < k2F = O(1).
It x € L, we know that there exists a proof y such that all SM clauses obtained by
concatenating the clauses for each random outcome is satisfiable. However, if « ¢ L,
for any y, the clauses corresponding to at least half the possible random outcomes
cannot be all satisfied. This means that if © ¢ [, at least S/2 clauses cannot be
satisfied. Thus either all SM clauses can be satisfied or at most SM — % clauses
can be satisfied. If we had an approximation algorithm with performance guarantee

1

better than 1 — ¢ where ¢ = 537 we could decide whether € L or not, in polynomial

?In our definition of approximation algorithm, the performance guarantee is less than 1 for
mazximization problems.

Approx-3

time (since our construction can be carried out in polynomial time). This proves the
theorem.
The above theorem implies a host of negative results, by considering the complex-

ity class MAX-SNP. defined by Papadimitriou and Yannakakis [21].

Corollary 2 For any MAX-SNP-complete problem, there is an absolute constant
€ > 0 such that there is no (1 — €)-approximation algorithm unless P = NP.

The class of MAX-SNP problems is defined in the next section and the corollary
is derived there. We first give some examples of problems that are complete for

MAX-SNP.

1. MAX 2-SAT: Given a set of clauses with one or two literals each, find an as-
signment that maximizes the number of satisfied clauses.

2. MAX Ek-SAT: Same as MAX 2-SAT, but each clause has up to k literals.

3. MAX CUT: Find a subset of the vertices of a graph that maximizes the number
of edges crossing the associated cut.

4. The Travelling Salesman Problem with the triangle inequality is MAX-SNP-
hard. (There is a technical snag here: MAX-SNP contains only maximization
problems, whereas TSP is a minimization problem.)

2.1 MAX-SNP Complete Problems

Let’s consider an alternative definition of NP due to Fagin [9]. NP, instead of being
defined computationally, is defined as a set of predicates or functions on structures

G-
ASVaTy P(z,y, G, S)

where 1 is a quantifier free expression. Here S corresponds to the witness or the
proof.

Consider for example the problem SAT. We are given a set of clauses, where each
clause is the disjunction of literals. (A literal is a variable or its negation.) We want
to know if there is a way to set the variables true or false, such that every clause is
true. Thus here GG is the set of clauses, S is the set of literals to be set to true, x
represents the clauses, y represents the literals, and

(Y, G,9) = (P(G,y,x) Ny € S)V(N(Gy,x) Ny € 5)

Where P(G,y,x) is true iff y appears positively in clause x, and N(G,y,x) is true iff
y appears negated in clause .

Approx-4

Strict NP is the set of problems in NP that can be defined without the the third
quantifier:

A5V (x, G, 9)

where ¢ is quantifier free.

An example is 3-SAT, the version of SAT in which every clause has at most 3
literals. Here x = (a1, 22, x3) (all possible combinations of three variables) and G is
the set of possible clauses; for example (21 V 23 V x3), (T7 V 22 V T3), and so forth.
Then ¢ is a huge conjunction of statements of the form: If (xq, 22, x3) appears as
(T V 22 V T3), then 1 € SVas € SVas & S.

Instead of asking that for each @ we get ¢ (x, G, S), we can ask that the number
of @’s for which ¢ (x, G, 5) is true be maximized:

mSaXHl' (s GL9) Y

In this way, we can derive an optimization problem from an SNP predicate. These
maximization problems comprise the class MAX-SNP (MAXimization, Strict NP)
defined by Papadimitriou and Yannakakis [21]. Thus, MAX 3SAT is in MAX-SNP.

Papadimitriou and Yannakakis then introduce an L-reduction (L for linear), which
preserverses approximability. In particular, if P L-reduces to P’, and there exists an
a-approximation algorithm for P’, then there exists a ya-approximation algorithm
for P, where v is some constant depending on the reduction.

Given L-reductions, we can define MAX-SNP complete problems to be those P €
MAX-SNP for which @) <y P for all) € MAX-SNP. Some examples of MAX-SNP
complete problems are MAX 3SAT, MAX 2SAT (and in fact MAX ESAT for any
fixed k > 1), and MAX-CUT. The fact that MAX 3SAT is MAX-SNP-complete and
Theorem 1 implies the corollary mentioned previously.

For MAX 3SAT, ¢ in the statement of Theorem 1 can be chosen can be set to
1/74 (Bellare and Sudan [5]).

Minimization problems may not be able to be expressed so that they are in MAX-
SNP, but they can still be MAX-SNP hard. Examples of such problems are:

e TSP with edge weights 1 and 2 (i.e., d(¢,5) € {1,2} for all 7,j). In this case,
there exists a 7/6-approximation algorithm due to Papadimitriou and Yan-
nakakis.

e Steiner tree with edge weights 1 and 2.

e Minimum Vertex Cover. (Given a graph GG = (V, E), a vertex cover is a set
S C V such that (u,v) € E=ué& SorveSs.)

Approx-5

3 The Design of Approximation Algorithms

We now look at key ideas in the design and analysis of approximation algorithms.
We will concentrate on minimization problems, but the ideas apply equally well to
maximization problems. Since we are interested in the minimization case, we know
that an a-approximation algorithm H has cost Oy < aCopr where Copr is the cost
of the optimal solution, and a > 1.

Relating Cy to Copr directly can be difficult. One reason is that for NP-hard
problems, the optimum solution is not well characterized. So instead we can relate
the two in two steps:

1. LB S COPT

Here LB is a lower bound on the optimal solution.

3.1 Relating to Optimum Directly

This is not always necessary, however. One algorithm whose solution is easy to relate
directly to the optimal solution is Christofides’ [6] algorithm for the TSP with the
triangle inequality (d(7,7) + d(j, k) < d(i, k) for all 7, j, k). This is a Z-approximation
algorithm, and is the best known for this problem. The algorithm is as follows:

1. Compute the minimum spanning tree T of the graph G' = (V, F).
2. Let O be the odd degree vertices in T'. One can prove that |O| is even.
3. Compute a minimum cost perfect matching M on the graph induced by O.

4. Add the edges in M to /. Now the degree of every vertex of (& is even. Therefore
(G has an Eulerian tour. Trace the tour, and take shortcuts when the same vertex
is reached twice. This cannot increase the cost since the triangle inequality

holds.

We claim that Zo < %ZTSP, where Zg is the cost of the tour produced by
Christofides’” algorithm, and Zrgp is the cost of the optimal solution. The proof
1s easy:

Z Z VA Z VA 1
¢ + A Lo b 3 '
ZTsp ZTsp Zrsp Zrsp 2 2

Here Z7 is the cost of the minimum spanning tree and Zj; is the cost of the matching.
Clearly Zr < Zrsp, since if we delete an edge of the optimal tour a spanning tree

results, and the cost of the minimum spanning tree is at most the cost of that tree.

Therefore ZZT < 1.
TSP

Approx-6

To show Z—M < %, consider the optimal tour visiting only the vertices in O.
Clearly by the trlangle inequality this is of length no more than Zrgp. There are an
even number of vertices in this tour, and so also an even number of edges, and the
tour defines two disjoint matchings on the graph induced by O. At least one of these

has cost < %ZTSP, and the cost of Zj; is no more than this.

3.2 Using Lower Bounds

Let
Copr = min flx).

A lower bound on Cppr can be obtained by a so-called relazation. Consider a related
optimization problem LB = minger ¢(x). Then LB is a lower bound on Copr (and
the optimization problem is called a relaxation of the original problem) if the following
conditions hold:

(1) SCR

(2) g(x) < f(x) for all x € S.
Indeed these conditions imply

<
LB = anellgg() I;lelglf(z) = Copr.

Most classical relaxations are obtained by using linear programming. However,
there are limitations as to how good an approximation LP can produce. We next
show how to use a linear programming relaxation to get a 2-approximation algorithm
for Vertex Cover, and show that this particular LP relaxation cannot give a better
approximation algorithm.

3.3 An LP Relaxation for Minimum Weight Vertex Cover
(VC)

A vertex cover U in a graph G = (V| F) is a subset of vertices such that every edge is
incident to at least one vertex in /. The vertex cover problem is defined as follows:
Given a graph G = (V| F) and weight w(v) > 0 for each vertex v, find a vertex cover
U C V minimizing w(U) = 3",y w(v). (Note that the problem in which nonpositive
weight vertices are allowed can be handled by including all such vertices in the cover,
deleting them and the incident edges, and finding a minimum weight cover of the
remaining graph. Although this reduction preserves optimality, it does not maintain
approximability; consider, for example, the case in which the optimum vertex cover
has 0 cost (or even negative cost).)

Approx-7

This can be expressed as an integer program as follows. Let z(v) =1 if v € U
and x(v) = 0 otherwise. Then

Copr = Iglelgl Z w(v)z(v)

where
s feem, oot o r)

z(v) € {0,1} YoeV

We now relax S, turning the problem into a linear program:

LB = aréi]gq;/ w(v)z(v)

R:{%Rm: e(v)+2(w) 2 1 V(v,w) € E }

x(v) >0 YveV

In order to show that R is a relaxation, we must show that it satisfies conditions 1
and 2. Condition 1 clearly holds, as 0,1 > 0. Furthermore, condition 2 also holds,
since the objective function is unchanged. Thus, we can conclude that LB < Copr,
and we can prove that an algorithm H is an a-approximation algorithm for VC by
showing Cy < aLB.

The limitation of this relaxation is that there are instances where LB ~ %COPT.
This implies that it cannot be used to show any a < 2, since if we could then
H would give a better answer than the optimum. One such instance is K,: the
complete graph on n vertices, with all vertices weight 1. All the nodes but one must
be in the cover (otherwise there will be an edge between two that are not, with neither
in the cover set). Thus, Copr = n — 1. The relaxation, on the other hand, can have

z(v) =L Yoe V. Thus, LB < %, which means LB ~ %COPT.

29

3.4 How to use Relaxations

There are two main techniques to derive an approximately optimal solution from a
solution to the relaxed problem.

1. Rounding
Find an optimal solution x* to the relaxation. Round 2* € R to an element
z' € 5. Then prove f(a') < ag(x™) which implies

f(@") < aLB < aCopr

Often randomization is helpful, as we shall see in later sections. In this case
x* € R is randomly rounded to some element &’ € S so that E[f(2')] < ag(z*).
These algorithms can sometimes be derandomized, in which case one finds an

z” such that f(2") < E[f(2)].

Approx-8

2. Primal-Dual
Consider some weak dual of the relaxation:

max{h(y):y € D} <min{g(x):x € R}
Construct € S from y € D such that
flz) < ah(y) < ah(Ymax) < ag(Tmin) < aCopr.

Notice that y can be any element of D, not necessarily an optimal solution to

the dual.

We now illustrate these techniques on the minimum weight vertex cover problem.

3.4.1 Rounding applied to VC

This is due to Hochbaum [16]. Let 2* be the optimal solution of the LP relaxation.
Let

1
U:{vev:x*(v)zﬁ}
We claim U is a 2-approximation of the minimum weight VC. Clearly U is a vertex

cover, because for (u,v) € E we have *(u) + 2*(v) > 1, which implies *(u) > 1/2

or *(v) > 1/2. Also
Z w(v) < Z w(v)22™(v) =2LB
vel veV

since 2z*(v) > 1 for all v € U.

3.4.2 Primal-Dual applied to VC

This is due to Bar-Yehuda and Even [4]. First formulate the dual problem. Let
y € RIFl; the elements of y are y(e) for ¢ = (u,v) € E. The dual is:

max »_ y(e)

(3) ._(Z:) yle) < wv) YoeV
(4) | yle) > 0 Yee k.

Initialize C' (the vertex cover) to the empty set, y = 0 and F' = E. The algorithm
proceeds by repeating the following two steps while F' # {):

1. Choose some e = (u,v) € F. Increase y(e) as much as possible, until inequal-
ity (3) becomes tight for u or v. Assume WLOG it is tight for w.

2. Add u to ' and remove all edges incident to u from F.

Clearly C'is a vertex cover. Furthermore

Suw=Y X o= X 100 {vullyle) < X 2(e) <2UB.

vel veC uie=(v,u)EE e=(v,u)EE ecel

Approx-9

4 The Min-Cost Perfect Matching Problem

In this section, we illustrate the power of the primal-dual technique to derive approx-
imation algorithms. We consider the following problem.

Definition 3 The Minimum-Cost Perfect Matching Problem (MCPMP) is as fol-
lows: Given a complete graph G = (V,E) with |V| even and a nonnegative cost
function ¢, > 0 on the edges e € F, find a perfect matching M such that the cost
c(M) is minimized, where ¢(M) =¥ .cr Ce-

The first polynomial time algorithm for this problem was given by F.dmonds [8] and
has a running time of O(n*) where n = |V|. To date, the fastest strongly polynomial
time algorithm is due to Gabow [10] and has a running time of O(n(m + nlgn))
where m = |E|. For dense graphs, m = O(n?), this algorithm gives a running time
of O(n®). The best weakly polynomial algorithm is due to Gabow and Tarjan [12]

and runs in time O(m\/na(m,n) lognlognC') where C' is a bound on the costs c..
For dense graphs with €' = O(n), this bound gives an O*(n*®) running time.

As you might suspect from these bounds, the algorithms involved are fairly com-
plicated. Also, these algorithms are too slow for many of the instances of the problem
that arise in practice. In this section, we discuss an approximation algorithm by Goe-
mans and Williamson [13] that runs in time O(n*lgn). (This bound has recently
been improved by Gabow, Goemans and Williamson [11] to O(n(n + /mlglgn)).)
Although MCPMP itself is in PTIME, this algorithm is sufficiently general to give
approximations for many NP-hard problems as well.

The algorithm of Goemans and Williamson is a 2-approximation algorithm — it
outputs a perfect matching with cost not more than a factor of 2 larger than the cost
of a minimum-cost perfect matching. This algorithm requires that the costs ¢, make
up a metric, that is, ¢. must respect the triangle inequality: ¢;; + ¢; > ¢ for all
triples 7, j, k of vertices.

4.1 A linear programming formulation

The basic idea used in the 2-approximation algorithm of Goemans and Williamson
is linear programming and duality. The min-cost perfect matching problem can be
formulated as a linear program. The algorithm does not directly solve the linear
program, but during its operation, it can compute a feasible solution to the dual
program. This dual feasible solution actually certifies the factor of 2 approximation.
Before writing down the linear program, we start with an observation.

Consider a matching M and a set S C V of vertices with | S| odd. If M is a perfect
matching, then since |S] is odd, there must be some edge in the matching that has
one endpoint inside S and the other outside. In other symbols, let §(.5) be the set of
edges in I with exactly one endpoint in S; if M is a perfect matching and |5 is odd,
then M N§(S) # 0.

Approx-10

With this observation, we can now formulate MCPMP as a linear program:

Z = Min Z Cee
ecel
subject to: Y we > 1 for all S C V with |S] odd
e€6(S)

2e > 0 for all e € .

We can now see that the value Z of this linear program is a lower bound on the cost
of any perfect matching. In particular, for any perfect matching M, we let

0 otherwise.

_{1 if e € M;

Clearly, this assignment is a feasible solution to the linear program, so we know that
7Z < ¢(M). This bound also applies to a minimum-cost perfect matching M*, so we
have 7 < ¢(M™).

Note that this is a huge linear program having one constraint for each S C V of
odd cardinality. Though it is too large to be solved in polynomial time by any of the
linear programming algorithms we have seen, the ellipsoid method can actually solve
this program in polynomial time. We do not consider this solution technique; rather
we let the linear program and its dual serve as a tool for developing and analyzing
the algorithm.

We now consider the dual linear program:

7/ = Max Z Ys
scv,
S| odd
subject to: Z ys < e forall e e K
Scv,
e€6(S)

ys >0 for all S C V with |S] odd.

Note that by strong duality, the value Z of this dual linear program is the same as
the value Z of the primal program.

This dual linear program is used to verify that the perfect matching output by
the algorithm is actually within a factor of 2 of optimal. The algorithm outputs two
things:

1. a perfect matching M’, and

2. a dual feasible solution y such that

(M) <2 Z Ys.

Scv,
S| odd

Approx-11

Since y is dual feasible, we know that

Y ys < Z < (M)

Scv,
S| odd

where M is any perfect matching. Thus we have
c(M") <27 < 2¢(M7)

where M* is a min-cost perfect matching. The algorithm is therefore (given that it
runs in polynomial time) a 2-approximation algorithm for MCPMP.

To be precise, the algorithm need not actually output the dual feasible solution
y — it is only needed as an analysis tool to prove the factor of 2 approximation
bound. In spite of the fact that there are an exponential number of ys variables, the
algorithm could actually compute and output the yg values since it turns out that
only a polynomial number of them are non-zero. When we finally get to exhibiting
the algorithm, we will include the computation of the yg values.

4.2 From forest to perfect matching

Rather than directly compute the perfect matching M’, the algorithm first computes
a forest F’ from which M’ can be derived. In the forest F”’, all components have
even size, and furthermore, [is edge-minimal in the sense that if any edge of F” is
removed, then the resulting forest has an odd size component. Additionally, the cost
of I is bounded by twice the value of the dual feasible solution; that is,

C(F/) <2 Z Ys.

SCV,
S| odd
We now show how to convert F” into a perfect matching M’ such that ¢(M’) <
c(F"). The idea is as follows. Starting from the forest F”, consider any vertex v with
degree at least 3. Take two edges (u,v) and (v, w); remove them and replace them
with the single edge (u,w). Since the edge costs obey the triangle inequality, the
resulting forest must have a cost not more than ¢(F”). Thus, if we can iterate on this
operation until all vertices have degree 1, then we have our perfect matching M’.
The only thing that can get in the way of the operation just described is a vertex
of degree 2. Fortunately, we can show that all vertices of F’ have odd degree. Notice
then that this property is preserved by the basic operation we are using. (As a direct
consequence, the property that all components are even is also preserved.) Therefore,
if all vertices of F’ have odd degree, we can iteration the basic operation to produce
a perfect matching M’ such that ¢(M') < ¢(F’). Notice that M’ is produced after
O(n) iterations.

Lemma 3 All vertices of F' have odd degree.

Approx-12

Proof: Suppose there is a vertex v with even degree, and let v be in component
A of F'. Removing v and all its incident edges partitions A into an even number £ of
smaller components Ay, Ay, ..., Ag. If all £ of these components have odd size, then
it must be the case that A has odd size. But we know that A has even size — all
components of I'" have even size — so there must be a component A; with even size.
Let v; denote the vertex in A; such that (v, v;) is an edge of F’. Now if we start from
F' and remove the edge (v,v;), we separate A into two even size components. This
contradicts the edge-minimality of F”. O

4.3 The algorithm

The algorithm must now output an edge-minimal forest F’ with even size components
and be able to compute a dual feasible solution y such that e(£’) <23 ys.
At the highest level, the algorithm is:

1. Start with F' = 0.

2. As long as there exists an odd size component of F', add an edge between two
components (at least one of which has odd size).

Note that the set of components of F'is initially just the set of vertices V.

The choice of edges is guided by the dual linear program shown earlier. We start
with all the dual variables equal to zero; ys = 0. Suppose at some point in the
execution we have a forest F' as shown below and a dual solution y. Look at the

SR

components S of odd cardinality (components 1, 4, 6 and 7, in this case). For these
components, increase ys by some 6, leaving all other values of ys unchanged. That
is

4

Y

ys + 6 if S is an odd size component of F
H
Us Ys otherwise.

Make 6 as large as possible while keeping ys dual feasible. By doing this, we make
the constraint on some edge e tight; for some e the constraint

Zysgce

SCV,
e€6(S)

becomes

ZyS:Ce-

SCV,
e€6(S)

Approx-13

This is the edge e that we add to F. (If more than one edge constraint becomes tight
simultaneously, then just arbitrarily pick one of the edges to add.)

We now state the algorithm to compute F’. The steps that compute the dual
feasible solution y are commented out by placing the text in curly braces.

1 F 10

2 C—{{i}|ieV} {The components of F'}

3 {Let ys < O for all S with |S| odd.}

4 Vie Vdod(i) «0 {d(?) = X s5:ys}

5 while 3C € C with |C] odd do

6 Find edge e = (¢,7) such that : € C,,, 5 € Cy, p# ¢
which minimizes 6 = %
where A\(C') = {éifoﬁgiviosid (i.e., the parity of ().

7 F— Fu{e}

8 VC € C with |C] odd do

9 Vie Cdod(i) —de)+6

10 {Let yo +— yo +6.}

11 C—Cc\{C,C,u{C,uC,}

12 F’" +— edge-minimal F

4.4 Analysis of the algorithm

Lemma 4 The values of the variables ys computed by the above algorithm constitute
a dual feasible solution.

Proof: We show this by induction on the while loop. Specifically, we show that
at the start of each iteration, the values of the variables ys are feasible for the dual
linear program. We want to show that for each edge e € I,

ZySSCS-

SCV,
e€6(S)

The base case is trivial since all variables ygs are initialized to zero and the cost
function ¢, is nonnegative. Now consider an edge ¢’ = (¢, j') and an iteration. There
are two cases to consider.

In the first case, suppose both ¢' and j’ are in the same component at the start
of the iteration. In this case, there is no component C' € C for which ¢ € 6(C).
Therefore, since the only way a variable ys gets increased is when S is a component,
none of the variables ys with e’ € §(.5) get increased at this iteration. By the induction

Approx-14

hypothesis, we assume the iteration starts with

Z ysgclev

SCV,
e'€8(S)
and therefore, since the left-hand-side of this inequality does not change during the
iteration, this inequality is also satisfied at the start of the next iteration.
In the second case, suppose ¢’ and j’ are in different components; " € C}, and
g € Cyp at the start of the iteration. In this case, we can write

Z Ys = Zys—l- Zys

SCV, SCV, SCV,
e'€é(S) 'es j'es

= d(1) +d(j"),

where d(7) is defined by
d(i) = > _ys.

SCV,

€S
The equality follows because since ¢' and j’ are in different components, if S contains
both ¢/ and j’, then S is not and never has been a component; hence, for such a set
S, we have ys = 0. We know that during this iteration d(:') will be incremented by ¢
if and only if yc,, 1 incremented by 6, and this occurs if and only if A(C,) = 1. Let

d'(¢') and d'(j") be the new values of d(¢") and d(j') after this iteration. Then we have

d'(i') = d(i') + 6MC,), and
d'(j") = d(j") + M Cy).

Now, by the way ¢ is chosen, we know that

- o —d(i) — d(j)
N)‘(Cp’) +)‘(Cq’) ‘

Thus, at the beginning of the next iteration we have

Y ys=d()+d(j)
SCV,
e'€8(S)

=d(") + SMCp) +d(5") + 6A(Cyr)
(') +d(3") + 6[MCpr) + ATy)]
co — d(i') —d(j')
)‘(Cp’) +)‘(Cq’)

d
d

<d(i') +d(j') + [A(Cpr) + ACy)]

= Cg!.

Finally, for completeness sake, we note that the constraint ys > 0 is satisfied
because ys = 0 initially and 6 > 0. g

Approx-15

As a final observation, we note that when the algorithm selects an edge €', the
corresponding constraint in the dual linear program becomes tight. This means that

ZyS:Ce-

SCV,
e€6(S)

for all edges e € F', we have

4.5 A simulated run of the algorithm

Since the algorithm as given can be difficult to visualize, here is an example of how
it would execute. See Figure 1.

Figure 1: A sample run of the algorithm. The various values of d(7) are indicated by
the shaded regions around the components.

We’ll assume a Euclidean distance metric to ease visualization. Now, initially, all
points (1 through 8) are in separate components, and d(¢) is 0 for all 7. Since the metric
is Euclidean distance, the first edge to be found will be (7,8). Since both components
are of odd size, 6 will be half the distance between them ((¢. —0—0)/(1+1)). Since,
in fact, all components are of odd size, every d(¢) will be increased by this amount,
as indicated by the innermost white circle around each point. The set {7,8} now
becomes a single component of even size.

In general, we can see the next edge to be chosen by finding the pair of components
whose boundaries in the picture can be most easily made to touch. Thus, the next
edge is (3,5), since the boundaries of their regions are closest, and the resulting values

Approx-16

of d(7) are represented by the dark gray bands around points 1 through 6. Note that
the component {7,8} does not increase its d(¢) values since it is of even size.

We continue in this way, expanding the “moats” around odd-sized components
until all components are of even size. Since there is an even number of vertices and
we always expand odd-sized components, we are guaranteed to reach such a point.

4.6 Final Steps of Algorithm and Proof of Correctness

Let F' ={e € F': F'\ {e} has an odd sized component
obtained is a forest with com
with respect to this property.
a forest. We will also show t
twice the dual solution. In se
forest with the cost of the ma
this gives us a 2-approximati

. We will show that the F” so

t since [/ C F and F is
is less than or equal to
ild a matching from this
e cost of the forest. Thus,
an example see the figure

is obvious that F’ is a
the cost of this forest
n 4.2 we showed how f
ing less than or equal t

lgorithm for matching.
given below.

Figure 2: Example showing how to get F’ from F.

Theorem 5 Let F' = {e € F: F'\ {e} has an odd sized component}. Then

1. every component of F' has an even number of vertices and I'' is edge minimal
with respect to this property..

2. Y eer Ce <23 5Ys.

Proof:

Let us first show that every component of F’ has an even number of vertices.
Suppose not. Then consider the components of F'. Every component of F' has an
even number of vertices by design of the algorithm. Consider a component of F’ which
has an odd number of vertices and let us denote it as T/. Let T; be the component

Approx-17

that T! belongs to in F. Let
by removing T! (see figure 3).
has an even number of vertig
belong to I’ by definition. B

Figure 3: Every component of F’ has an even # (

A simple proof by contradiction shows that F” is edge minimal. Suppose F” is not
edge minimal. Then there is an edge or set of edges which can be removed which leave
even sized components. Consider one such edge e. It falls into one of two categories:

1. Its removal divides a component into two even sized components. But this
means that e was already removed by the definition of /.

2. Its removal divides a component into two odd sized components. Despite the
fact that other edges may be removed, as well, an two odd sized component will
remain in the forest. Thus, e cannot be removed.

Now let us prove the second portion of the theorem. In what follows, though we
do not explicitly notate it, when we refer to a set S of vertices, we mean a set S of
vertices with |S| odd. We observe that by the choice of the edges e in F', we have

ce= > s

S:e€é(S)

for all e € F'. Thus,

doee =) DL s

ecF! e€l’ S:e€é(S)

= > yslF N oS

Thus we need to show,

STyslF 0 () <2 ys
S S

Approx-18

We will show this by induction. In what follows, bear in mind that F’ is what
we have, at the end of the algorithm. We will show the above relation holds at every
iteration.

Initially, ys = 0. Thus the LHS and RHS are both zero. Thus, this is true initially.

Let us suppose it is true at any intermediate stage in the algorithm. We will show
that it will remain true in the next iteration. From one iteration to the next the only
ys that change are those with C' € C with |C'| odd. Thus if we show the increase in
the LHS is less than the RHS we are done. i.e.

1) Z |F'Né6(C)| < 28/{C € C,|C] odd}|
cec,c| odd

or
S AS(C)] < 2{C €€, odd}
cec,c| odd

Now, define a graph H with C' € C as vertices, with an edge between C, and C, if
there exists an edge in F' N {6(C,)N6(C,)}. We can partition these vertices into two
groups based on their cardinality. Those that have even cardinality and those that
have odd cardinality. Remove from this graph all vertices that have even cardinality
and are isolated (they have no edges incident to them). We will denote the resulting
set of vertices of odd and even cardinality by Odd and Even respectively.

Now 3> ce 101 odd |F" N 6(C)| corresponds to the sum of the degrees of vertices in
Odd in the graph H. And, |{C € C,|C| odd}|, corresponds to the number of vertices

in odd. Thus we need to show:

S dy(v) < 2|0dd|

veO0dd

where dy(v) denotes the degree of node v in the graph H. Since F’ is a forest, H is
also a forest and we have:
Number of edges in H < number of vertices in H. Or

ZvEOdd dH(U) + ZUGEUBTL dH(U)
2

< |0dd| + | Even|

or
S dy(o) <20dd + Y (2 - dy(v)
veOdd vEFEven

We now claim that if v € Even then v is not a leaf. If this is true then (2—dg(v)) <
0 for v € Even and so we are done.

Suppose there is a v; € Even which is a leaf. Consider the component C' in H
that v; is contained in. By the construction of H, each tree in I is either contained
solely in the vertices represented by C' or it is strictly outside C'. Since each tree in
F' contains an even number of vertices C' does (w.r.t. the original graph), as well.
So v; and C' — v; each contains an even number of vertices. As a result, removing the

Approx-19

edge between v; and C' — v;
the minimality of /.

Figure 4: dy(v) > 2 for v € Fven

4.7 Some implementation details

The algorithm can be implemented in O(n*logn). For this purpose, notice that
the number of iterations is at most n — 1 since F' is a forest. The components
of F' can be maintained as a union-find structure and, therefore, all mergings of
components take O(na(n,n)) where « is the inverse Ackermann function. In order
to get the O(n?logn) bound, we shall show that every iteration can be implemented
in O(nlogn) time.

In order to find the edge e to add to F', we maintain a priority queue containing
the edges between different components of F'. This initialization of this priority queue
takes O(n?logn) time. In order to describe the key of an edge, we need to introduce
a notion of time. The time is initially set to zero and increases by ¢ in each iteration
(the time can be seen to be the maximum of d; over all vertices ¢). The key of an
edge e = (7,7) is equal to the time at which we would have ¢. = d; + d; if the
parity of the components containing ¢ and j don’t change. The edge to be selected
is therefore the edge with minimum key and can be obtained in O(nlogn). When
two components merge, we need to update the keys of edges incident to the resulting
component (since the parity might have changed). By keeping track of only one edge
between two components (the one with smallest key), we need to update the keys of
O(n) edges when two components merge. This can be done in O(nlogn) (O(logn)
per update).

To complete the discussion, we need to show how to go from F to F’. By per-
forming a post-order traversal of the tree and computing the parity of the subtrees
encountered (in a recursive manner), this step can be implemented in O(n) time.

Approx-20

5 Approximating MAX-CUT

In this section, we illustrate the fact that improved approximation algorithms can be
obtained by considering relaxations more sophisticated than linear ones. At the same
time, we will also illustrate the fact that rounding a solution from the relaxation in a
randomized fashion can be very useful. For this purpose, we consider approximation
algorithms for the MAX-CUT problem. The unweighted version of this problem is as
follows:

Given: A graph G = (V, E).
Find: A partition (5, 5) such that d(5) := |§(9)| is maximized.

It can be shown that this problem is NP-hard and MAX SNP-complete and so
we cannot hope for an approximation algorithm with guarantee arbitrarily close to 1
unless P = NP. In the weighted version of the problem each edge has a weight w;;

and we define d(5) by,
d(S) == Z Wij.

(¢,5)EE1ES,j¢S
For simplicity we focus on the unweighted case. The results that we shall obtain will
also apply to the weighted case.

Recall that an a-approximation algorithm for MAX-CUT is a polynomial time
algorithm which delivers a cut 6(5) such that d(S) > azye where zp¢ is the value
of the optimum cut. Until 1993 the best known a was 0.5 but now it is 0.878 due
to an approximation algorithm of Goemans and Williamson [14]. We shall first of all
look at three (almost identical) algorithms which have an approximation ratio of 0.5.

1. Randomized construction. We select S uniformly from all subsets of V. i.e.
For each 7 € V we put ¢ € S with probability (independently of j # 7).

Ed(S)] = Xwjyes Pri(i,g) € o(5)] by linearity of expectations
= LE|.
2

But clearly zpe < |E| and so we have F [d(S)] > %ZMc. Note that by comparing

our cut to |E|, the best possible bound that we could obtain is § since for K,

(the complete graph on n vertices) we have |F| = (;) and zpy¢ = %.

2. Greedy procedure. Let V ={1,2,... ;n}andlet £, ={i: ({,j) € F and i <
J}. Tt is clear that {F; : j = 2,...,n} forms a partition of £. The algorithm
is:

Set S = {1}
For j =2 ton do
it 501 By < 18,
then S «— SU{j}.

Approx-21

If we define F; = F; N 6(S) then we can see that {F; : j = 2,...,n} is a
partition of 6(5). By definition of the algorithm it is clear that |F;| > lEZ—Jl By
summing over j we get d(.5) > |§—| > e In fact, the greedy algorithm can
be obtained from the randomized algorithm by using the method of conditional
expectations.

3. Local search. Say that 6(.5) is locally optimum if Vi € S : d(S — {¢}) < d(95)
and Vi ¢ S :d(S U {e}) < d(9).

Lemma 6 [f 6(5) is locally optimum then d(S) > L]

7.
Proof:

d(s) = lZ:{mumber of edges in cut incident to ¢}
eV

=§;wwmwn

1 ..
> 53 5dl)

=24
2
= 1|E|

1£]
=

The inequality is true because if [6(S) N §(2)| < 1|8(z)| for some 7 then we can
move ¢ to the other side of the cut and get an improvement. This contradicts
local optimality. O

In local search we move one vertex at a time from one side of the cut to the other
until we reach a local optimum. In the unweighted case this is a polynomial
time algorithm since the number of different values that a cut can take is O(n?).
In the weighted case the running time can be exponential. Haken and Luby [15]
have shown that this can be true even for 4-regular graphs. For cubic graphs
the running time is polynomial [22].

Over the last 15-20 years a number of small improvements were made in the approxi-
mation ratio obtainable for MAX-CUT. The ratio increased in the following manner:

1 1 1 1 1 1 n—-1
- -t — = =4+ — — =

2 2 2m 2 2n 2 4m

where m = |F| and n = |V, but asymptotically this is still 0.5.

Approx-22

5.1 Randomized 0.878 Algorithm

The algorithm that we now present is randomized but it differs from our previous
randomized algorithm in two important ways.

o The event ¢ € S is not independent from the event 5 € S.

e We compare the cut that we obtain to an upper bound which is better that |£].

S
Figure 5: The sphere 5,,.

Suppose that for each vertex i € V we have a vector v; € R" (where n = |V]). Let
Sy be the unit sphere {& € R" : ||z|| = 1}. Take a point r uniformly distributed on
Sn, and let S = {i € V:v;-r >0} (Figure 5). (Note that without loss of generality
||v;]| = 1.) Then by linearity of expectations:

(5) E[d(S) = > Prlsign(v;-r) # sign(v; - r)].
(L)er
Lemma 7
Pr[sign(v; - r) # sign(v; -r)] = Pr[random hyperplane separates v; and v;]
a
T or

where a = arccos(v; - vj) (the angle between v; and v;).

Proof: This result is easy to see but it is a little difficult to formalize. Let P be the
2-dimensional plane containing v; and v;. Then P NS, is a circle. With probability
I, H ={x: 2 r =0} intersects this circle in exactly two points s and ¢ (which are
diametrically opposed). See figure 6. By symmetry s and ¢ are uniformly distributed
on the circle. The vectors v; and v; are separated by the hyperplane H if and only if
either s or ¢ lies on the smaller arc between v; and v;. This happens with probability

200 o
2r 7w O

Approx-23

Figure 6: The plane P.

From equation 5 and lemma 7 we obtain:

B Ld(S)] = Z arccos(v; - vj)‘

(i./)EE T
Observe that £ [d(S)] < zame and so

max F [d(9)] < zme,

where we maximize over all choices for the v;’s. We actually have max,, F [d(5)] =

zye- Let 8(T) be a cut such that d(T') = zy¢ and let e be the unit vector whose first
component is 1 and whose other components are 0. If we set

{ e ifieT
v, =

—e otherwise.
then 6(5) = 6(T') with probability 1. This means that £ [d(S)] = znc.
Corollary 8

Z arccos(v; - vj)

s

ZyMmo = Inax
||Ui||:1 L
(¢,7)eE

Unfortunately this is as difficult to solve as the original problem and so at first glance
we have not made any progress.

Approx-24

5.2 Choosing a good set of vectors

Let f:[—1,1] — [0,1] be a function which satisfies f(—1) = 1, f(1) = 0. Consider

the following program:

Max > f(v; - v))
(¢,7)eE
subject to:

(P) ||| =1 e V.

It we denote the optimal value of this program by zp then we have zj;c < zp. This
is because if we have a cut 6(7T) then we can let,

{ e ifieT
v, =

—e otherwise.

Hence Y- jyer fvi-v;) =d(T) and zpye < zp follows immediately.

5.3 The Algorithm

The framework for the 0.878 approximation algorithm for MAX-CUT can now be
presented.

*

1. Solve (P) to get a set of vectors {v],... v’}

?7n

2. Uniformly select r € S,,.

3. Set S={i:vf-r>0}.

Theorem 9
Ed(S)] > azp > azyce
where,
arccos(x)
a= min ——.
-1<e<1t 7w f(x)
Proof:

arccos(v} - v¥)

Eld(S)] = 3

(i.y)€E T
> o Y f(vi-v))
(i.y)€E
= Qzp
> azye.

Approx-25

O
We must now choose f such that (P) can be solved in polynomial time and « is as
large as possible. We shall show that (P) can be solved in polynomial time whenever
f is linear and so if we define,
l—2
o) =1
then our first criterion is satisfied. (Note that f(—1) =1 and f(1) = 0.) With this
choice of f,

Zarccos(:zj)
a = min
—1<z<1 (1—;1;)
2 arccos(—0.689)
(1 — (—0.689))
= 0.87856.

(See figure 7.)

1-x

arccos(x)

T
-1 -0.689 1

Figure 7: Calculating o.

5.4 Solving (P)

We now turn our attention to solving:

1

Max Z 5(1 — ;- vj)
(¢,7)eE
subject to:
(P) ||| =1 e V.

Approx-26

Let Y = (y;;) where y;; = v; - v;. Then,
o |[v]| =1=y; =1 for all .

o y; = v;-v; = Y > 0, where Y > 0 means that Y is positive semi-definite:
Va : 27Yx > 0.) This is true because,

'Yy = Zz:pixj(vi-vj)
g

2
= ‘ E T;U;
7

> 0.

Conversely if Y = 0 and y;; = 1 for all 2 then it can be shown that there exists a set
of v;’s such that y;; = v; - v;. Hence (P) is equivalent to,

1
Max > (1 —wy)
(ij)eE
subject to:
(P Y =0
yi =1 e V.

Note that @ :={Y : Y = 0,y;; = 1} is convex. (If A >0 and B > 0then A+ B =0
and also # = 0.) It can be shown that maximizing a concave function over a
convex set can be done in polynomial time. Hence we can solve (P’) in polynomial
time since linear functions are concave. This completes the analysis of the algorithm.

5.5 Remarks

1. The optimum Y could be irrational but in this case we can find a solution with
an arbitrarily small error in polynomial time.

2. To solve (P') in polynomial time we could use a variation of the interior point
method for linear programming.

3. Given Y, v; can be obtained using a Cholesky factorization (Y = VVT).

4. The algorithm can be derandomized using the method of conditional expecta-
tions. This is quite intricate.

5. The analysis is very nearly tight. For the 5-cycle we have zpc and zp =
2(1+cost) = 25275\/5 which implies that =4= = 0.88445.

Approx-27

6 Bin Packing and P || C,,..

One can push the notion of approximation algorithms a bit further than we have been
doing and define the notion of approximation schemes:

Definition 4 A polynomial approximation scheme (pas) is a family of algorithms
Ac:€> 0 such that for each € > 0, A, is a (1 4 €)-approzimation algorithm which
runs in polynomial time in input size for fived ¢.

Definition 5 A fully polynomial approximation scheme (fpas) is a pas with running
time which is polynomial both in input size and 1/e.

It is known that if 7 is a strongly N P-complete problem, then 7 has no fpas unless
P = NP. From the result of Arora et al. described in Section 2, we also know that
there is no pas for any MAX — SN P hard problem unless P = NP.

We now consider two problems which have a very similar flavor; in fact, they
correspond to the same N P-complete decision problem. However, they considerably
differ in terms of approximability: one has a pas, the other does not.

e Bin Packing: Given item sizes ay,as,... ,a, > 0 and a bin size of T, find a
partition of Iy,... Iy of 1,... ,n, such that >~,cp a; < T and k is minimized
(the items in [; are assigned to bin [).

o P || Cpasz: Given n jobs with processing times py,...,p, and m machines,
find a partition {/q,...,I,} of {1,... ,n}, such that the makespan defined as
max;(Y ey, pj) is minimum. (The makespan represents the maximum comple-
tion time on any machine given that the jobs in [; are assigned to machine

i).

The decision versions of the two problems are identical and NP-complete. However
when we consider approximation algorithms for the two problems we have completely
different results. In the case of the bin packing problem there is no a-approximation
algorithm with o < 3/2, unless P = NP.

Proposition 10 There is no a-approzimation algorithm with o < 3/2, for bin pack-
ing, unless P = NP, as seen in Section 2.

However, we shall see, for P || Cpqr we have a-approximation algorithms for any
a.

Definition 6 An algorithm A has an asymptotic performance guarantee of o if

a > limsup ag
k—oco

Approx-28

where
A(I)
ap = su —
’ I:OPT](QI):kOPT(])

and OPT(I) denotes the value of instance I and A(I) denotes the value returned by
algorithm A.

For P || Cinasr, there is no difference between an asymptotic performance and a per-
formance guarantee. This follows from the fact that P || C,.., satisfies a scaling
property : an instance with value SOPT(I) can be constructed by multiplying every
processing time p; by j.

Using this definition we can analogously define a polynomial asymptotic approz-
imation scheme (paas). And a fully polynomial asymptotic approximation scheme
(fpaas).

Now we will state some results to illustrate the difference in the two problems
when we consider approximation algorithms.

1. For bin packing, there does not exist an a-approximation algorithm with o <
3/2, unless P = N P. Therefore there is no pas for bin packing unless P = N P.

2. For P || Cpax there exists a pas. This is due to Hochbaum and Shmoys [17].
We will study this algorithm in more detail in today’s lecture.

3. For bin packing there exists a paas. (Fernandez de la Vega and Lueker [7]).

4. For P || Cppar there exists no fpaasunless P = N P. This is because the existence
of a fpaas implies the existence of a fpas and the existence of a fpas is ruled out
unless P = NP because, P || Cpa is strongly NP-complete.

5. For bin packing there even exists a fpaas. This was shown by Karmarkar and

Karp [18].

6.1 Approximation algorithm for P||C),..

We will now present a polynomial approximation scheme for the P||C,,., scheduling
problem.

We analyze a pas for P||C,,.,, discovered by Hochbaum and Shmoys [17]. The
idea is to use a relation similar to the one between an optimization problem and
its decision problem. That is, if we have a way to solve decision problem, we can
use binary search to find the exact solution. Similarly, in order to obtain a (1 + €)-
approximation algorithm, we are going to use a so-called (1 + €)-relaxed decision
version of the problem and binary search.

Definition 7 (1 + ¢)-relazed decision version of P||Cpax is a procedure that given €
and a deadline T', returns either:

Approx-29

2
1
[T
|
max p;
m
Figure 8: List scheduling.
o “NO” — if there does not exist a schedule with makespan < T, or

o “YES” — if a schedule with makespan < (1 + €)T exists.

In case of “yes”, the actual schedule must also be provided.

Notice that in some cases both answers are valid. In such a case, we do not care
if the procedure outputs “yes” or “no”. Suppose we have such a procedure. Then we
use binary search to find the solution. To begin our binary search, we must find an
interval where optimal (., is contained. Notice that (Zj pj) /m is an average load
per machine and max; p; is the length of the longest job. We can put a bound on
optimum Chay as follows:

Lemma 11 Let

then L < C.x < 2L.

Proof: Since the longest job must be completed, we have max; p; < Cpax. Also,
since (Z]‘ pj) /m is the average load, we have (Z]‘ pj) /m < Chax. Thus, L < Chax.
The upper bound relies on the concept of list scheduling, which dictates that a job
is never processed on some machine, if it can be processed earlier on another machine.
That is, we require that if there is a job waiting, and an idle machine, we must use
this machine to do the job. We claim that for such a schedule Cy,.x < 2L. Consider
the job that finishes last, say job k. Notice that when it starts, all other machines
are busy. Moreover, the time elapsed up to that point is no more than the average

Approx-30

load of the machines (see Figure 8). Therefore,

Cmax S M + Pk
m
< ZiPi g oy,
m i
< 2max (maxpj, M)
i m
= 2L.

O
Now we have an interval on which to do a (logarithmic) binary search for Ciax.
By Ti and T, we denote lower and upper bound pointers we are going to use in our
binary search. Clearly, T' = /T}T5 is the midpoint in the logarithmic sense. Based
on Lemma 11, we must search for the solution in the interval [L,... ,2L]. Since
we use logarithmic scale, we set logT) = log, L, logTy = log, L. + 1 and logT =
+(log, Ty + log, T3).
When do we stop? The idea is to use different value of e. That is, the approxima-
tion algorithm proceeds as follows. Every time, the new interval is chosen depending
on whether the procedure for the (1 + €/2)-relaxed decision version returns a “no”

or (in case of “yes”) a schedule with makespan < (1 + ¢/2)T, where T' = /11T,

and [T4,...,T5] is the current interval. The binary search continues until the bounds
Ty, T, satisty the relation glﬂil < (1 +¢€), or equivalently %’ < 1}'_"';/52. The number

of iterations required to satisfy this relation is O(lg(1/€)). Notice that this value is a
constant for a fired e. At termination, the makespan of the schedule corresponding
to Ty will be within a factor of (1 + €) of the optimal makespan.

In order to complete the analysis of the algorithm, it remains to describe the
procedure for the (1 + ¢/2)-relaxed decision procedure for any e. Intuitively, if we
look at what can go wrong in list scheduling, we see that it is “governed” by “long”
jobs, since small jobs can be easily accommodated. This is the approach we take,
when designing procedure that solves the (1 4 ¢/2)-relaxed decision version of the
problem. For the rest of our discussion we will denote ¢/2 by ¢

Given {p;}, € and T, the procedure operates as follows:

Step 1: Remove all (small) jobs with p; < €T.

Step 2: Somehow (to be specified later) solve the (1 + €')-relazed decision version of the
problem for the remaining (big) jobs.

Step 3: If answer in step 2 is “no”, then return that there does not exist a schedule with
makespan < T'.
If answer in step 2 is “yes”, then with a deadline of (1+ €)T put back all small
Jobs using list scheduling (i.e. greedy strategy), one at a time. If all jobs are

Approx-31

T (A+e)T
deadline deadline

Figure 9: Scheduling “small” jobs.

accommodated then return that schedule, else return that there does not exist a
schedule with makespan < T'.

Step 3 of the algorithm gives the final answer of the procedure. In case of a “yes” it
is clear that the answer is correct. In case of a “no” that was propagated from Step 2
it is also clear that the answer is correct. Finally, if we fail to put back all the small
jobs we must also show that the algorithm is correct. Let us look at a list schedule
in which some small jobs have been scheduled but others couldn’t (see Figure 9).

If we cannot accomodate all small jobs with a deadline of (1 + ¢')T', it means
that all machines are busy at time T' since the processing time of each small job is
< €'T. Hence, the average load per processor exceeds T'. Therefore, the answer “no”
is correct.

Now, we describe Step 2 of the algorithm for p; > €T. Having eliminated the
small jobs, we obtain a constant (when € is fixed) upper bound on the number of
jobs processed on one machine. Also, we would like to have only a small number
of distinct processing times in order to be able to enumerate in polynomial time all
possible schedules. For this purpose, the idea is to use rounding. Let ¢; be the largest
number of the form €7 + ke*T < p; for some k € N. A refinement of Step 2 is the
following.

2.1 Address the decision problem: Is there a schedule for {¢;} with makespan < 77

2.2 If the answer is “no”, then return that there does not exist a schedule with
makespan < T
If the answer is “yes”, then return that schedule.

The Lemma that follows justifies the correctness of the refined Step 2.

Lemma 12 Step 2 of the algorithm ts correct.

Approx-32

Proof: It Step 2.1 returns “no”, then it is clear that the final answer of Step 2
should be “no”, since ¢; < p;.

It Step 2.1 returns “yes”, then the total increase of the makespan due to the
replacement of ¢; by p; is no greater than (1/¢)e*T" = €7T'. This is true, because
we have at most 7/(¢'T) = 1/¢ jobs per machine, and because p; < ¢; + ¢°T by
definition. Thus, the total length of the schedule with respect to {p;} is at most
T+ T =(14€)T. O

It remains to show how to solve the decision problem of Step 2.1. We can achieve
this in polynomial time using dynamic programming. Note that the input to this
decision problem is “nice”: We have at most P = |1/€'| jobs per machine, and at
most () = 1 + FE_,—;/J distinct processing times. Since ¢ is considered to be fixed,
we essentially have a constant number of jobs per machine and a constant number
qys- -+ > qg of processing times. Let 77 = {n1,... ,ng}, where n; denotes the number of
jobs whose processing timeis ¢;. We use the fact that the decision problems of P||C,, 4.
and the bin packing problems are equivalent. Let f(77) denote the minimum number
of machines needed to process i by time T'. Finally, let R = {7 = (r1,...,rg)
2?21 rig: < T,r; <n;,r; € N. R represents the sets of jobs that can be processed on
a single machine with a deadline of T'. The recurrence for the dynamic programming
formulation of the problem is

f0i) = 1+ min f(7 —7),

namely we need one machine to accomodate the jobs in ¥ € R and f(7i —) machines
to accomodate the remaining jobs. In order to compute this recurrence we first have
to compute the at most QF vectors in R. The upper bound on the size of R comes
from the fact that we have at most P jobs per machine and each job can have one of
at most () processing times. Subsequently, for each one of the vectors in R we have
to iterate for n® times, since n; < n and there are) components in 7. Thus, the

running time of Step 2.1 is O(n1/5/2(1/6’2)(1/5/)).

From this point we can derive the overall running time of the pas in a straight-
forward manner. Since Step 2 iterates O(lg(1/¢)) times and since € = 2¢€/, the overall
running time of the algorithm is O(n'/<* (1/¢2)1/9) 1g(1/¢)).

7 Randomized Rounding for Multicommodity Flows

In this section, we look at using randomness to approximate a certain kind of mul-
ticommodity flow problem. The problem is as follows: given a directed graph G' =
(V, E), with sources s; € V and sinks t; € V for ¢ = 1,...,k, we want to find a
path P; from s; to t; for 1 < ¢ < k such that the “width” or “congestion” of any
edge is as small as possible. The “width” of an edge is defined to be the number of
paths using that edge. This multicommodity flow problem is NP-complete in general.

Approx-33

The randomized approximation algorithm that we discuss in these notes is due to
Raghavan and Thompson [24].

7.1 Reformulating the problem

The multicommodity flow problem can be formulated as the following integer pro-
gram:

Min W
subject to:
1 ifv=s;
(6) S ai(v,w) =D ai(w) =4 =1 ifv=4 i=1,... . k,v eV,
w w 0 otherwise
zi(v,w) € {0,1} i=1,...,k (v,w) € E,
(7) > wi(v,w) <W (v,w) € E.
Notice that constraint (6) forces the z; to define a path (perhaps not simple) from s,
to t;. Constraint (7) ensures that every edge has width no greater than W, and the
overall integer program minimizes W.

We can consider the LP relaxation of this integer program by replacing the con-
straints a;(v,w) € {0,1} with ;(v,w) > 0. The resulting linear program can be
solved in polynomial time by using interior point methods discussed earlier in the
course. The resulting solution may not be integral. For example, consider the multi-
commodity flow problem with one source and sink, and suppose that there are exactly
¢ edge-disjoint paths between the source and sink. If we weight the edges of each path
by 1 (i.e. set z(v,w) = I for each edge of each path), then Wj,p = 1. The value Wp
can be no smaller: since there are ¢ edge-disjoint paths, there is a cut in the graph
with ¢ edges. The average flow on these edges will be 1, so that the width will be at
least %

The fractional solution can be decomposed into paths using flow decomposition, a
standard technique from network flow theory. Let = be such that > 0 and

a HHv=s;

da(v,w) = z(w,v) =4 —a ifv=1

w w 0 otherwise.
Then we can find paths P;,..., P from s; to ¢; such that
aq, o € R+

cee
ZO@ = da
dYoa; < a(vw).

J:(vyw)€EP;

Approx-34

To see why we can do this, suppose we only have one source and one sink, s and t.
Look at the “residual graph” of x: that is, all edges (v,w) such that x(v,w) > 0.
Find some path P, from s to ¢ in this graph. Let oy = ming, ,ep, (v, w). Set

7'(v,w

)_{ z(v,w)—ay (v,w) € P

| 2(v,w) otherwise.

We can now solve the problem recursively with ¢’ = a — ;.

7.2 The algorithm

We now present Raghavan and Thompson’s randomized algorithm for this problem.

1. Solve the LP relaxation, yielding Wrp.

2. Decompose the fractional solution into paths, yielding paths P;; fore=1,... k
and j = 1,...,j; (where P, is a path from s; to ¢;), and yielding «;; > 0 such

that >, a;; = 1 and
Y ay < Wip.

S H ORI ¥

3. (Randomization step) For all ¢, cast a j;-faced die with face probabilities ay;. If
the outcome is face f, select path Py as the path P; from s; to ;.

We will show, using a Chernoff bound, that with high probability we will get small
congestion. Later we will show how to derandomize this algorithm. To carry out the
derandomization it will be important to have a strong handle on the Chernoff bound
and its derivation.

7.3 Chernoff bound

For completeness, we include the derivation of a Chernoff bound, although it already
appears in the randomized algorithms chapter.

Lemma 13 Let X; be independent Bernoulli random variables with probability of
success p;. Then, for all « > 0 and all t > 0, we have

L k
<[E [eaXi] = e ' I[(pie® + (1 — p)).
—1

=1

k
Pr [ZXZ > 1

=1

Proof:

k
Pr [Z X, >t| = Pr [eaZfﬂX" > eat]

=1

Approx-35

for any a > 0. Moreover, this can be written as Pr[Y > «a] with Y > 0. From
Markov’s inequality we have

EY]

a

PrlY > a] <

for any nonnegative random variable. Thus,

Pr [Zle X; > t] < emMp [eaZiX"]

e, F [eaX"] because of independence.

The equality then follows from the definition of expectation. O
Setting t = (1 + 3)E[>; X;] for some > 0 and a = In(1 + /), we obtain:

Corollary 14 Let X; be independent Bernoulli random variables with probability of
success p;, and let M = E[YF_ X1] = X8 pi. Then, for all 3> 0, we have

=1

eﬁ M
(1+ ﬂ)“*ml '

Pr [Zk:X > (14)M

=1

The second inequality of the corollary follows from the fact that

E{1+8% =pi(1+8)+ (1 —pi) =1+ 8p: < .

7.4 Analysis of the R-T algorithm

Raghavan and Thompson show the following theorem.

Theorem 15 Given € > 0, if the optimal solution to the multicommodity flow prob-
lem W* has value W* = Q(logn) where n = |V/|, then the algorithm produces a

solution of width W < W* + ev/W=Inn with probability 1 — € (where ¢ and the con-
stant in Q(logn) depends on €, see the proof).

Proof: Fix an edge (v,w) € F. Edge (v,w) is used by commodity ¢ with proba-
bility p; = 2. wwep,; @ij- Let X; be a Bernoulli random variable denoting whether
or not (v,w) is in path P;. Then W(v,w) = % X;, where W (v,w) is the width of

edge (v,w). Hence,
EW(v,w)]=> p=> >, ay<Wp<W.
4 S H ORI ¥
Now using the Chernoff bound derived earlier,

B

PriW(v,w) > (14 B)W] < W

W*
] — A=+ In(1+5)W

Approx-36

Assume that # < 1. Then, one can show that

; eﬁ)(= = A48 In(14+8) « ,—5%/3
1+)0+ -

3In 2
5=y

PriW(v,w) = (1 +)W <

Therefore, for

we have that -

ﬁ.

Notice that our assumption that 3 <1 is met if
W*>6lnn —3lne.

For this choice of 3, we derive that

2
(14 B)W* = W* + {/3W=1n —.
&

We consider now the maximum congestion. We have

Pr[(m&)LXEW(v,w) > (1+)W < Z PriW(v,w) > (14+)W < |E|i2 <e,
vw)E n

! (vw)eE

proving the result. O

7.5 Derandomization

We will use the method of conditional probabilities. We will need to supplement this
technique, however, with an additional trick to carry through the derandomization.
This result is due to Raghavan [23].

We can represent the probability space using a decision tree. At the root of the
tree we haven’t made any decisions. As we descend the tree from the root we represent
the choices first for commodity 1, then for commodity 2, etc. Hence the root has j;
children representing the j; possible paths for commodity 1. Each of these nodes has
J2 children, one for each of the j, possible paths for commodity 2. We continue in
the manner, until we have reached level k. Clearly the leaves of this tree represent
all the possible choices of paths for the & commodities.

A node at level ¢ (the root is at level 0) is labeled by the ¢ choices of paths for
commodities 1...2:/;...[;. Now we define:

[1 for commodity 1
[for commodity 2
g(lh... ;)= Pr | max W(v,w)> (14)W~

(vw)eE

[; for commodity 2

Approx-37

By conditioning on the choice of the path for commodity ¢, we obtain that

Ji

(8) g(lllz—l) = Zaug(llv 7li—17j)
7=1

(9) Z Iﬂ]lﬂg(ll, 7li—17j)

If we could compute g(ly,13,...) efficiently, we could start from ¢({}) and by select-
ing the minimum at each stage construct a sequence ¢g(0) > g(l) > g(h,lz) >
.2 g(ly, s, ... ly). Unfortunately we don’t know how to calculate these quantities.
Therefore we need to use an additional trick.

Instead of using the exact value g, we shall use a pessimistic estimator for the
probability of failure. From the derivation of the Chernoff bound and the analysis of
the algorithm, we know that

k
10) Pr | max W(v,w) > (1 + W™ < (1+ —(+p)wr FE eﬁXl(v’w)
((vw)€E ’ ’
v E N
! (vw)eE 1=1
(va) — 1

where the superscript on X; denotes the dependence on the edge (v, w), i.e. X;

if (v,w) belongs to the path P,. Letting h(l1,...,[;) be the RHS of (10) when we

condition on selecting path Pj; for commodity j, j = 1,... ,7, we observe that:
L. A(ly,...,1;) can be easily computed,
2. g, ..., L) < h(lh,... 1) and
3. h(ly .o L) > ming h(ly, ..o lizg, 7).

Therefore, selecting the minimum in the last inequality at each stage, we construct
a sequence such that 1 > & > A(0) > h(ly) > h(li,lz) > ... > h(ly,lyy... k) >
g(liy Iy, ..o 1), Since g(ly, s, ..., li) is either 0 or 1 (there is no randomness involved),
we must have that the choice of paths of this deterministic algorithm gives a maximum

congestion less than (1 + g)W™.

8 Multicommodity Flow

Consider an undirected graph G' = (V, E') with a capacity u. on each edge. Suppose
that we are given k commodities and a demand for f; units of commodity z between
two points s; and ;. In the area of multicommodity flow, one is interested in knowing
whether all commodities can be shipped simultaneously. That is, can we find flows
of value f; between s; and ¢; such that the sum over all commodities of the flow on
each edge (in either direction) is at most the capacity of the edge.

There are several variations of the problem. Here, we consider the concurrent flow
problem: Find a* where a* is the maximum « such that for each commodity we can

Approx-38

ship a f; units from s; to ¢;. This problem can be solved by linear programming since
all the constraints are linear. Indeed, one can have a flow variable for each edge and
each commodity (in addition to the variable «), and the constraints consist of the
flow conservation constraints for each commodity as well as a capacity constraint for
every edge. An example is shown in figure 8. The demand for each commodity is 1

3

unit and the capacity on each edge is 1 unit. It can be shown that o™ = .

S
Figure 10: An example of the multi-commodity flow problem.

When there is only one commodity, we know that the maximum flow value is equal
to the minimum cut value. Let us investigate whether there is such an analogue for
multicommodity flow. Consider a cut (S,S). As usual §(5) is the set of edges with
exactly one endpoint in S. Let,

f= >

22| SNq{s,t =1

Since all flow between S and S must pass along one of the edges in §(5) we must

. _ ulbl)
f(S)
where u(8(5)) = YX.es(s) Ue- The multicommodity cut problem is to find a set S
u(8(5))
S

o* < 3%, But, in general, we don’t have equality. For example, in Figure 8, we have
£* = 1. In fact, it can be shown that the multicommodity cut problem is NP-hard.

have,

which minimizes . We let §* be the minimum value attainable and so we have

We shall consider the following two related questions.
1. In the worst case, how large can % be?

2. Can we obtain an approximation algorithm for the multicommodity cut prob-
lem?

Approx-39

In special cases, answers have been given to these questions by Leighton and Rao [19]
and in subsequent work by many other authors. In this section, we describe a very
recent, elegant and general answer due to Linial, London and Rabinovitch [20]. The
technique they used is the embedding of metrics. The application to multicommodity
flows was also independently obtained by Aumann and Rabani [3].

We first describe some background material on metrics and their embeddings.

Definition 8 (X, d) is a metric space or d is a metric on a set X if
1. Va,y:d(x,y) > 0.
2. Va,yd(x,y) =d(y,).
3. Nr,y,z 0 d(x,y) +d(y, 2) > d(z, 2).

Strictly speaking we have defined a semi-metric since we do not have the condition
d(z,y) = 0= 2 =y. We will be dealing mostly with finite metric spaces, where X is
finite. In R™ then the following are all metrics:

d(l'v y) ||=’1/' - ?J||2 = Z(SL'Z — yi)2 {5 metric
d(:z;,y) = ||$_?J||1 = Z|=’L’i—yz’| f{ metric
d(:z;, ?J) = ||51/' - y||oo = max; |:1?2 - y¢| l, metric
dlz,y) = |l —yll, = (Clei—wl)r {, metric
Definition 9 (X, d) can be embedded into (Y, () if there exists a mapping ¢ : X — Y

which satisfies Y,y : l(p(x), o(y)) = d(x,y).

Definition 10 (X, d) can be embedded into (Y, () with distortion ¢ if there exists a
mapping ¢ : X — Y which satisfies Va,y : d(x,y) < Up(x),o(y)) < cd(x,y).

The following are very natural and central questions regarding the embedding of
metrics.

ISIT-¢,: Given a finite metric space (X, d), can it be embedded into (R",¢,) for
some n?

EMBED-¢,: Given a finite metric space (X,d) and ¢ > 1, find an embedding of
(X,d) into (R",(,) with distortion at most ¢ for some n.

As we will see in the following theorems, the complexity of these questions depend
critically on the metric themselves.

Theorem 16 Any (X,d) can be embedded into (R™, () where n = |X|. (Thus, the
answer to ISIT-l, is always “yes”.)

Proof: We define a coordinate for each point z € X. Let d(x,z) be the z
coordinate of x. Then,

loo((2),(y)) = max|d(z, z) — d(y, z)| = d(z,y),

z€X

because of the triangle inequality. O

Approx-40

Theorem 17 ISIT-ly € P. (i.e., ISIT-ly can be answered in polynomial time.)

Proof: Assume that there exists an embedding of {1,2,... ,n} into {v; = 0,v,,...
Consider one such embedding. Then,

d*(i,7) = |lvi = v;|]* = (vi = vj)(vi — vj) = v = 207 - v; + v},
But v} = d*(1,7) and v} = d*(1, j) which means that,

d*(1,4) + d*(1,7) — d*(4, 5
ooy = P PG = G)

2

We now construct M = (m;;) where,

dz(lvl) + dz(lvj) _ dz(lvj)
mg; = .

2

Hence if M is not positive semi-definite then there is no embedding into ;. If M is
positive semidefinite then we carry out a Cholesky decomposition on M to express
M as M = VVT. From the rows of V we can obtain an embedding into (R", {,). O

Theorem 18 [SIT-l; is NP-complete.

This theorem is given without proof. The reduction is from MAX CUT, since as we
will see later there is a very close relationship between [j-embeddable metrics and
cuts. We also omit the proof of the following theorem.

Theorem 19 Let X CR". (X,{z) can be embedded into (R™, (1) for some m.

The converse of this theorem is not true as can be seen from the metric space

({(070)7 (_170)7 (170)7 (07 1)}7£1)'

8.1 Reducing multicommodity flow/cut questions to embed-
ding questions

In this section, we relate o* and 3* through the use of metrics.
Claim 20

min Z(x,y)EE uab’yg(x? y) ‘

B =
ly-embeddable metrics (V, () Zf:l fil(si,ts)

Proof:

Approx-41

(>) Given S, let
o ifxgS
('Q(x)_{l itezes.

Let ¢ be the ¢4 metric on the line, i.e. {(a,b) = |a — b|. Then,

u(d(8)) = X uayllz,y)

(z,y)eE
k
f(s) = Z fil(si)

since {(x,y) = 1 if and only if x is separated from y by S and 0 otherwise.

(<) We can view any {; embeddable metric ¢ as a combination of cuts. See figure 11

for the 2-dimensional case.

o2
4(1,3,4)
o4
3(1,3)
o3
(1)
ol
(1) (1,2 5(1,2,3)

Figure 11: Viewing an {;-metric as a combination of cuts.

For any set S define a metric 15 by,

1 if z,y are separated by S
ls = .
0 otherwise.

Then we can write (as,

lz,y) = Z ails (z,y),

where the «;’s are nonnegative. Hence,

Y (ew)EE uzyl(2,y) Y au(6(5i)) . U(‘S(S))‘

> min

S fil(sot) Tiaif(Si) TS f(9)

Approx-42

Claim 21

* . Z(x,y)EE ul’yd(x7 y)
o = min
(so-embeddable metrics (V,d) 2 fid(si,t:)

Note that by theorem 16 we actually minimize over all metrics.

Proof:

(<) For any metric d let the volume of an edge (x,y) be uy,d(x,y). The total volume
of the graph is 30, ,)ep Uzyd(, y). If we send a fraction a of the demand then the
amount of volume that we use is at least a3, fid(s;,t;). Hence a ¥, fid(s;,t;) <

Z(x,y)EE ul’yd(x7 y)

(>) We use the strong duality of linear programming. a* can be formulated as a
linear program in several different ways. Here we use a formulation which works
well for the purpose of this proof although it is quite impractical. Enumerate

the paths from s; to t;, let P;; be the jth such path and let z;; be the flow on
P;;. The linear program corresponding to multicommodity flow is,

Max «

subject to:

Oéfi—Zl'ijSO iE{l,...,k}
J
Z Z xijgue GEE

© jie€F;;
a>0
l’ij Z 0

The dual of this linear program is:

Min Z Ul
eel
subject to:

k

> fihi>1

=1

Z ge - hz Z 0 \V/Z,]
SEPU

h; >0

l.>0

The second constraint in the dual implies that h; is at most the shortest path
length between s; and ¢; with respect to (.. By strong duality if ¢ is an optimum

Approx-43

solution to the dual then,

o A— Zueﬁe

€l
< ZeeE uele

T X fik

- S (ijyer wisd(i, J)
B Zf:l fid(s:, ;) 7

where d(a, b) represents the shortest path length with respect to (.. The first

inequality holds because 32 | fih; is constrained to be at least 1.

4

Linial, London, and Rabinovitch and Aumann and Rabani use the following strat-
egy to bound g—: and approximate the minimum multicommodity cut.

1. Using linear programming, find o* and the corresponding metric d as given in
claim 21.

2. Embed d into (R™, ¢1) with distortion ¢. Let ¢ be the resulting metric.

By claim 20 this shows that g—: < ¢ since,

Cey)en Uayl(T,y) - €Y (ay)eE Yayd(T,Y) ~ ea
Yy fil(sict) T Y fud(sist)

In order to approximate the minimum multicommodity cut, we can use the proof of

pr <

claim 20 to decompose ¢ into cuts. If S is the best cut among them then,

W(5(5) _ Loper tal(r.9)
f(S) = SR fil(sit)

Our remaining two questions are:

e How do we get an embedding of d into {7 Equivalently, how can we embed /.,
into /.

e What is ¢?

8.2 Embedding metrics into (;

The following theorem is due to Bourgain.

Theorem 22 For all metrics d on n points, there exists an embedding of d into (4
which satisfies:
d(z,y) < [|lz —yl[r < O(logn)d(z,y).

Approx-44

Proof: Let k range over {1,2,4,8,... .272} where p = |logn|. Hence we
have p + 1 = O(logn) different values for k. Now choose ny sets of size k. At first

take all sets of size k, i.e., n; = (Z) Introduce a coordinate for every such set. This

implies that points are mapped into a space of dimension }-7_qny < 2". For a set A
of size k the corresponding coordinate of a point x is,

ad(z, A)
ng
where d(x, A) = min,ca d(x, z) and « is a constant which we shall determine later.
Suppose that d(x, A) = d(x,s) and d(y, A) = d(y,t), where s and ¢ are in A. Then,
d(l‘, A) - d(yv A) = d(l‘, S) - d(yvt) < d(l’,t) - d(yvt) < d(l‘, y)‘

Exchanging the roles of & and y, we deduce that |d(x, A) —d(y, A)| < d(x,y). Hence,

e —ylli = 3 ——l|d(x, A) — d(y, A)|

4 4]
< O‘Zﬁd(‘%y)
= a(p+1)d(z,y)
= O(logn)d(z,y).

We now want to prove that || — y||1 > d(x,y). Fix two points x and y and define,
B(a,r) = {z:d(x,z) <r},
B(z,r) = {z:d(z,z)<r},
po = 07
pe = inf{r:|Bla,r)| = 2", |B(y.r)| = 2'}.

Let ¢ be the least index such that p, > @. Redefine p, so that it is equal to @.

Observe that for all ¢ either |B(z, p;)| < 2° or |B(y,p:)| < 2. Since B(z,pi—1) N
B(y, pi—1) = 0 we have 2714271 <n = (< p. Now fix k = 27 where p—1 > j > p—/(
and let t = p — j (thus, 1 <t <). By our observation we can assume without loss
of generality that |B(x,p;)| < 2!. Let A be a set of size k and consider the following
two conditions.

1. AN B(z,p:) = 0.
2. AN B(y, pi1) # 0.

If 1. and 2. hold then d(x, A) > p; and d(y, A) < pi—1 and so |d(x, A) — d(y, A)| >
pt — pi—1. Let

Ri ={A:|A| =k and A satisfies conditions 1. and 2.}

Approx-45

Lemma 23 For some constant 3 > 1 (independent of k), there are at least %k sets
of size k which satisfy conditions 1. and 2, i.e. |Ry| > =

From this lemma we derive,

lz =yl = Z Z—Idl‘A d(y, A)]

j=p—£,k=27 Ry
p—1

ne «
> Z 5 (Pp J Pp—j—l)
7=p—4L,k=27 Tk
p—1
o
= 3 (Pp—j - Pp—j—l)
ﬂj:p—f
o
g
o
= —d

Hence if we choose o = 43 then we have ||z — y||1 > d(x,y). We now have to prove
lemma 23.

Proof of lemma 23: Since |B(w,p/)| < 2%, |B(y,pi—1)] > 277! and we are
considering all sets of size k the following is a restatement of the lemma: Given
disjoint sets P and Q with @« = |P| < 2" and b = |Q] > 2'~!, if F is the event that

a uniformly selected A misses P and intersects () then Pr[F] > % We calculate this
probability as follows:
PI’[E] _ (nka) B (” Z b)
(+)

 (m=a)ln—k)! (n—a—0)(n—Fk)!

T (n—a—k)n! B (n—a—>b—Fk)n!

B n—an—a—1 n—a—*Fk+1

- n n—1 n—k+1

n—a—bn—a—>b—1 n—a—b—Fk+1
n n—1 n—k+1

= (=) 0=55) (=) -
L

As an approximation (this can be made formal), we replace (1 — #) by e=*/", and

(1- “""b) by e~ (@+0/7 Thus,

bk

0 £ibL>en(1—e_7).

Pr[Fl|~e™n —e

Approx-46

This for example shows that if a, b and k are all \/n then this probability is a constant,
which may seem a bit paradoxical. Using our bounds on a and b, we get

bk

Pr[F] =~ e~ (1 — e~ n) > e_2tT2J (1 — e‘%)
= 6_% (1 — 6_$) > et (1 — e_%) .

We now choose § =~ (6_1 (1 — e‘i))_l and the proof is complete. g
Bourgain’s proof is not quite algorithmic since the dimension is exponential.
Linial, London and Rabinovitch just sample uniformly with ny = O(logn) and show
that with high probability the embedding has the required properties. This follows
from a Chernoff bound.
We have thus shown that the distortion ¢ can be chosen to be O(logn). We can
do even better by proving the following variant to Bourguain’s theorem.

Theorem 24 Let d be a metric on a set V of n points. Suppose that T C V and
|T'| = k. Then there exists an embedding of d into (1 which satisfies:

|z = ylls < O(log k)d(x,y) Va,y€ V.
|z =yl > d(z,y) Vo, yeT.

In order to prove this theorem we restrict the metric to 1" and then embed the
restricted metric. If we look at the entire vertex set V' then the first part of the
original proof still works.

This new theorem is enough to show that % < O(log k) and to approximate the
multicommodity cut to within O(log k). This result is best possible in the sense that
we can have g—: = O(log k).

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification
and hardness of approximation problems. In Proceedings of the 33rd Annual
Symposium on Foundations of Computer Science, pages 14-23, 1992.

[2] S. Arora and S. Safra. Probabilistic checking of proofs. In Proceedings of the
33rd Annual Symposium on Foundations of Computer Science, pages 2—13, 1992.

[3] Y. Aumann and Y. Rabani. An O(log k) approximate min-cut max-flow theorem
and approximation algorithm. Manuscript, 1994.

[4] R. Bar-Yehuda and S. Even. A linear time approximation algorithm for the
weighted vertex cover problem. Journal of Algorithms, 2:198-203, 1981.

Approx-47

[5]

[10]

[11]

[15]

[16]

M. Bellare and M. Sudan. Improved non-approximability results. In Proceedings
of the 26th Annual ACM Symposium on Theory of Computing, pages 184-193,
1994.

N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical Report 388, Graduate School of Industrial Administration,
Carnegie Mellon University, Pittsburgh, PA, 1976.

W. F. de la Vega and G. S. Luecker. Bin packing can be solved within (1 + ¢) in
linear time. Combinatorica, 1(4), 1981.

J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal

of Research of the National Bureau of Standards B, 69B:125-130, 1965.

R. Fagin. Generalized first-order spectra, and polynomial-time recognizable sets.
In R. Karp, editor, Complezxity of Computations. AMS, 1974.

H. N. Gabow. Data structures for weighted matching and nearest common ances-
tors with linking. In Proceedings of the 1st ACM-SIAM Symposium on Discrete
Algorithms, pages 434—443, 1990.

H. N. Gabow, M. X. Goemans, and D. P. Williamson. An efficient approxima-
tion algorithm for the survivable network design problem. In Proceedings of the

Third MPS Conference on Integer Programming and Combinatorial Optimiza-
tion, pages 5774, 1993.

H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general graph
matching problems. Technical Report CU-CS-432-89, University of Colorado,
Boulder, 1989.

M. X. Goemans and D. P. Williamson. A general approximation technique for
constrained forest problems. In Proceedings of the 3rd Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 307-316, 1992.

M. X. Goemans and D. P. Williamson. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming.
In Proceedings of the 26th Annual ACM Symposium on Theory of Computing,
pages 422-431, 1994.

A. Haken and M. Luby. Steepest descent can take exponential time for symmetric
connection networks. Complex Systems, 2:191-196, 1988.

D. Hochbaum. Approximation algorithms for set covering and vertex cover prob-

lems. SIAM Journal on Computing, 11:555-556, 1982.

Approx-48

[17]

[18]

[19]

[20]

[21]

[22]
23]

[24]

D. Hochbaum and D. Shmoys. Using dual approximation algorithms for schedul-
ing problems: theoretical and practical results. Journal of the ACM, 34(1), Jan.
1987.

N. Karmarkar and R. Karp. An efficient approximation scheme for the one-
dimensional bin-packing problem. In Proceedings of the 23rd Annual Symposium
on Foundations of Computer Science, 1982.

T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform
multicommodity flow problems with applications to approximation algorithms.
In Proceedings of the 29th Annual Symposium on Foundations of Computer Sci-
ence, pages 422-431, 1988.

N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of
its algorithmic applications. In Proceedings of the 35th Annual Symposium on
Foundations of Computer Science, 1994.

C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences, 43:425-440, 1991.

S. Poljak. Integer linear programs and local search for max-cut. Preprint, 1993.

P. Raghavan. Probabilistic construction of deterministic algorithms: approxi-
mating packing integer programs. Journal of Computer and System Sciences,

37:130-143, 1988.

P. Raghavan and C. D. Thompson. Randomized rounding: a technique for
provably good algorithms and algorithmic proofs. Combinatorica, 7:365 — 374,
1987.

Approx-49

Approx-50

