
Mathematics 18.337

(Cross listed as 18.337/6.338 in 1997)

Parallel Scienti�c Computing

Spring 1996

Lecturer: Alan Edelman1

MIT

1Department of Mathematics and Laboratory for Computer Science. Room 2-380, Mas-

sachusetts Institute of Technology, Cambridge, MA 02139, Email: edelman@math.mit.edu,

http://theory.lcs.mit.edu/~edelman

ii Math 18.337, Spring 1996

Preface iii

Preface

These lecture notes (under development and constant revision, like the �eld itself) have been
used at MIT in a graduate course �rst o�ered by Alan Edelman and Shang-Hua Teng during the
spring of 1994 (MIT 18.337, Parallel Scienti�c Computing). This �rst class had about forty students
from a variety of disciplines which include Applied Mathematics, Computer Science, Mechanical
Engineering, Chemical Engineering, Aeronautics and Aerospace, and Applied Physics. Because of
the diverse backgrounds of the students, the course, by necessity, was designed to be of interest to
engineers, computer scientists, and applied mathematicians.

Our course covers a mixture of material that we feel students should be exposed to. Our primary
focus is on modern numerical algorithms for scienti�c computing, and also on the historical trends
in architectures. At the same time, we have always felt that students (and the professors) must
su�er through hands-on experience with modern parallel machines. Some students enjoy �ghting
new machines; others scream and complain. This is the reality of the subject. In 1995, the course
was taught again by Alan Edelman with an additional emphasis on the use of portable parallel
software tools. The sad truth was that there were not yet enough fully developed tools to be used.
The situation is currently improving.

During 1994 and 1995 our students programmed the 128 node Connection Machine CM5. This
machine was the 35th most powerful computer in the world in 1994, then the very same machine
was the 74th most powerful machine in the spring of 1995. At the time of writing, December 1995,
this machine has sunk to position 136. The fastest machine in the world is currently in Japan. In
the upcoming 1996 course we plan to use a new machine.

In addition to coauthors Shang-Hua Teng and Robert Schreiber, I would like to thank our
numerous students who have written and commented on these notes and have also prepared many of
the diagrams. We also thank the students fromMinnesota SCIC 8001 and the summer course held at
MIT, Summer 6.50s (also taught by Rob Schreiber) for all of their valuable suggestions. These notes
will probably evolve into a book which will eventually be coauthored by Rob Schreiber and Shang-
Hua Teng. Meanwhile, we are fully aware that the 1996 notes are incomplete, contain mathematical
and grammatical errors, and do not cover everything we wish. They are an improvement over the
1995 notes, but not as good as the 1997 notes will be. I view these notes as a basis on which to
improve, not as a completed book.

It has been our experience that some students of pure mathematics and theoretical computer
science are a bit fearful of programming real parallel machines. Students of engineering and com-
puter science are sometimes intimidated by mathematics. The most successful students understand
that computing is not \dirty" and mathematical knowledge is not \scary" or \useless," but both
require hard work and maturity to master. The good news is that there are many jobs both in the
industrial and academic sectors for experts in the �eld!

A good course should have a good theme. We try to emphasize the fundamental algorithmic
ideas and machine design principles. We have seen computer vendors come and go, but we believe
that the mathematical, algorithmic, and numerical ideas discussed in these notes provide a solid
foundation that will last for many years.

iv Math 18.337, Spring 1996

Contents

1 Introduction 1

1.1 A General Look at the Industry . 1

1.2 The Web as a Tool for Tracking Machines . 3

1.3 Scienti�c Computing and High Performance Computing 3

1.4 A Natural 3D Problem . 3

1.5 Components of a Parallel System . 4

1.6 Scienti�c Algorithms . 4

1.7 Applications . 5

1.8 History, State-of-Art, and Perspective . 5

1.9 Parallel Computing: An Example . 6

1.10 Exercises . 7

I Mathematical Foundations 9

2 Linear Algebra 11

2.1 Linear Algebra . 11

3 Function Expansions 13

3.1 Function Representation and Expansions . 13

3.2 A close look at shifts and
ips . 14

3.3 Harmonic expansions in 3-dimensions . 14

3.4 Exercises . 14

4 Graph Theory 17

5 Elementary Geometry 19

6 Probability Theory 21

II Parallelism 22

7 Parallel Machines 23

7.1 Characteristics of Parallel Computers . 23

7.1.1 SIMD v. MIMD . 25

v

vi Math 18.337, Spring 1996

7.1.2 Programming Model . 25
7.1.3 Machine Topology . 26
7.1.4 Homogeneous and heterogeneous machines 27

7.2 Architecture of the CM-5 . 29

8 Parallel Programming 31

8.1 Programming style . 31
8.2 Data Parallel Programming in High Performance Fortran 32

8.2.1 Parallelism . 35
8.2.2 Intrinsics . 35

8.2.3 Extended data parallelism . 36
8.3 Message Passing . 36

8.3.1 Sending and receiving . 37
8.3.2 Tags and communicators . 39
8.3.3 Who am I? . 40

8.3.4 Performance, and tolerance . 41
8.3.5 Who's got the
oor? . 42

8.4 Message Passing in PVM . 44
8.4.1 PVM Basics . 44

8.5 More on Message Passing . 46

8.5.1 Nomenclature . 46
8.5.2 The Development of Message Passing . 47
8.5.3 Machine Characteristics . 47
8.5.4 CM-5 /CMOST Environment: . 48

8.6 Mechanics of Message Passing : . 48

8.6.1 Sending and receiving . 48
8.6.2 Bidirectional transfers: . 50
8.6.3 Adding send side bu�ering: . 50
8.6.4 'One touch' non blocking messaging . 50
8.6.5 Optimizing for repetitive communications patterns: channels. 51

8.6.6 Observations on standard message passing: 52
8.7 Non-traditional messaging: Active Messages and Ports 52

8.7.1 Active Messages: . 53
8.7.2 Observations on Active messages: . 53
8.7.3 Rports . 54
8.7.4 Observations on Rports: . 55

8.7.5 Miscellaneous caveats regarding Active Messages and Rports: 55
8.7.6 Conclusions on message passing . 56

9 Modeling Parallel Algorithms 57

10 Primitives 59

10.1 Parallel Pre�x . 59

10.2 Segmented Scan . 61
10.3 Sorting and Selection . 61
10.4 FFT . 63

10.4.1 Data motion . 64
10.4.2 FFT on parallel machines . 65

Preface vii

10.4.3 Exercise . 66

10.5 Matrix Multiplication . 66

10.6 Basic Data Communication Operations . 67

III Multipole Methods 68

11 Particle Methods 69

11.1 Reduce and Broadcast: A function viewpoint . 69

11.2 Particle Methods: An Application . 70

11.3 Outline . 70

11.4 What is N-Body Simulation? . 70

11.5 Examples . 70

11.6 The Basic Algorithm . 71

11.6.1 Finite Di�erence and the Euler Method . 72

11.7 Methods for Force Calculation . 73

11.7.1 Direct force calculation . 73

11.7.2 Potential based calculation . 73

11.7.3 Poisson Methods . 74

11.7.4 Hierarchical methods . 75

11.8 Quadtree (2D) and Octtree (3D) : Data Structures for Canonical Clustering 76

11.9 Barnes-Hut Method (1986) . 77

11.9.1 Approximating potentials . 79

11.10Outline . 80

11.11Introduction . 80

11.12Multipole Algorithm: An Overview . 81

11.13Multipole Expansion . 81

11.14Taylor Expansion . 83

11.15Operation No.1 | SHIFT . 84

11.16Operation No.2 | FLIP . 86

11.17Application on Quad Tree . 87

11.18Expansion from 2-D to 3-D . 89

11.19Parallel Implementation . 90

IV Numerical Linear Algebra 91

12 Numerical Discretization 93

12.1 Mathematical Modeling and Numerical Methods . 93

12.1.1 PDEs for Modeling . 93

12.1.2 Numerical Methods . 94

12.2 Well-Shaped Meshes . 95

12.3 From PDEs to Systems of Linear Equations . 96

12.3.1 Finite Di�erence Approximations . 96

12.3.2 Finite Element Approximations . 97

viii Math 18.337, Spring 1996

13 Dense Linear Algebra 101

13.1 Outline . 101
13.2 Introduction . 101

13.3 Applications . 101
13.4 Records . 102
13.5 Software Libraries . 102
13.6 Software Engineering . 103

14 Sparse Linear Algebra 107

14.1 Cyclic Reduction for Structured Sparse Linear Systems 107

14.2 Sparse Direct Methods . 109
14.2.1 LU Decomposition and Gaussian Elimination 109
14.2.2 Parallel Factorization: the Multifrontal Algorithm 112

14.3 Basic Iterative Methods . 113
14.3.1 Jacobi Method . 114

14.3.2 Gauss-Seidel Method . 114
14.3.3 Splitting Matrix Method . 114
14.3.4 Weighted Splitting Matrix Method . 115

14.4 Red-Black Ordering for parallel Implementation . 115
14.5 Conjugate Gradient Method . 116

14.6 Preconditioning . 116
14.7 Main Issues . 118
14.8 E�cient sparse matrix algorithms . 118

14.8.1 Scalable algorithms . 118
14.8.2 Cholesky factorization . 120

14.8.3 Distributed sparse Cholesky and the model problem 121
14.8.4 Parallel Block-Oriented Sparse Cholesky Factorization 122

14.9 Load balance with cyclic mapping . 122
14.9.1 Empirical Load Balance Results . 122

14.10Heuristic Remapping . 124

14.11Scheduling Local Computations . 126

15 Domain Decomposition for PDE 127

15.1 Geometric Issues . 129
15.1.1 Overlapping vs Non-overlapping regions . 129
15.1.2 Geometric Discretization . 130

15.2 Algorithmic Issues . 130

15.2.1 Schwarz approaches: additive vs multiplicative 131
15.2.2 Substructuring Approaches . 133
15.2.3 Accerlerants . 135

15.3 Theoretical Issues . 136
15.4 A Domain Decomposition Assignment: Decomposing MIT 136

16 Multilevel Methods 139

16.1 Multigrids . 139
16.1.1 The Basic Idea . 139
16.1.2 Restriction and Interpolation . 139
16.1.3 The Multigrid Scheme . 141

Preface ix

V Graph and Geometric Algorithms 142

17 Partitioning and Load Balancing 143

17.1 Motivation from the Parallel Sparse Matrix Vector Multiplication 143

17.2 Separators . 144
17.3 Spectral Partitioning { One way to slice a problem in half 144

17.3.1 Electrical Networks . 144
17.3.2 Laplacian of a Graph . 145

17.3.3 Spectral Partitioning . 146
17.4 Geometric Methods . 148

17.4.1 Geometric Graphs . 153
17.4.2 Geometric Partitioning: Algorithm and Geometric Modeling 154

17.4.3 Other Graphs with small separators . 156
17.4.4 Other Geometric Methods . 157

17.4.5 Partitioning Software . 158

17.5 Load-Balancing N-body Simulation for Non-uniform Particles 158
17.5.1 Hierarchical Methods of Non-uniformly Distributed Particles 158

17.5.2 The Communication Graph for N-Body Simulations 159
17.5.3 Near-Field Graphs . 163

17.5.4 N-body Communication Graphs . 164
17.5.5 Geometric Modeling of N-body Graphs . 164

18 Mesh Generation 165

18.1 How to Describe a Domain? . 166

18.2 Types of Meshes . 167

18.3 Re�nement Methods . 168
18.3.1 Hierarchical Re�nement . 168

18.3.2 Delaunay Triangulation . 169
18.3.3 Delaunay Re�nement . 170

VI Selected Topics 172

19 The Pentium Bug 173

19.1 About These Notes on The Pentium Bug . 173

19.2 The Discovery of The Bug . 173
19.3 The Pentium Bug . 173

19.4 Introduction . 174
19.5 SRT Division . 175

19.6 Understanding why SRT works . 175
19.7 Quotient digit selection on the Pentium . 176

19.8 Analyzing the bug . 179
19.8.1 It is not easy to reach the buggy entry . 179

19.9 The \Send More Money" Puzzle for the Pentium . 181
19.10At least nine steps to failure . 182

x Math 18.337, Spring 1996

19.11Acknowledgement . 183
19.12Conclusions . 183

20 Network Topologies 185

21 Topology Based Parallel Algorithms 187

21.1 Overview . 187
21.2 Interprocessor Communication and the Hypercube Graph 187

21.2.1 The Gray Code and Other Embeddings of the Hypercube 188
21.2.2 Going Beyond Embedded Cycles . 189
21.2.3 Hypercube theory: Unique Edge-Disjoint Hamiltonian Cycles in a Hypercube 190
21.2.4 An Application: Matrix Multiplication on a Grid 191
21.2.5 The Direct N-Body problem on a Hypercube 195
21.2.6 The Hamming Sum . 196
21.2.7 Extending Gray Code-directed Body Movement to Multiple Sets of Bodies . 196
21.2.8 Matrix Multiplication using all Hypercube Wires 198
21.2.9 Matrix Multiplication using the Cartesian Product 198

21.3 References . 198

22 Scalable Algorithms 201
22.1 Scalability, Communication Cost, and Matrix-Vector Product 201

22.1.1 Sparse Matrices . 204
22.1.2 Parallel iterative Solvers . 204

23 Scheduling on Parallel Machines 207

24 Shared Memory Computations 209

25 Scienti�c Libraries 211
25.1 Scienti�c Libraries . 211

Chapter 1

Introduction

This class strives to study that elusive mix of theory and practice so important for understanding
modern scienti�c computing. We try to cover it all, from the engineering aspects of computer science
(parallel architectures, vendors, parallel languages, and tools) to the mathematical understanding
of numerical algorithms, and also certain aspects from theoretical computer science.

1.1 A General Look at the Industry

This is a science course at MIT, but somehow it seems appropriate to wonder how special purpose
parallel computation really is. Maybe this sort of analysis more properly belongs in the introduction
to a business school case study.

Is it correct to conclude that there will never be an enormous market for parallel computers? We
are certain that parallel computers will be everywhere. The editorial below may not immediately
substantiate my conclusion, but it does illustrate the famous quote (Kipling?) that many people
look at what is and ask why, while it is wiser to look at what isn't and ask why not.

Editorial on markets for technology: We probably all have our favorite examples.
How many of us have heard that there will never be a large market for computers. Only
\nerds" would have a computer in the living room. I for one have systematically heard
that 1) only nerds would communicate by electronic mail, 2) French people would never
embrace electronic mail, and 3) lawyers would never accept electronic mail. I suspect
that 100 years ago people might have thought that nobody would want a telephone in
their living rooms. The surest way to be wrong is to reason that nobody is buying it
now hence nobody will ever buy it.

Some books might start with a machine and a programming language. This is a mistake. The
machines have been changing and the programming languages are maturing, but still in 1996 the
subject is in a state of
ux. Many machines are still not as usable as people would want. Quite
likely, too many companies have been trying to create their own proprietary products.

Editorial on proprietary products: Look at the fast evolving world wide web. For
years we wondered why we were all content to live with ftp. One of us used to ask
why my bank account balance was unavailable from my workstation. The other now
wonders why his telephone is not an integrated part of his workstation. Somehow, just
now, the infrastructure and the public's perception is right for the internet to catch on,
not only for techies, but for everybody.

1

2 Math 18.337, Spring 1996

However, an interesting phenomenon is developing. Various internet providers are
attempting to be the sole owners of the internet. They are learning the hard way that
attempts to own the market are doomed to failure. The realists will understand that
the web is public, and a common infrastructure bene�ts all. Attempts to dominate the
internet are doomed to failure. Bill Gates, beware!

Parallel computers do not yet have a common infrastructure, but things are improving. Never-
theless parallel machines continue to be more painful to use than serial machines.

Editorial: What do scientists and students with scienti�c applications want

on a parallel machine? People get religious about programming languages, and
among the students, even the engineering students, C is growing in importance over
Fortran. Nevertheless if we had to pick four things that would make a large number of
people very happy we would have to list

� A reliable High Performance Fortran Compiler

� No di�culties using the Message Passing Interface MPI

� A high quality portable common debugging and visualizing mechanism such as
Thinking Machines Corporation's Prism product. It is crucial that every machine
support the same product.

� A non-proprietary performance monitoring interface whose timings one can trust
and allow for predictions. Vendors just do not seem to be able to solve the engi-
neering question of providing the user with the answer to the question of just how
long did the program take to execute.

[To be written: discussions about parallel libraries]

Which speci�c machines did we use in our class? Last year (1995) we used MIT's 128 processor
CM-5, and a 12 processor SP-2. This year we expect to use the SP-2 and some Silicon Graphics
machines currently located at Boston University. If we are lucky, the MIT lab for Computer Science
will receive a donation of an interesting symmetric multiprocessor that we will use in our class.

Most of you may have either seen the 1993 movie or read the 1990 Michael Crichton novel
Jurassic Park. The 1993 movie shows the CM-5 in the background of the control center and even
mentions the Thinking Machines Computer, but you could easily miss it if you do not pay attention.
The older novel has the dinosaur theme park controlled by a Cray vector supercomputer. Many in
this �eld believe that the Cray belonged on the dinosaur side of the Jurassic Park fence!

In fact, in 1996, both vector supercomputers and proprietary, custom-engineered parallel com-
puters may be on their way to extinction. The investments required to keep pace with evolving
hardware technology can't be justi�ed by the size of the market. At Cray, for example, the vector
supercomputer (the T90) at 60 giga
ops and 8 gigabytes, is overshadowed by the new parallel
machine (the T3E), based on the DEC alpha chip, which o�ers up to 1.2 tera
ops and 4 terabytes.
Kendall Square Research designed its machine from the ground up in order to exploit novel ideas
about caching and memory architecture: they are now out of business. Tera Computer Company,
which has followed the same business model as KSR, will very likely su�er the same fate. And the
�rst big parallel computer company, Thinking Machines Corporation, once located on expensive
Cambridge real estate near MIT, has trimmed itself, moved to less-expensive Bedford, and has
emerged from bankruptcy protection. Their latest announcement has them teaming up with Sun
Microsystems for software for the next generation of machines.

Chapter 1 Introduction 3

1.2 The Web as a Tool for Tracking Machines

For the latest info on the parallel machine market, the World Wide Web is unmatched. The ad-
dress http://www.cs.cmu.edu/~scandal/vendors.html currently (January 1996) points to Alta
Technology. Chen Systems, Convex Computer Corporation, Cray Research, Digital Equipment
Corporation, Fujitsu, Hewlett-Packard, Hitachi, IBM, ICE, Intel, Meiko, NEC, Parsytec, Siemens
Nixdorf, TERA Computer, and Thinking Machines Corporation.

1.3 Scienti�c Computing and High Performance Computing

There is no formal de�nition of parallel scienti�c computing and we do not intend to give one here.
However, the goal of parallel scienti�c computing is very well de�ned, that is, to �nd faster solutions
to larger and more complex problems. Parallel scienti�c computing is a highly interdisciplinary area
ranging from numerical analysis and algorithm design to programming languages, computer archi-
tectures, software, and real applications. The participants include engineers, computer scientists,
applied mathematicians, and physicists, and this team is growing.

High-performance parallel computers have become a fundamental tool for computation intensive
tasks in real applications. Computer architecture is driven by technology. The advance of very
large scale integration (VLSI) makes it possible to develop faster computers that have smaller
physical volume. The new technology makes feasible massive parallelism. To sustain increases in
computation demands, the industry must embrace multiprocessing in almost all computers, either
in the format of tightly coupled multiprocessor supercomputers, or loosely coupled workstation
clusters.

Scienti�c numerical computing plays a critical role in the development of high-performance
parallel computers. It provides a class of problems that are so demanding of computational cy-
cles, a class of problems that do not require completely \general purpose" machine, yet are rich
in content and in real applications, and a class of problems that give raise challenging scien-
ti�c and engineering activities ranging from mathematical modeling, algorithmic design to soft-
ware/hardware/architecture development. Scienti�c applications were the main motivation for the
development of supercomputers in the past decade. Now, parallel machines have begun to �nd
more applications in symbolic computing, large-scale databases, and multimedia environments.

Conversely, parallel computers are the most important platforms for scienti�c simulation. To
perform meaningful simulation within a reasonable time-span computational scientists have to make
trade-o�s between accuracy, time, and space. The larger memory a machine has, the more powerful
it is, the less restriction and simpli�cation we need to impose on the numerical approximation of
real problems and their physical domains, and the more accurately we can solve real problems.

1.4 A Natural 3D Problem

The most challenging problems in parallel scienti�c computing are those in three or higher dimen-
sions. One simple reason is that problems in higher dimensions are of a very large scale.

Parallel scienti�c computing itself is a three dimensional discipline whose three major dimensions
are

x = scienti�c and engineering applications

y = mathematical algorithms

4 Math 18.337, Spring 1996

z = parallel architecture and programming

Our goal in the course is to provide a reliable road map to the projection of our �eld into the
(y; z) plane!

1.5 Components of a Parallel System

The components of a parallel system are not just its hardware, architecture, and network topology.
They include its operating system, parallel languages and their compilers, scienti�c libraries and
other software tools.

Most parallel languages are de�ned by adding parallel extensions to well-established sequential
languages, such as C and Fortran. Such extensions allow user to specify various levels of parallelism
in an application program, to de�ne and manipulate parallel data structures, and to specify message
passing among parallel computing units.

Compilation has become more important for parallel systems. The purpose of a compiler is
not just to transform a parallel program in a high-level description into machine-level code. The
role of compiler optimization is more important. We will always have discussions about: Are we
developing methods and algorithms for a parallel machine or are we designing parallel machines for
algorithm and applications? Compiler are meant to bridge the gap between algorithm design and
machine architectures. Extension of compiler techniques to run time libraries will further reduce
users' concern in parallel programming.

Software libraries are important tools in the use of computers. The purpose of libraries is
to enhance the productivity by providing preprogrammed functions and procedures. Software
libraries provide even higher level support to programmers than high-level languages. Parallel
scienti�c libraries embody expert knowledge of computer architectures, compilers, operating sys-
tems, numerical analysis, parallel data structures, and algorithms. They systematically choose a
set of basic functions and parallel data structures, and provide highly optimized routines for these
functions that carefully consider the issues of data allocation, data motion, load balancing, and
numerical stability. Hence scientists and engineers can spend more time and be more focused on
developing e�cient computational methods for their problems. Another goal of scienti�c libraries
is to make parallel programs portable from one parallel machine platform to another. Because of
the lack, until very recently, of non-proprietary parallel programming standards, the development
of portable parallel libraries has lagged far behind the need for them. There is good evidence now,
however, that scienti�c libraries will be made more powerful in the future and will include more
functions for applications to provide a better interface to real applications.

Due to the generality of scienti�c libraries, their functions may be more complex than needed
for a particular application. Hence, they are less e�cient than the best codes that take advantage of
the special structure of the problem. So a programmer needs to learn how to use scienti�c libraries.
A pragmatic suggestion is to use functions available in the scienti�c library to develop the �rst
prototype and then to iteratively �nd the bottleneck in the program and improve the e�ciency.

1.6 Scienti�c Algorithms

The multidisciplinary aspect of scienti�c computing is clearly visible in algorithms for scienti�c
problems. A scienti�c algorithm can be either sequential or parallel. In general, algorithms in
scienti�c software can be classi�ed as graph algorithms, geometric algorithms, and numerical algo-
rithms, and most scienti�c software calls on algorithms of all three types. Scienti�c software also
makes use of advanced data structures and up-to-date user interfaces and graphics.

Chapter 1 Introduction 5

1.7 Applications

Parallel (numerical) methods have been used to solve problems in virtually all areas of science and
engineering:

� Structural analysis and mechanical engineering.

� Computational chemistry and material science

� Computational particle physics

� Computational
uid and plasma dynamics, air and space vehicle design, and space science.

� Environment and Earth science: climate modeling, glaciology, weather forecasting, an ocean
modeling.

� Structure biology and medical imaging, signal processing, drug design

� ECAD and circuit validation

� Economics and �nance

� Optimization, searching and databases

� Oil and gas exploration

1.8 History, State-of-Art, and Perspective

The supercomputer industry started when Cray Research developed the Cray-1, in 1975. The mas-
sively parallel processing (MPP) industry emerged with the introduction of the CM-2 by Thinking
Machines in 1985. The industry is represented by several companies including Cray Research (the
T90 and the T3E), Intel Supercomputer System Division (the Paragon), Thinking Machines Cor-
poration (the CM-5 and the Global), IBM (the SP-2), HP (the Convex Exemplar), MasPar (the
MP-2), Tera (the MTA, which is also the subway system in Boston), and Silicon Graphics (the
PowerChallenge). The MPP industry has received substantial support from the U.S. government.
The US High Performance Computing and Communication program was designed to explore tech-
nologies for building and using such machines. Most MPP installations are at government research
centers (e.g., NASA Ames and Los Alamos) and universities and supercomputer centers (NCSA,
Pittsburgh, MSI, etc).

Achieving high performance for numerical computing for scienti�c applications are the main
goals. Indeed, most of the benchmarks are numeric oriented such as dense linear algebra compu-
tations, as represented by the heated race for the top of Linpack benchmarks between Intel and
Thinking Machines.

High performance parallel computers have begun to play an important role in science and engi-
neering development. At the same time, the vendors of parallel supercomputers have engaged in a
brand of hype unusual in science and engineering. Now that the cold war has ended, the supercom-
puting market in major universities and government centers is close to being saturated, at least for
the moment. (Nevertheless, the U.S. Department of Energy has, this past year, purchased a mas-
sively parallel supercomputer that far exceeds the capacity of any previously built.) The parallel
computing industry is evolving. There are more and more \real" demands from commercial compa-
nies. Hence the cost/e�ciency trade-o� is more relevant. More friendly programming environments

6 Math 18.337, Spring 1996

are desired. Other non-numeric applications such as in large databases, optimization, business and
�nance are in greater demand. And of course the parallel computing industry is more competitive.
Workstation clusters bring new challenges to tightly coupled MPP. The parallel computing �eld
and industry are maturing. The application domain of parallel computing is expanding.

1.9 Parallel Computing: An Example

Here is an example of a problem that one can easily imagine being performed in parallel:

A rudimentary parallel problem: Compute

x1 + x2 + : : :+ xP ;

where xi is a
oating point number and for purposes of exposition, let us assume P is
a power of 2.

Obviously, the sum can be computed in logP (base 2 is understood) steps, simply by adding
neighboring pairs recursively. (The algorithm has also been called pairwise summation and cascade
summation). The data
ow in this computation can be thought of as a binary tree.

(Illustrate on tree.)
Nodes represent values, either input or the result of a computation. Edges communicate values

from their de�nition to their uses.
This is an example of what is often known as a reduce operation. We can replace the addition

operation with any associative operator to generalize. (Actually,
oating point addition is not
associative, leading to interesting numerical questions about the best order in which to add numbers.
This is studied by Higham [46, See p. 788].)

There are so many questions though. Howwould you write a program to do this on P processors?
Is it likely that you would want to have such a program on P processors? How would the data (the
xi) get to these processors in the �rst place? Would they be stored there or result from some other
computation? It is far more likely that you would have 10000P numbers on P processors to add.

A correct parallel program is often not an e�cient parallel program. A
aw in a parallel program
that causes it to get the right answer slowly is known as a performance bug. Many beginners will
write a working parallel program, obtain poor performance, and prematurely conclude that either
parallelism is a bad idea, or that it is the machine that they are using which is slow.

What are the sources of performance bugs? We illustrate some of them with this little, admit-
tedly contrived example. For this example, imagine four processors, numbered zero through three,
each with its own private memory, and able to send and receive message to/from the others. As a
simple approximation, assume that the time consumed by a message of size n words is A+ Bn.

Four Bad Parallel Algorithms for Computing 1 + 2 + 3 + � � � + 106 on Four

Processors

1. Load imbalance. One processor has too much to do, and the others sit around
waiting for it. For our problem, we could eliminate all the communication by
having processor zero do all the work; but we won't see any parallel speedup with
this method!

2. Excessive communication.

Processor zero has all the data which is divided into four equally sized parts each
with a quarter of a million numbers. It ships three of the four parts to each of

Chapter 1 Introduction 7

the other processors for proper load balancing. The results are added up on each
processor, and then processor 0 adds the �nal four numbers together.

True, there is a tiny bit of load imbalance here, since processor zero does those few
last additions. But that is nothing compared with the cost it incurs in shipping out
the data to the other processors. In order to get that data out onto the network,
it incurs a large cost that does not drop with the addition of more processors. (In
fact, since the number of messages it sends grows like the number of processors,
the time spent in the initial communication will actually increase.)

3. A sequential bottleneck. Let's assume the data are initially spread out among the
processors; processor zero has the numbers 1 through 250; 000, etc. Assume that
the owner of i will add it to the running total. So there will be no load imbalance.
But assume, further, that we are constrained to add the numbers in their original
order! (Sounds silly when adding, but other algorithms require exactly such a
constraint.) Thus, processor one may not begin its work until it receives the sum
0+ 1 + � � �+ 250; 000 from processor zero!

We are thus requiring a sequential computation: our binary summation tree is
maximally unbalanced, and has height 1; 000; 000. It is always useful to know
the critical path { the length of the longest path in the data
ow graph { of the
computation being parallelized. If it is excessive, change the algorithm!

4. A scheduling problem. For this kind of performance bug, we get a better illustration
by changing the problem. Let there be a 1000�1000matrix, distributed to the four
processors by columns, so that processor zero owns all of columns 1 through 250.
The job is to add the columns, producing a vector of length 1000. The constraint,
which makes this problem interesting, is that within each row we are required to
do the addition left-to-right! So the computation in each matrix row is sequential,
and the parallelism comes from the fact that there are 1000 independent row sums
to be computed.

The bad algorithm has processor zero do all of its row sums, then send them
all in a message of 1000 words to processor one, etc. We have chosen to defer
sending the sum of the �rst rows until we compute the sum of the last rows,
thereby sequentializing an otherwise parallel task. The right idea is to schedule
high-priority tasks (the sending of sums to the next processor) sooner than lower
priority tasks. The fact of the latency term A in message cost makes the optimum
scheduling here tricky { single-word messages may not be ideal either.

1.10 Exercises

1. Compute the sum of 1 through 1; 000; 000 using HPF. This amounts to a \hello world" pro-
gram on whichever machine you are using. We are not currently aware of any free distributions
of HPF for workstations, so your instructor will have to suggest a computer to use.

2. Download MPI to your machine and compute the sum of 1 through 1; 000; 000 us-
ing C or Fortran with MPI. A number of MPI implementations may be found at
http://www.mcs.anl.gov/Projects/mpi/implementations.html The easy to follow ten
step quick start on http://www.mcs.anl.gov/mpi/mpiinstall/node1.html#Node1 worked
very easily on the MIT mathematics department's SUN network.

8 Math 18.337, Spring 1996

3. In HPF, generate 1; 000; 000 real random numbers and sort them. (Use RANDOM_NUMBER and
GRADE_UP.

4. (Extra Credit) Do the same in C or Fortran with MPI.

5. Set up the excessive communication situation described as the second bad parallel algorithm.
Place the numbers 1 through one million in a vector on one processor. Using four processors
see how quickly you can get the sum of the numbers 1 through one million.

Chapter 1 Introduction 9

I Mathematical Foundations

Modeling and solving complex scienti�c problems requires a large class of mathematical machin-
ery. In this part of the book, we will review mathematical basics and notations in linear algebra,
function expansions, and probability theory. We will also present some materials in graph theory
and geometry that are important for the design and analysis of scienti�c algorithms.

In our course, we do not formally review this material, but we place these sections prominantly
in the front of the book (rather than in an appendix, say) so as to emphasize the importance of
mathematical foundations.

10 Math 18.337, Spring 1996

Chapter 2

Linear Algebra

2.1 Linear Algebra

Linear algebraists often like to believe that every scienti�c application, once discretized, becomes
a linear algebra problem. Though many applications have no linear algebra at all in them, there
is no question that linear algebra at least covers a very large fractions of applications. Here we
intend to review the most important ideas of the �eld that are needed to follow the lecture notes.
Meanwhile, a good text such as the elementary treatment by Strang or the numerical coverage by
Golub and van Loan [40] should be consulted.

Experience has tuaght me that the �rst idea that students forget is the concept of eigenvalues.
An eigenvalue is simply a number � such that Ax = �x. If a matrix has a full set of eigenvectors ,
this can be expressed with the notation AX = X�, where the columns of X are the eigenvectors,
and the diagonal matrix � contains the eigenvalues.

Once linear algebra was taught more abstractly than it usually is now. In a classical course,
a matrix A is a linear operator on a vector space. Now it is usually an n � n array of numbers.
For the largest applications, the old fashioned way of thinking may be more the right way. It is
probably best to think of a matrix A as a black-box whose input x (call it a vector if you like) gets
transformed into the output Ax. The student who understands that polynomials form a vector
space and di�erentiation is a perfectly legitimate linear operator (with determinant 0) understands
the concept.

For more medium sized problems, the n by n array point of view makes sense, and then this
black box may be thought of as \matrix{vector" muliplication in the usual component sense.

11

12 Math 18.337, Spring 1996

Chapter 3

Function Expansions

3.1 Function Representation and Expansions

How should we represent functions? Much of the history of mathematics or at least what we now
call analysis might be traced to this very question.

We hardly ever think of a power series as a de�nition of a function, but it is certainly true thatP1
k=0 z

k=k! de�nes the exponential function. Even
P1

k=0 z
k de�nes 1=(1 � z), and although the

power series has no meaning for jzj > 1, we somehow feel that the power series is somehow good
enough to capture the function f(z) = 1=(1 � z) everywhere, even though technically the series
does not converge for jzj > 1.

So what is a power series? From the calculus point of view, it is always presented as a represen-
tation of a function which lets you plug in a number z, and if z is within this radius of convergence
the function seems well de�ned. Another point of view is that a power series is a linear combination
of the \basis" functions f(z) = zk , k = 0; : : : ;1.

There is yet another point of view which is not considered nearly as often. Any function can be
interpolated with an nth degree polynomial given values at n+1 points. (I always like to remember
the n = 1 story that \two points determine a line.") If those n + 1 points all coalesce into the
same point, the polynomial is the leading segment of the Taylor series. Therefore if we can imagine
interpolating a function using \in�nitely" many points at the origin, we get the Taylor or power
series. A Taylor series about another point zc has the form

f(z) =
1X
k=0

ak(z � zc)
k

Another basis for functions that is natural may be derived by taking one generating function
and using all of its derivatives as the basis. For example if we start with f(z) = 1=z, then we
obtain series expansions of the form

P1
k=0 ak=z

k. This is called a multipole expansion centered at
z = 0. More generally, if our generator is 1=(z�zc), then we have the general form of the multipole
expansion of a function f(z)

f(z) =
1X
k=1

ak
1

(z � zc)k
:

If the generator is log(z � zc) then of course the multipole expansion has one more term:

f(z) = a0 log(z � z0) +
1X
k=1

ak
1

(z � zc)k
:

13

14 Math 18.337, Spring 1996

Multipole expansions converge outside of a disk in the complex plane. By contrast, the more
familiar Taylor series converge within a disk.

We can take any function f(z) and write it as a Taylor series about an arbitrary point zc.
Forgetting for a moment what the pure mathematicians might think, let us agree that at least
psychologically, all such Taylor series are just multiple ways of representing the same function.
Also, the same f(z) amy be written as a multipole expansion; each di�erent center zc gives a
di�erent representation with di�erent covergence properties.

If

f(z) =
1X
k=1

ak
1

(z � zc)k
=

1X
k=1

a0k
1

(z � z0c)k
(3.1)

then the linear operator that takes the ak to the a
0
k is known as a shift. Similarly if

f(z) =
1X
k=0

ak(z � zc)
k =

1X
k=0

a0k(z � z0c)
k (3.2)

this operator is also known as a shift. Finally, if

f(z) =
1X
k=1

ak
1

(z � zc)k
=

1X
k=0

a0k(z � z0c)
k (3.3)

then the operator that converts the ak to an a0k is known as a
ip. We will see that multipole
expansions serve the purpose of broadcasting the news about a body to far away locations ef-
�ciently. On the other hand, Taylor expansions serve the purpose of locally computing all the
needed information. The shifts allow the computations to occur on common ground.

3.2 A close look at shifts and
ips

Given �xed values of zc and z0c, the equations (3.1), (3.2), and (3.3) de�ne linear operators from
the in�nite a vector to the in�nite a0 vector.

In a moment we will work out an explicit form for the operators, but mathematics students
should be able to see the linearity from a slightly abstract viewpoint. Ignoring issues of in�nity
and convergence, the operator from a and a0 vectors to formal functions is clearly linear. Since the
zero function has only one formal representation, the map from a to a0 must be linear.

[work out explicit formulas and remove from the particle section]

3.3 Harmonic expansions in 3-dimensions

[This is a specialized optional topic and is usually omitted from the course]

3.4 Exercises

1. For a general derivative series work out the shift formula. Are you surprised?

2. Work out the
ip formula from a general derivative series to a general integral series.

3. Work out the shift formula from a general integral series to another integral series.

Chapter 3 Function Expansions 15

4. Numerically shift and
ip the �eld due to one charge. Compare the absolute and relative
errors with that of the true shifted or
ipped �eld. Di�cult: Derive a theoretical estimate
for the di�erence and compare with what is seen.

16 Math 18.337, Spring 1996

Chapter 4

Graph Theory

Ask a student from an engineering discipline what a graph is. The student will probably right away
say something about the plot of a function with axes and a curve that represents the graph of a
function.

If you ask a computer scientist or a mathematician, you �nd out that a graph is a collection
of vertices and edges that indicate connections between the vertices. Mathematically, a graph
G = (V;E) consists a set V of vertices that are connected by a set E of edges. A typical graph is
given in Figure ??.

A graph can be either directed or undirected. In an undirected graph, E is a set of unordered
pairs of vertices. In contrast, in a directed graph G = (V;E), E is a set of ordered pairs of vertices,
where the order indicates the direction of an edge.

Trees, planar graphs, an example of a non-planar graph.
Graphs may be represented in many ways: edge lists; it's Laplacian (see Chapter ??); adjacent

matrices, node edge incident matrices.
Basic concepts: degrees, paths, cycles, independent sets, colorings, connected components,
For many applications, we can associate weights with edges and vertices to de�ne a weighted

graph.

17

18 Math 18.337, Spring 1996

Chapter 5

Elementary Geometry

19

20 Math 18.337, Spring 1996

Chapter 6

Probability Theory

21

22 Math 18.337, Spring 1996

II Parallelism

Chapter 7

Parallel Machines

A parallel computer contains a collection of processors connected in a certain con�guration. Dif-
ferent machines choose di�erent interconnection network topologies, di�erent node processors, dif-
ferent address-space organizations and memory structures. These choices are based on the parallel
computation model, the current technology, and marketing decisions.

7.1 Characteristics of Parallel Computers

In Flynn's traditional classi�cation of machines, there are two binary criteria, leading to four
phyla: machines have one or many loci of control, and they operate simultaneously on one or
many operands. Hence, the classes Single Instruction Single Data or SISD, which contains the
sequential (or Van Neumann) machines; Single Instruction Multiple Data or SIMD, a class of
parallel machines that perform one operation on a vector or array of data in parallel. It includes
single vector processor machines as well as the Maspar machines and the �rst Connection Machines
(the CM-1 and CM-2); Multiple Instruction Multiple Data or MIMD, a class now usually
viewed as being synonymous with \parallel", which spans the gamut from workstation farms to
shared-memory parallel (SMP) to distributed memory multiprocessors like the IBM SP-2;Multiple
Instruction Single Data or MISD, a class which seems to be without and extant member unless
one wants to consider the systolic arrays that were brie
y of interest. Flynn's classi�cation dates
back to 1972. In the late 1980's, there were arguments about whether SIMD or MIMD would win.
When Thinking Machines switched from a mostly SIMD to a mostly MIMD architecture when
going from the CM-2 to the CM-5, people used that as an excuse to declare the argument over.

For most of our course, we will take the view that parallel means MIMD; but the principles we
discuss will usually apply to SIMD as well. Indeed, a number of machines are MIMD collections of
SIMD machines { notably the multiple vector processor supercomputers.

The memory architecture of all machines, and especially of parallel machines, is a central issue
in their design; it plays a dominant role in determining both performance and the natural, low-level
programming model for the machine.

The usual terminology in this area is also two-sided: shared versus distributed. Nothing leads
to more confusion about parallel machines than this, because the terminology is not su�ciently
precise; in fact, there are several issues and we need to be careful about using just two terms to
describe a larger variety of possible designs. We'll de�ne two other terms here: \central" (the
opposite of distributed) and \private" (the opposite of shared). The central/distributed distinction
will be one of system architecture, and the shared/private distinction will refer to addressing.

We will view the physical memory architecture as distributed if the memory is packaged with

23

24 Math 18.337, Spring 1996

the processors in such a way that some parts of the memory are substantially \farther" (in the
sense of lower bandwidth or greater access latency) from a processor than other parts. If all
the memory is nearly equally expensive to access, the system has central memory. The vector
supercomputers are genuine central memory machines. A network of workstations has distributed
memory. What is typical now in MIMD machines based on microprocessors, and this seems to be
the \wave of the future" in machine design, is that each processor has its own cache. Even when
the main memory is central, as in the SMP machines like the PowerChallenge, these caches act
like distributed, low-latency, high-bandwidth memories, giving the system most of the important
performance characteristics of distributed memory. Such systems are said to have non-uniform
memory access (NUMA).

An equally important question is the addressing architecture. If all the P processors in the
system can address all the memory, we have a \shared address" machine; if on the other hand the
memory is divided into P chunks, and each processor gets the right to address locations in one
and only one chunk, we have a \private address space". In such a machine, the only way a process
can read or write the contents of a memory location not in its chunk is to get the cooperation of
the owning processor. The Cray T3E and the Silicon Graphics PowerChallenge are shared address,
as are the vector supercomputers; the IBM SP-2 and the SIMD Maspar and Thinking Machines
systems have private address spaces.

One important machine class, then, is the distributed memory, private address machines. These
are collections of independent computers, equipped with a communication network and a software
layer that allows the programs running on them to send messages to one another. The network
is a shared resource, and some form of parallel �le system may be added in software, too. These
machines are often called \multicomputers". Another important class are the shared address MIMD
machines, which may or may not have physically distributed, NUMA memory and, again, may or
may not have coherent caches on each processor. These wide range of machines are often called
\multiprocessors."

Both forms of addressing lead to di�culties for the programmer. In a shared address system,
the programmer must insure that any two processors that access the same memory location do
so in the correct order: for example, processor one should not load a value from location N until
processor zero has stored the appropriate value there (this is called a \true" or \
ow" dependence);
in another situation, it may be necessary that processor one not store a new value into location
N before processor zero loads the old value (this is an \anti" dependence); �nally, if multiple
processors write to location N, it's �nal value is determined by the last writer, so the order in
which they write is signi�cant (this is called \output" dependence). The fourth possibility, a load
followed by another load, is called an \input" dependence, and can generally be ignored. Thus, the
programmer can get incorrect code do to \data races". Also, performance bugs due to too many
accesses to the same location (the memory bank that holds a given location becomes the sequential
bottleneck) are common. 1

The big problem created by private memory is that the programmer has to distribute the data.
\Where's the matrix?" becomes a key issue in building a LINPACK style library for private memory
machines. And communication cost, whenever there is NUMA, is also a critical issue. It has been
said that the three most important issues in parallel algorithms are \locality, locality, and locality".2

One factor that complicates the discussion is that a layer of software, at the operating system
level or just above it, can provide virtual shared addressing on a private address machine by using

1It is an important problem of the \PRAM" model used in the theory of parallel algorithms that it does not
capture this kind of performance bug, and also does not account for communication in NUMA machines.

2For those too young to have su�ered through real estate transactions, the old saw in that business is that the
three most important factors in determining the value of a property are \location, location, and location".

Chapter 7 Parallel Machines 25

interrupts to get the help of an owning processor when a remote processor wants to load or store
data to its memory. And a di�erent piece of software can also segregate the shared address space
of a machine into chunks, one per processor, and con�ne all loads and stores by a processor to its
own chunk, while using private address space mechanisms like message passing to access data in
other chunks. (As you can imagine, hybrid machines have been built, with some amount of shared
and private memory.)

The student reading this for the �rst time may �nd the various possibilities bewildering. As we
write this in 1996, it is probably fair to say that there are only two important styles of architectures
to keep in mind. One comes from the workstation vendors. These machines all have shared address
spaces but because of the caches (sometimes more than one level) they are NUMA machines. Of
course, people will start hooking these machines together, hence from the top level the machine
is distributed. The other sort of machine, the kind built with government money, will tend to be
private address space distributed machines.

7.1.1 SIMD v. MIMD

Concerning the control aspect of parallel machines, the SIMD/MIMD distinction does not tell the
whole story. In fact among SIMD machines, there is considerable variability. Such issues as whether
a processor can elect not to execute the current instruction, and whether the memory addresses
used must be the same in all processors or can be the per processor result of a computation or a
memory reference, divide the world of SIMD machines into subsets.

The distinction between SIMD and Vector Computer is not so clear and belongs to folklore.
The idea is that when you think of SIMD you have in mind many many processors, while Vector
Computer usually means a small number of arithmetic pipelines driven by a central processor, and
having only one memory.

SIMD is cheaper (for example, the CM2 had a single sequencer sending out instructions to as
many as 16k 1 bit processors3); in general the hardware for fetching and decoding instructions can
be shared among several processors. In some important respects SIMD machines are also faster:
they can communicate with minimal latency and very high bandwidth, because the processors are
always in synch. For example, a Maspar can do a circular shift of a distributed array, or a broadcast,
in less time than it take to do a
oating point addition. SIMD machines employ custom processors,
while MIMD have the advantage of the ability to use the fastest o�-the-shelf processors. (It is
evidently not feasible to run a collections of microprocessors in lock step, even when they have the
same code.)

There have also been hybrids; the PASM Project has investigated the problem of running MIMD
applications on SIMD hardware! There is, of course, some performance penalty.

7.1.2 Programming Model

The programming model used may seem to be natural for one style of machine; data parallel
programming seems to be an SIMD shared memory style, and message passing seems to favor
distributed memory MIMD.

Nevertheless, it is quite feasible to implement data parallelism on distributed memory MIMD
machines. For example, on the Thinking Machines CM-5, a user can program in CM-Fortran an
array data parallel language, or program in node programs such as C and Fortran with message

3A not so well known secret is that the 64k machine (and even some smaller machines) had four di�erent sequencers
and in principile could have executed four di�erent instructions.

26 Math 18.337, Spring 1996

passing system calls, in the style of MIMD computing. We will discuss the pros and cons of SIMD
and MIMDmodels in the next section when we discuss parallel languages and programming models.

7.1.3 Machine Topology

The two things processors need to do in parallel machines that they do not do when all alone
are communication (with other processors) and coordination (again with other processors). Com-
munication is obviously needed: one computes a number that the other requires, for example.
Coordination is important for sharing a common pool of resources, whether they are hardware
units, �les, or a pool of work to be performed. The usual mechanisms for coordination, moreover,
involve communication.

Parallel machines di�er in their underlying hardware for supporting message passing and data
routing.

In a shared memory parallel machine, communication between processors is achieved by access
to common memory locations. Access to the common memory is supported by a switch network
that connects the processors and memory modules. The set of proposed switch network for shared
parallel machines includes crossbars and multistage networks such as the butter
y network. One
can also connect processors and memory modules by a bus, and this is done when the number of
processors is limited to ten or twenty.

An interconnection network is normally used to connect the nodes of a multicomputer as well.
Again, the the network topology varies from one machine to another. Due to technical limitations,
most commercially used topologies are of small node degree. Commonly used network topologies
include (not exclusively) linear arrays, ring, hierarchical rings, two or three dimension grids or tori,
hypercubes, fat trees.

The performance and scalability of a parallel machine in turn depend on the network topology.
For example, a two dimensional grid of p nodes has diameter

p
p, on the other hand, the diameter

of a hypercube or fat tree of p nodes is log p. This implies that the number of physical steps to
send a message from a processor to its most distant processor is

p
p and log p, respectively, for

2D grid and hypercube of p processors. The node degree of a 2D grid is 4, while the degree of a
hypercube is log p. Another important criterion for the performance of a network topology is its
bisection bandwidth, which is the minimum communication capacity of a set of links whose removal
partitions the network into two equal halves. Assuming unit capacity of each direct link, a 2D and
3D grid of p nodes has bisection bandwidth

p
p and p2=3 respectively, while a hypercube of p nodes

has bisection bandwidth �(p= log p). (See FTL page 394)

There is an obvious cost / performance trade-o� to make in choosing machine topology. A
hypercube is much more expensive to build than a two dimensional grid of the same size. An
important study done by Dally at Caltech showed that for randomly generated message tra�c,
a grid could perform better and be cheaper to build. Dally assumed that the number of data
signals per processor was �xed, and could be organized into either four \wide" channels in a grid
topology or logn \narrow" channels (in the �rst hypercubes, the data channels were bit-serial) in
a hypercube. The grid won, because too the average utilization of the hypercube channels was
too low: the wires, probably the most critical resource in the parallel machine, were sitting idle.
Furthermore, the work on routing technology at Caltech and elsewhere in the mid 80's resulted in a
family of hardware routers that delivered messages with very low latency even though the length of
the path involved many \hops" through the machines. For the earliest multicomputers used \store
and forward" networks, in which a message sent from A through B to C was copied into and out
of the memory of the intermediate node B (and any others on the path): this causes very large
latencies that grew in proportion to the number of hops. Later routers, including those used in

Chapter 7 Parallel Machines 27

todays networks, have a \virtual circuit" capability that avoids this copying and results in small
latencies.

Does topology make any real di�erence to the performance of parallel machines in practice?
Some may say \yes" and some may say \no". Due to the small size (less than 512 nodes) of
most parallel machine con�gurations and large software overhead, it is often hard to measure the
performance of interconnection topologies at the user level.

7.1.4 Homogeneous and heterogeneous machines

Another example of cost / performance trade-o� is the choice between tightly coupled parallel
machines and workstation clusters, workstations that are connected by fast switches or ATMs. The
networking technology enables us to connect heterogeneous machines (including supercomputers)
together for better utilization. Workstation clusters may have better cost/e�cient trade-o�s and
are becoming a big market challenger to \main-frame" supercomputers.

A parallel machine can be homogeneous or heterogeneous. A homogeneous parallel machine uses
identical node processors. Almost all tightly coupled supercomputers are homogeneous. Worksta-
tion clusters may often be heterogeneous. The Cray T3D is in some sense a heterogeneous parallel
system which contains a vector parallel computer C90 as the front end and the massively parallel
section of T3D. (The necessity of buying the front-end was evidently not a marketing plus: the
T3E does not need one.) A future parallel system may contains a cluster of machines of various
computation power from workstations to tightly coupled parallel machines. The scheduling prob-
lem will inevitably be much harder on a heterogeneous system because of the di�erent speed and
memory capacity of its node processors.

More than 1000 so called supercomputers have been installed worldwide. In US, parallel ma-
chines have been installed and used at national research labs (Los Almos National Laboratory,
Sandia National Labs, Oak Ridge National Laboratory, Lawrence Livermore National Laboratory,
NASA Ames Research Center, US Naval Research Laboratory, DOE/Battis Atomic Power Labora-
tory, etc) supercomputing centers (Minnesota Supercomputer Center, Urbana-Champaign NCSA,
Pittsburgh Supercomputing Center, San Diego Supercomputer Center, etc) US Government, and
commercial companies (Ford Motor Company, Mobil, Amoco, Alliant echsystems Inc) and major
universities. Machines from di�erent supercomputing companies look di�erent, are priced di�er-
ently, and are named di�erently. Here are the names and birthplaces of some of them.

� Cray T3E (MIMD, distributed memory, 3D torus, uses Digital Alpha microprocessors), C90
(vector), Cray YMP, from Cray Research, Eagan, Minnesota.

� Thinking Machine CM-2 (SIMD, distributed memory, almost a hypercube) and CM-5 (SIMD
and MIMD, distributed memory, Sparc processors with added vector units, fat tree) from
Thinking Machines Corporation, Cambridge, Massachusetts.

� Intel Delta, Intel Paragon (mesh structure, distributed memory, MIMD), from Intel Corpo-
rations, Beaverton, Oregon. Based on Intel i860 RISC, but new machines based on the P6.
Recently sold world's largest computer (over 6,000 P6 processors) to the US Dept of Energy
for use in nuclear weapons stockpile simulations.

� IBM SP-1, SP2, (clusters, distributed memory, MIMD, based on IBM RS/6000 processor),
from IBM, Kingston, New York.

� MasPar, MP-2 (SIMD, small enough to sit next to a desk), by MasPar, Santa Clara, Califor-
nia.

28 Math 18.337, Spring 1996

� KSR-2 (global addressable memory, hierarchical rings, SIMD and MIMD) by Kendall Square,
Waltham, Massachusetts. Now defunct. They seem to have committed corporate suicide by
deceiving Wall Street about their sales.

� Fujitsu VPX200 (multi-processor pipeline), by Fujitsu, Japan.

� NEC SX-4 (multi-processor vector, shared and distributed memory), by NEC, Japan.

� Tera MTA (MPP vector, shared memory, multithreads, 3D torus), by Tera Computer Com-
pany, Seattle, Washington. A novel architecture which uses the ability to make very fast
context switches between threads to hide latency of access to the memory.

� Meiko CS-2HA (shared memory, multistage switch network, local I/O device), by Meiko
Concord, Massachusetts and Bristol UK.

� Cray-3 (gallium arsenide integrated circuits, multiprocessor, vector) by Cray Computer Cor-
poration, Colorado Spring, Colorado. Now defunct.

Additional comments by Alan Edelman on the past evolution:

CM-2 seemed to be a success ... initiates parallel computing excitement and legitimizes parallel
computing as an academic discipline. SIMD worked well with many applications, but was
not fully multipurpose.

Maspar decides that the SIMD CM-2 is the way to go and builds machines based on the CM-2
model, but with their own improvements.

Intel has commodity chips available so uses them. Never really came up with the nice software
that the CM-2 had. Now, with the HPF from Portland Group, it can �nally be programmed
in data parallel mode.

CM-5 Goes for the commodity chips and gets MIMD for free. Therefore can program either as
data parallel or message passing. That the machine was a \fat tree," never seemed to be so
relevant. Vector units were slapped on as an afterthought when they realized the machine
would not be competitive. Had short term success by beating Intel to market, but the machine
became di�cult to program for performance. (Message passing did not access vector units.)

In the end, rumor has it that management got into squabbles, and perhaps got greedy, the
company fell into bankruptcy protection. At the time of writing (1995) morale appears to
be so down, and so many people are leaving, it would be hard to imagine a turn-around.
Nevertheless a core group of people remain, and though the odds look bad, maybe they can
�nd a way to buck the trend.

Cray Entered the market in 1994 with the T3D, which has some shared address capabilities, unlike
the CM-5, SP-2 and Paragon. The new T3E, which is a revision of the T3D, is one of the
most powerful machines on the market. In the full 2048 processor model it peaks at over one
tera
op.

IBM then joined with the SP-2. There is still some hope, but this machine still does not have
anything like the software environment of the CM-5. Hardware is quite good, however, and
MPI implementation is ready, HPF is on the way.

Silicon Graphics Has machines based on FDDI and HPPI interconnected 16 way multiprocessor
machines, a hybrid of shared and private NUMA.

Chapter 7 Parallel Machines 29

7.2 Architecture of the CM-5

The machine need not have 2n processors (128 in the machine at MIT), each one is in turn a
small SIMD machine: there are 4 Vector Units per processors, and a RISC chip to feed them
with instructions and data. Each VU achieves about 120 MFLOPS. VU were a later add-on for
competitive performance.

The processors are connected by a fat tree, something like a binary tree but whose bandwidth
grows as height grows, avoiding therefore the bottleneck at the root. The fat tree looked promising
because of good theoretical properties, and they didn't build it as a fat tree anyway (the actual
network is a mixture of a fat tree and a butter
y).

The real bottleneck is the interface between the CPU and the network, the actual topology of
the network is not very important. Some hacker (Charles Leiserson) suggested to dedicate the CM5
SPARC CPUs to communication, and perform calculations on the vector units.

On the top of the tree sits a front end, a normal sparcstation downloading programs and data
to the processors, performing diagnostic checks, and so on.

30 Math 18.337, Spring 1996

Chapter 8

Parallel Programming

A parallel language must provide mechanisms for implementing parallel algorithms, i.e., to spec-
ify various levels of parallelism and de�ne parallel data structures for distributing and sharing
information among processors.

Most current parallel languages add parallel constructs for standard sequential languages. Dif-
ferent parallel languages provide di�erent basic constructs. The choice largely depends on the
parallel computing model the language means to support.

There are two basic parallel computation models other than vector and pipeline model: message
passing and data parallel.

8.1 Programming style

Data-Parallel vs. Message Passing : the explicit communication can be somewhat hidden if one
wants to program in a Data-Parallel style; it's something like SIMD: you specify a single action to
execute on all processors. Example: if A, B and C are matrices, you can write C=A+B and let the
compiler do the hard work of accessing remote memory locations, partition the matrix among the
processors, etc. Guy Blelloch's doctoral dissertation wants to show that you can take your favorite
algorithm and program it in HPF (High Performance Fortran), a data-parallel language with a
clever set of primitives.

By contrast, the explicit message passing gives the programmer careful control over the commu-
nication, but programming requires a lot of knowledge and is much more di�cult (as you probably
understood from the previous section).

There are uncountable other alternatives, still academic at this point (in the sense that no
commercial machine comes with them bundled). A great deal of research has been conducted
on multithreading; the idea is that the programmer expresses the computation graph in some
appropriate language and the machine executes the graph, and potentially independent nodes of
the graph can be executed in parallel. Example in Cilk (multithreaded C, developed at MIT by
Charles Leiserson and his students):

thread int fib(int n)

{

if (n<2)

return n;

else {

cont int x, y;

31

32 Math 18.337, Spring 1996

x = spawn fib (n-2);

y = spawn fib (n-1);

sync;

return x+y;

}

}

Actually Cilk is a little bit di�erent right now, but this is the way the program will look like when
you read these notes. The whole point is that the two computations of fib(n-1) and fib(n-2) can
be executed in parallel. As you might have expected, there are dozens of multithreaded languages
(functional, imperative, declarative) and implementation techniques; in some implementations the
thread size is a single-instruction long, and special processors execute this kind of programs. Ask
Arvind at LCS for details.

Writing a good HPF compiler is di�cult and not every manufacturer provides one; actually for
some time TMC machines were the only machines available with it. The �rst HPF compiler for
the Intel Paragon dates December 1994.

Why SIMD is wrong: consider the following fragment, where x and y are vectors:

if (x > 0)

y = x + 2;

else

y = -x + 5;

A SIMD machine will execute both cases, and discard one of the results; it does twice the needed
work (see why? there is a single
ow of instructions).

Moral: even if the programming model is that there is one processor per data element, the
programmer must be aware that it's not true.

8.2 Data Parallel Programming in High Performance Fortran

The idea in data parallel programming is to make parallel programming look almost the same as
sequential programming. As in a sequential program, there is one thread of control. There can
be no race conditions, and the results of a program are only indeterminate if the programmer
wants them to be (via a random number generator, for example). There are no synchronization
constructs. There is only one \name space" for variables; the declarations of variables in a data
parallel program describe their actual shape, and they are accessible on all processors. Unlike other
parallel programming dialects, like message passing, there are no private variables that are seen
only by an owning processor. Users of CM Fortran and Maspar Fortran have found data parallel
programming to be quite useful and relatively easy, compared to lower level parallel programming.

As you know, most scienti�c software is written in Fortran, and for good reasons: stable and
e�ective compilers, a good base of libraries, reasonable support for single and double precision
and complex arithmetic, and for multidimensional arrays, and good performance on uniprocessors.
Programmers also hate Fortran, and for equally good reasons: no dynamic storage allocation, no
function prototypes, no reasonable scoping and no real global variables, no structs, no recursion, no
standard random number generator or system clock. Fortunately, Fortran 90 has all these desirable
features. Some of the bizarre and archaic features of Fortran are labeled \obsolescent" in Fortran
90 and will be purged in Fortran 95 and later revisions. In addition, Fortran 90 allows operations
on whole arrays and sections of arrays, greatly improved facilities for passing arrays or subarrays

Chapter 8 Parallel Programming 33

to subprograms, as well as array-valuedi constants, array-valued functions, and a number of new
intrinsic functions and subroutines that operate on arrays. The array features are a simple way to
specify data parallel computation as the concurrent application of a function to all the elements of
an array.

High Performance Fortran (HPF) was developed during 1992 { 1993 by a group of volunteers
that included representatives of users, researchers, and vendors of parallel machines. The goal was
to de�ne a standard, non-proprietary dialect of Fortran 90 for distributed memory machines that
would allow programmers to write portable, high-level data parallel code. The HPF standard can
be downloaded; the URL is
http://www.erc.msstate.edu/hp�/home.html. A good reference is \The High Performance Fortran
Handbook," by Charles Koelbel, David Loveman, Robert Schreiber, Guy L. Steele Jr., and Mary
Zosel, published by MIT Press.

HPF is Fortran 90 with a few additions. The added language features are a FORALL construct
and a new attribute for subprograms, PURE. In addition, in HPF the mapping of the data to the
processors can be speci�ed.

Here is how the mapping of data is speci�ed. All mappings are described by what are technically
comments in the program. Fortran 90 comments begin with !. HPF directives begin with the string
!HPF$. Thus, a Fortran 90 compiler that is liberal enough to allow FORALL and PURE (and these
are to be included in the next generation, Fortran 95) will accept HPF programs! You can debug
them on one processor this way. In fact, DEC has taken the obvious step of having one compiler,
which accepts both Fortran 90 and HPF programs.

Thus the data mapping directives do not change the meaning of the program. By \meaning" I
mean the relation between the output and the input. Changing the mapping of the data has no
e�ect on what is computed, only on where it is computed.

First, one can give the machine a shape, as a multidimensional processor grid. Example:

!HPF$ PROCESSORS PROCS(2, NUMBER_OF_PROCESSORS() / 2)

NUMBER OF PROCESSORS() is an HPF intrinsic that returns, you guessed it, the number of processors
that the program is running on. So we're saying with the statement above that PROCS is a virtual
grid of processors that is 2�p=2. We use PROCS to describe the mapping of data with the DISTRIBUTE
directive. Example:

REAL A(10,20), B(10,20,10)

!HPF$ DISTRIBUTE A(BLOCK, CYCLIC) ONTO PROCS

!HPF$ DISTRIBUTE B(BLOCK, *, CYCLIC)

A(i,j) is mapped to processor PROCS(1 + (i-1)/5, 1 + mod(j, p/2)). The array B is mapped to
some two dimensional processors arrangement, whose shape is determined by the compiler. B(i,j,k)
is mapped to a processor that depends on i and k, but not j | the second axis of B is mapped
to processor memory. Block mappings chop an array axis up into contiguous hunks that are given
one to each processor along an axis of the processor grid. Cyclic mappings deal the array out to
the processors just as one deals cards to card players. Finally, HPF allows CYCLIC(k) mappings,
where k is an integer, which deal out contiguous groups of k indices. So, if a 10 element array has
a cyclic(3) distribution onto 2 processors, then processor 1 gets array elements 1; 2; 3; 7; 8, and 9
and processor 2 gets array elements 4; 5; 6, and 10.

One may replicate data and one may align arrays with other arrays using the ALIGN directive.
Example:

34 Math 18.337, Spring 1996

REAL A(10,20), C(10), D(20), E(5,5), F(20,10), S

!HPF$ ALIGN C(I) WITH A(I, 4) ! C aligned to 4th column

!HPF$ ALIGN D(J) WITH A(*, J) ! Replicate D across the rows of A

!HPF$ ALIGN E(I,J) WITH A(2*I, 4*J) ! Non-unit stride

!HPF$ ALIGN F(J,I) WITH A(I,J) ! Note the transposition

!HPF$ ALIGN WITH A(*,*) :: S ! Replicate the scalar variable.

!HPF$ DISTRIBUTE A(BLOCK, BLOCK) ! An align target, but not an

! alignee, may be distributed.

! The aligned elements

! are "carried along".

Here you see a Fortran 90 variant of a declaration in which all the attributes of an object or objects
are listed, then a double colon (::) then a list of the objects that have those attributes. I like it,
because I can go to one place to �nd all that I need to know about a given variable. HPF allows
this style in directives too, as the example shows.

If we wanted to get the same mapping of C, D, E, and F, but didn't have a convenient 10� 20
array like A to align them to, we can use, instead, an HPF thing called a template, which is an
array without any data, just subscripts! (Guy Steele says that if an array is a cat, then a template
is a Cheshire Cat and the index set is its smile. :)̂)) Thus:

!HPF$ TEMPLATE, DIMENSION(10,20) :: T

!HPF$ ALIGN E(J,I) WITH T(I,J)

!HPF$ DISTRIBUTE T(BLOCK, BLOCK)

Where does one put the mapping directives, and what is their scope? In general, they go in
the same place one puts variable declarations. The mappings apply for the life of the object. Some
programmers, however, want to be able to change a mapping during the computation, and HPF
allows this. To do so, there are \executable" forms called REALIGN and REDISTRIBUTE that may
appear in the executable part of a program. When control reaches the directive, the indicated
remapping takes place. Any object that is remapped this way, wither directly or indirectly (by
virtue of its alignment to a redistributed target) has to be given the DYNAMIC attribute. Example:

!HPF$ TEMPLATE, DYNAMIC, DIMENSION(2*NUMBER_OF_PROCESSORS()) :: T

!HPF$ DISTRIBUTE T(CYCLIC)

!HPF$ ALIGN (I) WITH A(I) :: B, C

!HPF$ ALIGN (I) WITH T(I) :: A

!HPF$ DYNAMIC :: A, B, C

! Executable Statements

!HPF$ REDISTRIBUTE T(BLOCK) !Remaps A, B, and C

!HPF$ REALIGN A(I) WITH T(*) !Replicates A

Note that A, B, and C are aligned to T, although in the case of B and C, two directives are used to
specify the alignment. Alignment is always simpli�ed to an alignment to an ultimate align target.
This, the redistribution of T carries all three arrays with it. The realignment of A does not a�ect
B or C. Finally, note that A, B, and C are all required to have the DYNAMIC attribute, even though
B and C do not explicitly appear in a REALIGN.

Chapter 8 Parallel Programming 35

8.2.1 Parallelism

There are some instances in which the Fortran 90 array syntax cannot express a simple data parallel
operation, or at least not conveniently. One of the most important is when each processor uses the
elements of an array that it owns as indices into some other array that it owns or of which it owns
a copy. For these, one can use the HPF FORALL assignment statement. Example

INTEGER, PARAMETER :: NPROCS = NUMBER_OF_PROCESSORS()

REAL TABLE(NPROCS, 100), RESULT(NPROCS)

INTEGER INDEX(NPROCS)

!HPF$ DISTRIBUTE (CYCLIC) :: INDEX, RESULT

!HPF$ DISTRIBUTE (CYCLIC,*) :: TABLE

FORALL (P = 1:NPROCS) RESULT(P) = TABLE(P, INDEX(P))

Note that the Fortran 90 expression TABLE(:,INDEX) does not produce the rank-one result we
need. Another FORALL example:

FORALL (I = 1:N) A(I,I) = 2*I !Access a diagonal of an array

The right hand sides of all instances of the FORALL are evaluated before any of the left hand sides
is changed. The following are therefore equivalent:

A(2:N) = A(1:N-1)

FORALL (I = 1:N-1) A(I+1) = A(I)

8.2.2 Intrinsics

Fortran 90's intrinsic subprograms are a big improvement on Fortran 77. There are random number
and system clock subroutines, array inquiry functions, and many array-valued operations, like SUM,
TRANSPOSE, and MATMULT.

A few important data-parallel array operators were left out of Fortran 90, and are added to
HPF in the HPF library. These include parallel pre�x functions, combining send functions, and
sorting.

Here is an example of parallel pre�x. Suppose we want to enumerate the elements of a logical
vector that are true. This is accomplished by COUNT PREFIX. In Fortran 90, (/ 1, 2, 3 /) is a
rank one integer array constant of size 3. Let T denote the value true and F denote false. Then
COUNT PREFIX((/F, T, T, F, T, F/)) has the value (/ 0, 1, 2, 2, 3, 3).

The combining send functions perform a scatter, much as the Fortran 90 vector-valued subscript
does if used on the left side of an assignment statement:

INTEGER, DIMENSION(:) :: A, B, V

B(V) = A

The Fortran 90 fragment is meaningful only when the elements of V are all di�erent, and are all
legitimate subscripts for B. What if there are duplicate elements of V, so that several elements of
A are associated with one element of B? If we specify that this element of B is to get, for example,
the sum of the associated elements of A, then the program again makes sense. This is accompished
with

B = SUM_SCATTER(ARRAY = A, BASE = B, INDX1 = V)

36 Math 18.337, Spring 1996

Note the use of Fortran 90 keyword arguments (which can occur in any order). The result of any
of the scatter functions has the same shape as its BASE argument. The value of an element of the
result is the corresponding element of the base unless it is associated with a set of elements of
ARRAY. Element k of the result is associated with and (in the case of SUM SCATTER is set to the sum
of the elements ARRAY(i) for which V(i) is equal to k.

8.2.3 Extended data parallelism

Is data parallelism the same as array-based parallelism? Some think so, but this is a misconception.
The key idea is the application of a function simultaneously to a collection of arguments. HPF
allows one to specify this in a very
exible way with the INDEPENDENT DO loop

!HPF$ INDEPENDENT

DO I = 1, 1024

...

ENDDO

The independent directive does not change what is computed. It just advises the compiler that
the loop iterations may be executed in parallel, with no contention for or race conditions involving
shared variables. When the use of some variable by multiple iterations of a loop renders this false,
we can still use the INDEPENDENT directive, as long as the use of the variable is essentially local
to each iteration and it does not carry information from one iteration to another. For example,

DO I = 1, N

DO J = 1, 3

...

ENDDO

ENDDO

Ordinarily, the variable J is not used to carry information between iterations of the I loop. We can
assert that the outer loop is independent if the variable J is made local to each outer iteration by
use of the directive

!HPF$ INDEPENDENT, NEW J

just before the DO I statement; this has the same e�ect as replacing the shared scalar J with an
array, and using J(I) at iteration I, but it uses less storage.

8.3 Message Passing

In the SISD, SIMD, and MIMD computer taxonomy, SISD machines are conventional uniprocessors,
SIMD are single instruction stream machines that operate in parallel on ensembles of data, like
arrays or vectors, and MIMD machines have multiple active threads of control (processes) that
can operate on multiple data in parallel. How do these threads share data and how do they
synchronize? For example, suppose two processes have a producer/consumer relationship. The
producer generates a sequence of data items that are passed to the consumer, which processes
them further. How does the producer deliver the data to the consumer?

If they share a common memory, then they agree on a location to be used for the transfer. In
addition, they have a mechanism that allows the consumer to know when that location is full, i.e.
it has a valid datum placed there for it by the producer, and a mechanism to read that location and

Chapter 8 Parallel Programming 37

change its state to empty. A full/empty bit is often associated with the location for this purpose.
The hardware feature that is often used to do this is a \test-and-set" instruction that tests a bit
in memory and simultaneously sets it to one. The producer has the obvious dual mechanisms.

Many highly parallel machines have been, and still are, just collections of independent computers
on some sort of a network. Such machines can be made to have just about any data sharing and
synchronization mechanism; it just depends on what software is provided by the operating system,
the compilers, and the runtime libraries. One possibility, the one used by the �rst of these machines
(The Caltech Cosmic Cube, from around 1984) is message passing. (So it's misleading to call these
\message passing machines"; they are really multicomputers with message passing library software.)

From the point of view of the application, these computers can send a message to another
computer and can receive such messages o� the network. Thus, a process cannot touch any data
other than what is in its own, private memory. The way it communicates is to send messages to
and receive messages from other processes. Synchronization happens as part of the process, by
virtue of the fact that both the sending and receiving process have to make a call to the system in
order to move the data: the sender won't call send until its data is already in the send bu�er, and
the receiver calls receive when its receive bu�er is empty and it needs more data to proceed.

Message passing systems have been around since the Cosmic Cube, about ten years. In that
time, there has been a lot of evolution, improved e�ciency, better software engineering, improved
functionality. Many variants were developed by users, computer vendors, and independent software
companies. Finally, in 1993, a standardization e�ort was attempted, and the result is the Message
Passing Interface (MPI) standard. MPI is
exible and general, has good implementations on all
the machines one is likely to use, and is almost certain to be around for quite some time. We'll use
MPI in the course.

In print, the best MPI reference is the handbook Using MPI, by William Gropp, Ewing Lusk,
and Anthony Skjellum, published by MIT Press ISBN 0-262-57104-8.

The standard is on the World WIde Web. The URL is
http://www.mcs.anl.gov/mpi/mpi-report/mpi-report.html. An updated version is at
ftp://ftp.mcs.anl.gov/pub/mpi/mpi-1.jun95/mpi-report.ps

8.3.1 Sending and receiving

In order to get started, let's look at the two most important MPI functions, MPI Send and MPI Recv.
The call

MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

sends count items of data of type datatype starting at the location buf. In all message passing
systems, the processes have identi�ers of some kind. In MPI, the process is identi�ed by its rank,
an integer. The data is sent to the processes whose rank is dest. Possible values for datatype
are MPI INT, MPI DOUBLE, MPI CHAR etc. tag is an integer used by the programmer to allow the
receiver to select from among several arriving messages in the MPI Recv. Finally, comm is something
called a communicator, which is essentially a subset of the processes. Ordinarily, message passing
occurs within a single subset. The subset MPI COMM WORLD consists of all the processes in a single
parallel job, and is prede�ned.

A receive call matching the send above is

MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Status *status)

38 Math 18.337, Spring 1996

buf is where the data is placed once it arrives. count, an input argument, is the size of the bu�er;
the message is truncated if it is longer than the bu�er. Of course, the receive has to be executed by
the correct destination process, as speci�ed in the dest part of the send, for it to match. source
must be the rank of the sending process. The communicator and the tag must match. So must the
datatype.

The purpose of the datatype �eld is to allow MPI to be used with heterogeneous hardware.
A process running on a little-endian machine may communicate integers to another process on a
big-endian machine; MPI converts them automatically. The same holds for di�erent
oating point
formats. Type conversion, however, is not supported: an integer must be sent to an integer, a
double to a double, etc.

Suppose the producer and consumer transact business in two word integer packets. The pro-
ducer is process 0 and the consumer is process 1. Then the send would look like this:

int outgoing[2];

MPI_Send(outgoing, 2, MPI_INT, 1 100, MPI_COMM_WORLD)

and the receive like this:

MPI_Status stat;

int incoming[2];

MPI_Recv(incoming, 2, MPI_INT, 0 100, MPI_COMM_WORLD, &stat)

What if one wants a process to which several other processes can send messages, with service
provided on a �rst-arrived, �rst-served basis? For this purpose, we don't want to specify the source
in our receive, and we use the value MPI ANY SOURCE instead of an explicit source. The same is
true if we want to ignore the tag: use MPI ANY TAG. The basic purpose of the status argument,
which is an output argument, is to �nd out what the tag and source of such a received message
are. status.MPI TAG and status.MPI SOURCE are components of the struct status of type int
that contain this information after the MPI Recv function returns.

This form of send and receive are \blocking", which is a technical term that has the following
meaning. for the send, it means that buf has been read by the system and the data has been
moved out as soon as the send returns. The sending process can write into it without corrupting
the message that was sent. For the receive, it means that buf has been �lled with data on return.
(A call to MPI Recv with no corresponding call to MPI Send occurring elsewhere is a very good and
often used method for hanging a message passing application.)

MPI implementations may use bu�ering to accomplish this. When send is called, the data are
copied into a system bu�er and control returns to the caller. A separate system process (perhaps
using communication hardware) completes the job of sending the data to the receiver. Another
implementation is to wait until a corresponding receive is posted by the destination process, then
transfer the data to the receive bu�er, and �nally return control to the caller. MPI provides
two variants of send, MPI Bsend and MPI Ssend that force the bu�ered or the rendezvous imple-
mentation. Lastly, there is a version of send that works in \ready" mode. For such a send, the
corresponding receive must have been executed previously, otherwise an error occurs. On some
systems, this may be faster than the blocking versions of send. All four versions of send have the
same calling sequence.
NOTE: MPI allows a process to send itself data. Don't try it. On the SP-2, if the message is big
enough, it doesn't work. Here's why. Consider this code:

if (myrank == 0)

for(dest = 0; dest < size; dest++)

Chapter 8 Parallel Programming 39

MPI_Send(sendbuf+dest*count, count, MPI_INT, dest, tag, MPI_COMM_WORLD);

MPI_Recv(recvbuf, count, MPI_INT, 0, tag, MPI_COMM_WORLD, &stat);

The programmer is attempting to send data from process zero to all processes, including process
zero; 4 � count bytes of it. If the system has enough bu�er space for the outgoing messages, this
succeeds, but if it doesn't, then the send blocks until the receive is executed. But since control
does not return from the blocking send to process zero, the receive never does execute. If the
programmer uses bu�ered send, then this deadlock cannot occur. An error will occur if the system
runs out of bu�er space, however:

if (myrank == 0)

for(dest = 0; dest < size; dest++)

MPI_Bsend(sendbuf+dest*count, count, MPI_INT, dest, tag, MPI_COMM_WORLD);

MPI_Recv(recvbuf, count, MPI_INT, 0, tag, MPI_COMM_WORLD, &stat);

8.3.2 Tags and communicators

Tags are used to keep messages straight. An example will illustrate how they are used. Suppose
each process in a group has one integer and one real value, and we wish to �nd, on process zero,
the sum of the integers and the sum of the reals. Lets write this:

itag = 100;

MPI_Send(&intvar, 1, MPI_INT, 0, itag, MPI_COMM_WORLD);

ftag = 101;

MPI_Send(&floatvar, 1, MPI_FLOAT, 0, ftag, MPI_COMM_WORLD);

/**** Sends are done. Receive on process zero ****/

if (myrank == 0) {

intsum = 0;

for (kount = 0; kount < nprocs; kount++) {

MPI_Recv(&intrecv, 1, MPI_INT, MPI_ANY_SOURCE, itag, MPI_COMM_WORLD, &stat);

intsum += intrecv;

}

fltsum = 0;

for (kount = 0; kount < nprocs; kount++) {

MPI_Recv(&fltrecv, 1, MPI_FLOAT, MPI_ANY_SOURCE, ftag, MPI_COMM_WORLD, &stat);

fltsum += fltrecv;

}

}

It looks simple, but there are a lot of subtleties here! First, note the use of MPI ANY SOURCE in
the receives. We're happy to receive the data in the order it arrives. Second, note that we use two
di�erent tag values to distinguish between the int and the
oat data. Why isn't the MPI TYPE �led
enough? Because MPI does not include the type as part of the message \envelope". The envelope
consists of the source, destination, tag, and communicator, and these must match in a send-receive
pair. Now the two messages sent to process zero from some other process are guaranteed to arrive
in the order they were sent, namely the integer message �rst. But that does not mean that all of
the integer message precede all of the
oat messages! So the tag is needed to distinguish them.

This solution creates a problem. Our code, as it is now written, sends o� a lot of messages
with tags 100 and 101, then does the receives (at process zero). Suppose we called a library routine
written by another user before we did the receives. What if that library code uses the same message

40 Math 18.337, Spring 1996

tags? Chaos results. We've \polluted" the tag space. Note, by the way, that synchronizing the
processes before calling the library code does not solve this problem.

MPI provides communicators as a way to prevent this problem. The communicator is a part
of the message envelope. So we need to change communicators while in the library routine. To do
this, we use MPI Comm dup, which makes a new communicator with the same processes in the same
order as an existing communicator. For example

void safe_library_routine(MPI_Comm oldcomm)

{

MPI_Comm mycomm;

MPI_Comm_dup(oldcomm, &mycomm);

<library code using mycomm for communication>

MPI_Comm_free(&mycomm);

}

The messages sent and received inside the library code cannot interfere with those send outside.

8.3.3 Who am I?

On the SP-2 and other multicomputers, one usually writes one program which runs on all the
processors. In order to di�erentiate its behavior, (like producer and consumer) a process usually
�rst �nds out at runtime its rank within its process group, then branches accordingly. The calls

MPI_Comm_size(MPI_Comm comm, int *size)

sets size to the number of processes in the group speci�ed by comm and the call

MPI_Comm_rank(MPI_Comm comm, int *rank)

sets rank to the rank of the calling process within the group (from 0 up to n � 1 where n is the
size of the group). Usually, the �rst thing a program does is to call these using MPI COMM WORLD as
the communicator, in order to �nd out the answer to the big questions, \Who am I?" and \How
many other `I's are there?".

Okay, I lied. That's the second thing a program does. Before it can do anything else, it has to
make the call

MPI_Init(int *argc, char ***argv)

where argc and argv should be pointers to the arguments provided by UNIX to main(). While
we're at it, let's not forget that one's code needs to start with

#include "mpi.h"

The last thing the MPI code does should be

MPI_Finalize()

No arguments.

Here's an MPI multi-process \Hello World":

Chapter 8 Parallel Programming 41

#include <stdio.h>

#include "mpi.h"

main(int argc, char** argv) {

int i, myrank, nprocs;

double a = 0, b = 1.1, c = 0.90;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

printf("Hello world! This is process %d out of %d\n",myrank, nprocs);

if (myrank == 0) printf("Some processes are more equal than others.");

MPI_Finalize();

} /* main */

which is compiled and executed on the SP-2 at Ames by

babbage1% mpicc -O3 example.c

babbage1% a.out -procs 2

and produces (on the standard output)

0:Hello world! This is process 0 out of 2

1:Hello world! This is process 1 out of 2

0:Some processes are more equal than others.

Another important thing to know about is the MPI wall clock timer:

double MPI_Wtime()

which returns the time in seconds from some unspeci�ed point in the past.

8.3.4 Performance, and tolerance

Try this exercise. See how long a message of length n bytes takes between the call time the send
calls send and the time the receiver returns from receive. Do an experiment and vary n. Also vary
the rank of the receiver for a �xed sender. Does the model

Elapsed Time(n; r) = �+ �n

work? (r is the receiver, and according to this model, the cost is receiver independent.)
In such a model, the latency for a message is � seconds, and the bandwidth is 1=� bytes/second.

Other models try to split � into two components. The �rst is the time actually spent by the sending
processor and the receiving processor on behalf of a message. (Some of the per-byte cost is also
attributed to the processors.) This is called the overhead. The remaining component of latency
is the delay as the message actually travels through the machines interconnect network. It is
ordinarily much smaller than the overhead on modern multicomputers (ones, rather than tens of
microseconds).

A lot has been made about the possibility of improving performance by \tolerating" communi-
cation latency. To do so, one �nds other work for the processor to do while it waits for a message
to arrive. The simplest thing is for the programmer to do this explicitly. For this purpose, there
are \nonblocking" versions of send and receive in MPI and other dialects.

42 Math 18.337, Spring 1996

Nonblocking send and receive work this way. A nonblock send start call initiates a send
but returns before the data are out of the send bu�er. A separate call to send complete then
blocks the sending process, returning only when the data are out of the bu�er. The same two-
phase protocol is used for nonblocking receive. The receive start call returns right away, and the
receive complete call returns only when the data are in the bu�er.

The simplest mechanism is to match a nonblocking receive with a blocking send. To illustrate,
we perform the communication operation of the previous section using nonblocking receive.

MPI_Request request;

MPI_IRecv(recvbuf, count, MPI_INT, 0, tag, MPI_COMM_WORLD, &request);

if (myrank == 0)

for(dest = 0; dest < size; dest++)

MPI_Send(sendbuf+dest*count, count, MPI_INT, dest, tag, MPI_COMM_WORLD);

MPI_Wait(&request, &stat);

MPI Wait blocks until the nonblocking operation identi�ed by the handle request completes. This
code is correct regardless of the availability of bu�ers. The sends will either bu�er or block until
the corresponding receive start is executed, and all of these will be.

Before embarking on an e�ort to improve performance this way, one should �rst consider what
the payo� will be. In general, the best that can be achieved is a two-fold improvement. Often, for
large problems, it's the bandwidth (the �n term) that dominates, and latency tolerance doesn't
help with this. Rearrangement of the data and computation to avoid some of the communication
altogether is required to reduce the bandwidth component of communication time.

8.3.5 Who's got the
oor?

We usually think of send and receive as the basic message passing mechanism. But they're not
the whole story by a long shot. If we wrote codes that had genuinely di�erent, independent,
asynchronous processes that interacted in response to random events, then send and receive would
be used to do all the work. Now consider computing a dot product of two identically distributed
vectors. Each processor does a local dot product of its pieces, producing one scalar value per
processor. Then we need to add them together and, probably, broadcast the result. Can we do this
with send and receive? Sure. Do we want to? No. No because it would be a pain in the neck to write
and because the MPI system implementor may be able to provide the two necessary, and generally
useful collective operations (sum, and broadcast) for us in a more e�cient implementation.

MPI has lots of these \collective communication" functions. (And like the sum operation, they
often do computation as part of the communication.)

Here's a sum operation, on doubles. The variable sum on process root gets the sum of the
variables x on all the processes.

double x, sum;

int root, count = 1;

MPI_Reduce(&x, &sum, count, MPI_DOUBLE, MPI_SUM, root, MPI_COMM_WORLD);

The �fth argument speci�es the operation; other possibilities are MPI MAX, MPI LAND, MPI BOR,

... which specify maximum, logical AND, and bitwise OR, for example.
The semantics of the collective communication calls are subtle to this extent: nothing happens

except that a process stops when it reaches such a call, until all processes in the speci�ed group
reach it. Then the reduction operation occurs and the result is placed in the sum variable on the
root processor. Thus, reductions provide what is called a barrier synchronization.

Chapter 8 Parallel Programming 43

There are quite a few collective communication operations provided by MPI, all of them useful
and important. We will use several in the assignment. To mention a few, MPI Bcast broadcasts
a vector from one process to the rest of its process group; MPI Scatter sends di�erent data from
one process to each process in its a group; MPI Gather is the inverse of a scatter: one process
receives and concatenates data from all processes in its group; MPI Allgather is like a gather
followed by a broadcast: all processes receive the concatenation of data that are initially distributed
among them; MPI Reduce scatter is like reduce followed by scatter: the result of the reduction
ends up distributed among the process group. Finally, MPI Alltoall implements a very general
communication in which each process has a separate message to send to each member of the process
group.

Often the process group in a collective communication is some subset of all the processors. In
a typical situation, we may view the processes as forming a grid, let's say a 2d grid, for example.
We may want to do a reduction operation within rows of the process grid. For this purpose, we
can use MPI Reduce, with a separate communicator for each row.

To make this work, each process �rst computes its coordinates in the process grid. MPI makes
this easy, with

int nprocs, myproc, procdims[2], myproc_row, myproc_col;

MPI_Dims_create(nprocs, 2, procdims);

myproc_row = myrank / procdims[1];

myproc_col = myrank % procdims[1];

Next. one creates new communicators, one for each process row and one for each process column.
The calls

MPI_Comm my_prow, my_pcol;

MPI_Comm_split(MPI_COMM_WORLD, myproc_row, 0, &my_prow);

MPI_Comm_split(MPI_COMM_WORLD, myproc_row, 0, &my_prow);

create them and

MPI_Comm_free(&my_prow);

MPI_Comm_free(&my_pcol);

free them. The reduce-in-rows call is then

MPI_Reduce(&x, &sum, count, MPI_DOUBLE, MPI_SUM, 0, my_prow);

which leaves the sum of the vectors x in the vector sum in the process whose rank in the group is
zero: this will be the �rst process in the row. The general form is

MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm newcomm)

As in the example above, the group associated with comm is split into disjoint subgroups, one
for every di�erent value of color; the communicator for the subgroup that this process belongs to
is returned in newcomm. The argument key determines the rank of this process within newcomm; the
members are ranked according to their value of key, with ties broken using the rank in comm.

44 Math 18.337, Spring 1996

8.4 Message Passing in PVM

PVM is a popular message passing system that allows a user to treat a heterogeneous collection of
networked machines as a single \parallel virtual machine". It was developed at Oak Ridge National
Lab, beginning in 1989, and it continues to evolve and improve. It is freely available, easy to
download and install, and it runs in user mode; any user can con�gure any set of machines on which
he has accounts into a PVM using PVM. PVM handles all communication and synchronization, as
well as format conversion for machines with di�erent internal representations of integers,
oating
point values, and strings.

PVM allows the virtual machine to be con�gured dynamically: computers can be added to or
deleted from the VM during the course of a computation. Very useful if someone switches o� one of
the machines! A PVM computation consists of a number of separate programs, called tasks, that
use the PVM library to communicate. Tasks can be created and can drop out, also dynamically.

To obtain PVM and the documentation, one can use the web:

http://www.epm.ornl.gov/pvm/pvm_home.html

The book, PVM: Parallel Virtual Machine A Users' Guide and Tutorial for Networked Parallel
Computing by Al Geist Adam Beguelin Jack Dongarra Weicheng Jiang Robert Manchek, and
Vaidy Sunderam, is the best reference on PVM. It too has a home page and can be downloaded:

http://www.netlib.org/pvm3/book/pvm-book.html

8.4.1 PVM Basics

Once one makes PVM, there are two relevant pieces of software. One is the pvm deamon (called
pvmd). You start it on any machine that it has been compiled for, and it then allows you to give
commands to add other machines to the current con�guration, which is the virtual parallel machine.
The user's command interface to PVM is called the PVM console, and there is also an X Windows
version of it, XPVM.

Here is an example session, running at HP Labs. The machine will include two HP workstations:

hplpp3% pvm

new pvm shell

t40001

pvm> add hplpp4

1 successful

HOST DTID

hplpp4 80000

pvm> conf

2 hosts, 1 data format

HOST DTID ARCH SPEED

hplpp3 40000 HPPA 1000

hplpp4 80000 HPPA 1000

pvm>

The machine con�guration commands can also be given by function calls from a running PVM
application.

A PVM application is just a C or Fortran 77 program compiled and linked against the PVM
library. Here is a sample:

Chapter 8 Parallel Programming 45

#include <stdio.h>

#include "pvm3.h"

main()

{

int cc, tid;

char buf[100];

printf("i'm t%x\n", pvm_mytid());

cc = pvm_spawn("hello_other", (char**)0, 0, "", 1, &tid);

if (cc == 1) {

cc = pvm_recv(-1, -1);

pvm_bufinfo(cc, (int*)0, (int*)0, &tid);

pvm_upkstr(buf);

printf("from t%x: %s\n", tid, buf);

} else

printf("can't start hello_other\n");

pvm_exit();

exit(0);

}

This example illustrates some of PVM's outstanding features. First, once begun, this task �rst
�nds its own PVM task identi�er (or tid) by calling the PVM library function pvm_mytid.

Next, it starts another PVM task, leaving it up to pvmd to decide which actual processor to
run it on. The other task's executable �le is called hello_other, the source for which appears
below. Its tid is kept in order to use it for communication, later. In the if construct, we see the
basics of PVM message passing. In PVM, a send is a three step process. First, one allocates a
bu�er using pvm_initsend; next, one packs data into the bu�er using pvm_pk* routines, which
specify datatype. When there are multiple machines in the con�guration, this is where data format
conversions occur. Last, afters its contents are all packed in, the bu�er is sent with pvm_send,
which gives the destination tid and a message tag. The receive is a similar process. The pvm_recv
(which allows speci�cation of source tid and message tag) returns a receive bu�er identi�er. This
is then used to unpack the data with pvm_upk*.

Here is the code for hello_other. Notice the call to pvm_parent which returns the tid of the
task that spawned this one.

#include "pvm3.h"

main()

{

int ptid;

char buf[100];

46 Math 18.337, Spring 1996

ptid = pvm_parent();

strcpy(buf, "hello, world from ");

gethostname(buf + strlen(buf), 64);

pvm_initsend(PvmDataDefault);

pvm_pkstr(buf);

pvm_send(ptid, 1);

pvm_exit();

exit(0);

}

After compiling and linking both programs, I can log into either of the two workstations and
start hello from the UNIX prompt. Also, using the PVM console, I con�gure the two machines
as above. The result is this:

hplpp4% hello

i'm t80001

from t40002: hello, world from hplpp3

hplpp4%

The ability to con�gure heterogeneous networks and use them as a parallel processor is a very
impressive capability. It's what makes PVM so popular. As a message passing dialect, however,
PVM lacks the power and sophistication of MPI: it has only one send mode, no asynchronous
receive, no communication contexts, and limited collective communication functions. Thus, we
expect MPI and PVM to evolve towards one another, each importing the strengths of the other in
time.

Performance is another issue. PVM is a user application, and as such it is forced to use the
communication facilities of UNIX, which add latency and limit bandwidth. Vendor supported MPI
implementations appear to have signi�cantly better performance at this time.

8.5 More on Message Passing

8.5.1 Nomenclature

� Performance:

Latency: the time it takes to send a zero length message (overhead)
Bandwidth: the rate at which data can be sent

� Synchrony:

Synchronous: sending function returns when a matching receiving operation has been initiated
at the destination.
Blocking: sending function returns when the message has been safely copied.
Non-blocking (asynchronous): sending function returns immediately. Message bu�er must
not be changed until it is safe to do so

Chapter 8 Parallel Programming 47

� Miscellaneous:

Interrupts: if enabled, the arrival of a message interrupts the receiving processor
Polling: the act of checking the occurrence of an event
Handlers: code written to execute when an interrupt occurs
Critical sections: sections of the code which cannot be interrupted safely
Scheduling: the process of determining which code to run at a given time
Priority: a relative statement about the ranking of an object according to some metric

8.5.2 The Development of Message Passing

� Early Multicomputers:
UNIVAC
Goodyear MPP (SIMD.)
Denelcor HEP (Shared memory)

� The Internet and Berkeley Unix (High latency, low bandwidth)

Support for communications between computers is part of the operating
system (sockets, ports,remote devices)
Client/server applications appear

� Parallel Machines (lowest latency,high bandwidth - dedicated networks)

Ncube
Intel (Hypercubes, Paragon)
Meiko (CS1,CS2)
TMC (CM-5)

� Workstation clusters (lower latency, high bandwidth, popular networks)

IBM (SP1,2) - optional proprietary network

� Software (libraries):

CrOS, CUBIX, NX, Express
Vertex
EUI/MPL (adjusts to the machine operating system)
CMMD
PVM (supports heterogeneous machines; dynamic machine con�guration)
PARMACS, P4, Chamaleon
MPI (analgum of everything above and adjusts to the operating system)

� Systems:

Mach
Linda (object-based system)

8.5.3 Machine Characteristics

� Nodes:

CPU, local memory,perhaps local I/O

48 Math 18.337, Spring 1996

� Networks:

Topology: Hypercube,Mesh,Fat-Tree, other
Routing: circuit, packet, wormhole, virtual channel random
Bisection bandwidth (how much data can be sent along the net)
Reliable delivery
Flow Control
\State" : Space sharing, timesharing, stateless

� Network interfaces: Dumb: Fifo, control registers
Smart: DMA (Direct Memory Access) controllers
Very Smart: handle protocol managememt

8.5.4 CM-5 /CMOST Environment:

� Sparc (or sparc superscalar) nodes (optional vector units). 32-128 MB memory

� Sparc (or sparc superscalar) control processor.

� Dedicated Network (Fat-tree). Two data router links per node, 20 MB/s each.

� Separate cooperative communications support in network

� Bisection Bandwidth is 5 MB/s/node (higher on CM-5E)

� Network support for all timesharing (all fall down)

� CMOST operating system:
Unix (SunOS) derived
Time sharing
Data Parallel antecedents
Single process model
Memory mapped NI

8.6 Mechanics of Message Passing :

8.6.1 Sending and receiving

Sending and receiving:

� CMMD send block (destination, tag, bu�er, len)
CMMD receive block(source, tag, bu�er, len)

� A pairwise synchronizing operation

� High level \Heavyweight" functions

� Designed to prevent network deadlock if used properly (\Safe")

� Relatively high latency:
Handshaking protocol used

Chapter 8 Parallel Programming 49

RTS Packet

Sender

CMMD_send_block

Send Request

wait

Receive
Acknowledgement

Send Data

Receiver

CMMD-receive_block

wait

Receive Request

Send
Acknowledgement

wait

Receive Data

Ack Packet

Data Packet(s)

Figure 8.1: CMMD Cooperative Message Passing Protocol

� Bandwidth limited to unidirectional rates

� Resources:
Messages bu�ered by sender
Send side queue: waiting ACK
Receive side queues: ready to send, waiting to receive

� Interrupts used but not required (not a user concern)

� All packets managed by the system

� Send and receive must match characteristics:
tag match (or wildcard on receive)
source match (or wildcard on receive)
Only min(slen, dlen) bytes actually sent

Receiving considerations:

� Can post receive before send

� Can query the ready to receive queue for speci�c messages:
CMMD msg pending (src, tag)

� If a desired message is pending, can query for characteristics:
CMMD bytes received()
CMMD msg sender()
CMMD msg tag()

� Can then allocate desired bu�er size and post a receive

50 Math 18.337, Spring 1996

8.6.2 Bidirectional transfers:

� CMMD send and receive (source,tag,inbuf,len,dest,tag,outbuf,len)

� Higher latency (setup both in and out transactions)

� Higher bandwidth (don't have to reenter inner kernel twice)

� Allows for more data parallel like communication (cshifts etc.)

8.6.3 Adding send side bu�ering:

� CMMD send noblock (dest, tag, buf, len)

� Returns immediately (either sends message or copies it into a system bu�er)

� Copying data can be expensive.

� Dangerous - system bu�er space may not be available.

� Provides behavior compatible with NX csend

� Europeans frequently expect/request this style of messaging.

� Hides latency?

� Same protocol as CMMD send block

8.6.4 'One touch' non blocking messaging

� CMMD send async (dest, tag, bu�er, length, handler, h-arg)
CMMD receive async(source, tag, bu�er, length, handler, h-arg)

� Returns a message Control Block (MCB) immediately

� Contract: no user bu�er changes until MCB indicates operation is done

� Handlers are invoked when operation is complete:
Handler is a function of two arguments: MCB and h-arg.
Handler is executed with interrupts disabled.

� Handlers are invoked 'asynchronously' with respect to the main user thread of control. In-
troduces the notion of a critical section.

� Query functions required:
CMMD mcb node(mcb)
CMMD mcb source(mcb)
CMMD mcb tag(mcb)
CMMD mcb bytes(mcb)

� Querying for message arrival:
CMMD mcb pending(source, tag)

Chapter 8 Parallel Programming 51

� Querying for completion:
CMMD msg done(mcb)
CMMD all msgs done()

� Waiting for message completion:
CMMD msg wait(mcb)
CMMD all msgs)wait()

� Resources:
Same queues as non-blocking functions
MCBs are a �nite resource: CMMD mcb free(mcb);
Dependence on interrupts.

� Actual transaction is synchronizing, but user code does not wait for synchronization(latency
hiding).

8.6.5 Optimizing for repetitive communications patterns: channels.

� Saves latency: handshake is performed only once. Resources reused.

� Channel state: a slightly di�erent view of communication management.

� Behavior is asynchronous

� Channels are unidirectional.

� Establishing a channel:
CMMD open send channel(dest, tag, bu�er, len).
CMMD open receive channel(source, tag, bu�er, len).
Sending and receiving functions must agree in tag and bu�er length.
A Channel Descriptor xcdjx = (r; s) is returned by each function.
This is similar, in constitution and function, to an MCB.

� Operation on a channel:
CMMD write channel(scd)
Sends a message when the channel is writable.
Message arrives in receiver's bu�er without notice.

� Querying channel state:
CMMD send channel status(scd)
CMMD receive channel status(rcd)
CMMD is channel writable(scd)
CMMD is channel readable(rcd)

� Allows user to structure code to avoid latency. Check for message arrival only when algorith-
mically necessary. Wait only when necessary.

� Closing channels. Freeing resources:
CMMD close send channel(scd)
CMMD close receive channel(rcd)
CMMD all channels free()
CMMD all channels free wait()

52 Math 18.337, Spring 1996

� Channel descriptors are a �nite resource in the same sense as MCBs. They are freed auto-
matically when both the send and receive descriptors are in the closed state.

� Channels are somewhat lower level, less 'safe' functions. There is more than can go wrong,
more state to check. The user must trade o� the additional performance and
exibility against
the additional responsibility.

8.6.6 Observations on standard message passing:

� Some sort of synchronization or rendezvous is required.

� Programmer must schedule both ends of each transaction. That is, a send must be matched
by a receive somewhere (slightly relaxed in case of a channel).

� Overheads (latencies) are relatively high. This encourages the programmer to view commu-
nications as expensive to very expensive operations.

� To counter this expense, latency hiding is attempted. The success of such strategies varies
widely depending on the behavior (sophistication) of the underlying hardware (DMA or co-
processor available?).

� Latency hiding a�ects code structure. This e�ect has already been noticed by programmers
and compiler writes who have had to deal with the ever increasing distance between fast
processors and their memories. Operand prefetch and instruction scheduling become at once
important and more di�culties (many more cycles to hide).

� Proposed alternative? Reduce message latency as much as possible. Get rid of extraneous
protocol. Don't preclude the user from gaining performance in the gain of safety.

8.7 Non-traditional messaging: Active Messages and Ports

� An active message is conceptually similar to a UNIX remote procedure call.

It is a single packet message.
The �rst word contains the address of a function.
The remaining words contain arguments to which the function is to be applied.
When the message is sent, the function pointer and arguments are copied from
registers to the network interface (no unnecessary memory use).
Upon receipt, the receiving processor immediately constructs a stack frame with
the received arguments and executes the function at the address speci�ed by the
pointer.

� Extremely lightweight (low latency)

� Designed as a compiler target (an assembly language for communication). Allows communi-
cation to be better integrated with computation

� Ideas borrowed from data
ow philosophy.

� Work done by von Eicken, Culler et al at UC Berkeley (Threaded Abstract Machine project)

Chapter 8 Parallel Programming 53

8.7.1 Active Messages:

Active message variants:

� CMAML requests(dest, ptr, arg1, arg2, arg3, arg4)
CMAML reply(dest, ptr, arg1, arg2, arg3, arg4)
CMAML rpc(dest, ptr, arg1, arg2, arg3, arg4)

� Pointer arguments specify destination handlers. Handlers execute in interrupt scope.

� Request sends on left DR channel. Interrupt status of sender is not important.

� Reply can only occur in the handler of a request. It is sent on the right DR channel.

� RPC can only be sent with the interrupts disabled. In its handler, any communication can
be initiated.

� On CM-5E, longer packet variants of these will be available.

Interrupt control and polling functions:

� CMAML enable interrupts()
CMAML disable interrupts()
CMAML poll()

� Many polling variants (with unusual semantics)

8.7.2 Observations on Active messages:

� Original intent was to provide 'surgical' communications control. Handlers are expected to
be short. Get the data out of the network and into the destination as quickly as possible.

� Originally designed to work only with a polling interface (compiler would have complete
knowledge of communications schedule).

� Extended (bastardized) by TMC to work in the context of interrupts. Also to be used by
mere mortals.

� Speed is all. Safety is nonexistent. User control of interrupts allows for all sorts of potential
problems. E.g. router deadlock, critical section violations.

� Extremely
exible. Other protocols can be built on top of these. E.g. CMMD.

� Request/reply protocol was implemented to use the CM-5 network in such a way as to prevent
deadlock. Blumofe (MIT) notes that this is overly restrictive.

� Can think of active messages invoking new threads of control upon arrival. When combined
with interrupts, this may complicate some code (user must consider safety issues).

� The idea of active messages seems simple, but it's actually very recent.

54 Math 18.337, Spring 1996

RTS Packet

Sender

CMMD_send_block

Send Request

wait

Receive
Acknowledgement

Send Data

Receiver

CMMD-receive_block

wait

Receive Request

Send
Acknowledgement

wait

Receive Data

Ack Packet

Data Packet(s)

Figure 8.2: Rport structure

8.7.3 Rports

� Active messages are good for moving small amounts of data. What about moving large
amounts?

� Desire transport with several properties:
Latency be kept at a minimum as if with active messages
Protocol should be kept to a minimum. This allows policy to be moved up to higher

levels (simpli�es design). As much as possible, the mechanish should not prevent the user
from doing anything.

� Solution (also from UC Berkeley)
An rport is a sized destination for data. Once established by the receiver, data may be

deposited at the destination by any sender. Once the destination has received the expected
amount of data, the optional handler may be invoked.

Allocation and release:

� CMAML allocate rport()
CMAML allocate this rport(rport id)
CMAML free rport(rport id)

Setting rport characteristics:

� CMAML set rport addr(rport id, *bu�er)
CMAML set rport byte counter(rport id, count)
CMAML set rport handler(rport id, *handler)
CMAML set rport handler arg2(rport id, arg)
CMAML set rport total nbytes(rport id, size)

� Total nbytes is the size of the rport (the amount of data expected)

� Byte counter is the size less the number of bytes already received

Chapter 8 Parallel Programming 55

� Query functions exist as well

� Limited number of rports:
CMAML number of rports()
CMAML number of free rports()

Sending to an rport:

� CMAML scopy(dest, rport id, dest align, dest o�set, *bu�er, nbytes, *handler, arg).

� Rport id is the identity of the rport at the destination.

� Dest align indicates alignment of start of bu�er at destination.

� Dest o�set indicates how far into the bu�er to start.

� Nbytes is the number of bytes to send.

8.7.4 Observations on Rports:

� Receiver controls the size of the rport (it can be changed after allocation).

� Receiver must reset byte counter before rport reuse.

� Senders may execute a handler after sending has been completed.

� Up to the user to create a protocol based on these primitives.

� Many ways to go wrong.

� Very
exible. Can implement many-to-one patterns as well as point-to-point patterns.

� With interrupts enabled, operation is completely asynchronous. No rendezvous or synchro-
nization is required.

8.7.5 Miscellaneous caveats regarding Active Messages and Rports:

� Remember to poll

� Be careful with interrupts. Be sure to preserve
oating point state if necessary:
CMAML save fpu regs()
CMAML restore fpu regs()

� Interrupts are expensive.

� Beware of handler recursion. CMMD assigns priorities to message types and handlers:
Request, Reply
RPC
Scopy
Handlers
Main thread

56 Math 18.337, Spring 1996

� Lower priority items are queued when a higher priority event occurs. The queue is drained
(in queue order) before control is return to the main thread. There is limited queue space.

� Flags are volatile. Compilers need to be told that.

� Message order is not preserved (one active message may overtake another).

8.7.6 Conclusions on message passing

There are dozens of libraries to perform such natural actions as send and receive. A standard
library emerged for message passing (PVM), if you are willing to pay its performance cost. Also,
PVM runs on networks of workstations, enabling another form of parallelism; PVM takes care of
such issues as di�erent endianity of the processors. Another standard library seems to emerge,
called MPI; therefore neither is standard.

Chapter 9

Modeling Parallel Algorithms

To model and evaluate a parallel algorithm we need to analyze its performance. Two important
parameters are speedup and e�ciency. For each problem, there is a parameter n that describes
the size of the problem. For example, n can be the number of particles in a particle simulation
problem, or n can be the number of nonzero entries of a sparse matrix. Suppose we solve it on one
processor in time T (n; 1) and on p processors in time T (n; p). Then the speedup is

S(n; p) =
T (n; 1)

T (n; p)

and the e�ciency is
E(n; p) = S(n; p)=p:

The senquntial time T (n; 1) in some sense give the total work needed to be done to solve
the problem. On p machines, the total work given by p � T (n; p) and hence the overhead of the
parallelization H(n; P) is equal to p _T (n; p)� T (n; 1).

57

58 Math 18.337, Spring 1996

Chapter 10

Primitives

We now discuss a set of primitive functions that are frequently used in parallel programming. Many
Scienti�c libraries support these functions.

10.1 Parallel Pre�x

An important primitive for (data) parallel computing is the scan operation, also called pre�x sum
which takes an associated binary operator � and an ordered set [a1; :::; an] of n elements and returns
the ordered set

[a1; (a1� a2); :::; (a1� a2 � :::� an)]:

For example,

plus scan([1; 2; 3; 4; 5; 6; 7; 8]) = [1; 3; 6; 10; 15; 21; 28; 36]:

Notice that computing the scan of an n-element array requires n � 1 serial operations.

Suppose we have n processors, each has a element of the array. If we are interested only in
the last element, namely the total sum of the arrays, then it is easy to see how to compute it
e�ciently in parallel: we can just break the array recursively into two halves, and add the sums
of the two halves, recursively. Associated with the computation is a complete binary tree. With
n processors, this takes O(logn) steps. If we have only p < n processors, we can break the array
into p subarray, each has roughly dn=pe elements. At the �rst step, each processor adds its own
elements. The problem is then reduced to one with p elements. So we can perform the log p time
algorithm. The total time is clearly O(n=p + log p) and communication only occur in the second
step. For architecture like hypercube and fat tree, we can embed the complete binary tree so that
the communication is performed by communication link directly.

Now we discuss a parallel method of �nding all elements [b1; :::; bn] = � scan[a1; :::; an] in
O(logn) time assume we have n processors each has an element of the array. The following is a
Parallel Pre�x algorithm to compute the scan of an array.

Function scan([ai]):

1. c2i := a2i�1 � a2i (all i)

2. [b2i] := scan([c2i]) (all i)

3. b2i+1 := b2i � a2i+1 (all i) Return [bi]

59

60 Math 18.337, Spring 1996

1 2 3 4 5 6 7 8

1 3 6 10 15 21 28 36

3 7 11 15

3 10 21 36

III:

II:

I:

Figure 10.1: Action of the Parallel Pre�x algorithm. The array in II comes from running scan

recursively on the array in I.

The total number of � operations performed by this algorithm is (ignoring a constant term of
�1):

Tn =

Iz}|{
n

2
+

IIz }| {
Tn=2+

IIIz}|{
n

2
= n+ Tn=2

= 2n

If there is a processor for each array element, then the number of parallel operations is:

Tn =

Iz}|{
1 +

IIz }| {
Tn=2+

IIIz}|{
1

= 2+ Tn=2

= 2 lgn

In practice, we usually do not have a processor for each array element. Instead, there will likely
be many more array elements than processors. If we have 32 processors and an array of 32000
numbers, then each processor should store a contiguous section of 1000 array elements. Suppose we
have n element and p processors. In the following assume k = n=p, then the procedure to compute
the scan is:

1. At each processor i, compute a local scan serially, for n=p consecutive elements, giving result
[di1; d

i
2; : : : ; d

i
k]. Notice that this step vectorizes over processors.

2. Use the parallel pre�x algorithm to compute scan([d1k; d
2
k; : : : ; d

p
k]) = [b1; b2; : : : ; bp]

3. At each processor i > 1, add bi�1 to all elements d
i
j .

The time taken for the will be

T = 2 �

time to add and store
n=p numbers serially

!
+ 2 � (log p) �

0
B@ Communication time

up and down a tree;
and a few adds

1
CA

Chapter 10 Primitives 61

10.2 Segmented Scan

We can extend the parallel scan algorithm to perform segmented scan. In segmented scan the
original sequence is used along with an additional sequence of booleans. These booleans are used
to identify the start of a new segment. Segmented scan is simply pre�x scan with the additional
condition the the sum starts over at the beginning of a new segment (which is indicated by a
one in the string of booleans). Thus the following inputs would produce the following result when
applying segmented plus scan on the array A and boolean array C.

A = [1 2 3 4 5 6 7 8 9 10]

C = [1 0 0 0 1 0 1 1 0 1]

plus scan(A;C) = [1 3 6 10 5 11 7 8 17 10]

We now show how to reduce segmented scan to simple scan. We de�ne an operator (
L

2) that
combines the vectors A and C (see above) which takes 2 operands x and y. These operands are
simply 2 element column vectors where the �rst entry is from vector (A) and the second entry is
from vector (C). Thus the 2-element representation of the example above is given as:

1
1

!
2
0

!
3
0

!
4
0

!
5
1

!
6
0

!
7
1

!
8
1

!
9
0

!
10
1

!

The operator (
L

2) is de�ned as follows:

L
2

y
0

!
y
1

!

x

0

!
x+ y

0

!
y

1

!

x
1

!
x+ y
1

!
y
1

!

As an easy assignment, we can show that the binary operator
L

2 de�ned above is associative
and satis�es has the following property: For each vector A and each boolean vector C, let AC be
the 2-element representation of A and C. For each binary associative operator �, theL2-scan(AC)
gives a 2-element vector whose �rst row is equal to the vector computed by segmented �-scan(A;C);
whose second vector is the all 1's vector. Therefore, we can apply the parallel scan algorithm to
compute the segmented scan.

Notice that the method of assigning each segment to a separate processor may results in load
imbalance.

10.3 Sorting and Selection

Sorting is one of the most important operations in computations. The problem is de�ned as:
given an array of n elements S = fs1; :::; sng, transform S into an array S0 = fs�(1); :::; s�(n)g by
permutation such that s�(i) � s�(i+1) for all 1 � i � n � 1. The rank of the element s�(i) is i. The
problem of �nding the rank of all element (without permuting) is called the ranking problem.

62 Math 18.337, Spring 1996

The kth element selection problem is de�ned as: given an array of n elements S = fs1; :::; sng
and an integer k, �nd the element of rank k. The k smallest elements selection problem is to �nd
the set of all elements whose rank is no more than k.

Sorting and selection on parallel computers have been studied intensively. E�cient algorithms
are given in the forms of sorting networks, shared memory algorithms, as well as sorting algorithms
on particular parallel architectures such as hypercubes, lines and meshes. We refer the reader to
the book of Tom Leighton for more complete covering. Here we present an algorithm that use
parallel scan for the selection problem.

The algorithm is based on \quick selection", a variant of quick sort (which is available in the
Unix library). The quick selection algorithm can be described as following:

Algorithm: Quick-Selection(A; k)

1. Choose a random index i. We call A[i] the sample.

2. Compute the number m< of the elements that are smaller than A[i] and the number m= of
elements that are equal to A[i].

3. If m< < k and m< +m= � k, return A[i].

4. If m� = m<+m= < k, �nd the set A> of all elements that are larger than A[i] and recursively
call Qucik-Selection(A> ; k�m�).

5. Else �nd the set A< of all elements that are less than A[i] and recursively call Qucik-
Selection(A< ; k).

The expected sequential time of Quick-Selection is O(n). In parallel, the key computational
steps are the computation of m<, m=, A< or A>. The m< can be found by a reduction operation
as following. Generate a 0-1 array C such that C[j] = 0 if A[j] < A[i]. On a parallel machine,
we need to \broadcast" A[i] to all the processors. The m< is equal to the sum of elements in C
which can be found by a reduction. Similarly, we can compute m=. To construct A< in an array
representation, we also use the C vector. By applying pre�x sum on C, i.e., B = plus-scan(C), if
C[j] = 1 then A<[B[j]] = A[j]. So a parallel pre�x sum following by an \array indexing" will allow
to construct A<. Therefore, the expect number of pre�x sum operations needed by Quick-Selection
is O(logn).

Similar pre�x sum based quick sort, shells sort, and bucket sort can be developed. Interested
readers can �nd some of them and some other applications of pre�x sum in the book by Guy
Blelloch.

With the help of randomization, we can selection with constant number of parallel scans. This
is the �rst time we publish this selection algorithm.

Select the kth smallest element.

� Select a random m =
p
n elements S = fs1; :::; smg.

� Sort the sample S into s�(1) < s�(2) < ::: < s�(m) using the parallelization of the all-pairs
comparison algorithm.

� Using parallel scan to �nd all element A0 in the interval [s�(bk=pc�1); s�(dk=pe+1)] as well as the
number m< the number of elements that are smaller than s�(bk=pc�1) and the number m> the
number of elements that are larger than s�(dk=pe+1).

Chapter 10 Primitives 63

� From m< and m>, we can decide whether the kth smallest element is the A0. If it is not in
A0 or jAj > 2

p
n, we repeat the algorithm, else we sort A0 using the parallelization of the

all-pairs comparison algorithm and return the proper element.

We can show that the expect number of tries in the above algorithm is bounded by a constant
and hence only a constant number of pre�x sums are needed.

10.4 FFT

The Fast Fourier Transform is perhaps the most important subroutine in scienti�c computing. It
has applications ranging from multiplying numbers and polynomials to image and signal processing,
time series analysis, and the solution of linear systems and PDEs. There are tons of books on the
subject including two recent worderful ones by Charles van Loand and Briggs.

The Fourier transform of a vector x is y = Fnx, where Fn is the n � n matrix whose entry
(Fn)jk = e�2�ijk=n , j; k = 0 : : :n � 1. It is nearly always a good idea to use 0 based notation (as
with the C programming language) in the context of the discrete Fourier transform. The negative
exponent corresponds to Matlab's de�nition. Indeed in matlab we obtain fn=fft(eye(n)).

A good example is

F4 =

0
BBB@

1 1 1 1
1 �i �1 i

1 �1 1 �1
1 i �1 �i

1
CCCA :

Sometimes it is convenient to denote (Fn)jk = !jkn , where !n = e�2�=n.
The Fourier matrix has more interesting properties than any matrix deserves to have. It is

symmetric (but not Hermitian). It is Vandermonde (but not ill-conditioned). It is unitary except
for a scale factor (1p

n
Fn is unitary). In two ways the matrix is connected to group characters: the

matrix itself is the character table of the �nite cyclic group, and the eigenvectors of the matrix are
determined from the character table of a multiplicative group.

The trivial way to do the Fourier transform is to compute the matrix-vector multiply requiring
n2 multipilications and roughly the same number of additions. Cooley and Tukey gave the �rst
O(n logn) time algorithm (actually the algorithm may be found in Gauss' work) known today as
the FFT algorithm. We shall assume that n = 2p and let m = n=2. Then
[This will be rewritten in matrix notation]

yj = (Fnx)j =
n�1X
k=0

!jkn xk

can be cut into the even and the odd parts:

yj =
m�1X
k=0

!2jk
n x2k + !jn

m�1X
k=0

!2jk
n x2k+1

!
;

since !2
n = !m, the two sums are just FFT(xeven) and FFT(xodd). With this remark (see Fig. 1),

yj =
Pm�1

k=0 !jkm x2k + !jn

�Pm�1
k=0 !jkm x2k+1

�
yj+m =

Pm�1
k=0 !jkm x2k � !jn

�Pm�1
k=0 !jkm x2k+1

�
:

Then the algorithm keeps recurring; the entire \communication" needed for an FFT on a vector of
length 8 can be seen in Fig. 2

64 Math 18.337, Spring 1996

The number of operations for an FFT on a vector of length n equals to twice the number for
an FFT on length n=2 plus n=2 on the top level. As the solution of this recurrence, we get that
the total number of operations is 1

2n logn.

Now we analyze the data motion required to perform the FFT. First we assume that to each
processor one element of the vector x is assigned. Later we discuss the \real-life" case when the
number of processors is less than n and hence each processor has some subset of elements. We also
discuss how FFT is implemented on the CM-2 and the CM-5.

The FFT always goes from high order bit to low order bit, i.e., there is a fundamental asymmetry
that is not evident in the �gures below. This seems to be related to the fact that one can obtain
a subgroup of the cyclic group by alternating elements, but not by taking, say, the �rst half of the
elements.

10.4.1 Data motion

Let ipip�1 : : : i2i1i0 be a bit sequence. Let us call i0i1i2 : : : ip�1ip the bit reversal of this sequence.
The important property of the FFT network is that if the i-th input is assigned to the i-th pro-
cessor for i � n, then the i-th output is found at the processor with address the bit-reverse of i.
Consequently, if the input is assigned to processors with bit-reversed order, then the output is in
standard order. The inverse FFT reverses bits in the same way.

To see why FFT reverses the bit order, let us have a look at the i-th segment of the FFT
network (Fig. 3). The input is divided into parts and the current input (top side) consists of FFT's
of these parts. One \block" of the input consists of the same �xed output element of all the parts.
The i� 1 most signi�cant bits of the input address determine this output element, while the least
signi�cant bits the the part of the original input whose transforms are at this level.

The next step of the FFT computes the Fourier transform of twice larger parts; these consist
of an \even" and an \odd" original part. Parity is determined by the i-th most signi�cant bit.

Now let us have a look at one unit of the network in Fig. 1; the two inputs correspond to the
same even and odd parts, while the two outputs are the possible \farthest" vector elements, they
di�er in the most signi�cant bit. What happens is that the i-th bit jumps �rst and becomes most
signi�cant (see Fig. 3).

Now let us follow the data motion in the entire FFT network. Let us assume that the i-th input
element is assigned to processor i. Then after the second step a processor with binary address
ipip�1ip�2 : : : i1i0 has the ip�1ipip�2 : : : i1i0-th data, the second bit jumps �rst. Then the third,
fourth, : : :, p-th bits all jump �rst and �nally that processor has the i0i1i2 : : : ip�1ip-th output
element.

.

..

.

..

.

..

..

..
..
..
..
..
..
..
..
...
...
............................

....
..
..
..
..
..
.
..
.
..
.
..
.
..
..
..
..
..
...
.............................

....
..
...
..
.
..
..
.
..
..
..
..
..
.
..
..
.

.

.

..

.

..

..

..

..
..
..
.
..
..
..
..
..
...
....
...........................

...
...
..
..
.
..
..
.
..
.
..
.
..
.
..
..
..
..
....
............................

....
..
...
.
..
..
..
..
.
..
..
..
.
..
..
.
..

..
...
..
...
..
...
..
...
..
...
..
...
...
..
...
..
...
..
...
..
...
..
...
...
..
...
..
...
..
...
..
...
..
...
...
..
...
..
...
..
...
..
...
..
...
...
..
...
..
...
..
...
..
...
..
...
..
...
...
..
...
..
...
..
...
..
...
..
...
...
..
...
..
..

..

FFT(xeven)

!j
nFFT(xodd)

+

�

yj

yj+m

Figure 10.2: Recursive block of the FFT.

Chapter 10 Primitives 65

..
....
....
....
....
...
....
....
....
...
....
....
....
....
...
....
....
....
....
...
....
....
....
...
....
....
....
....
...
....
....
....
....
...
....
....
....
...

..
....
....
....
....
...
....
....
....
...
....
....
....
....
...
....
....
....
....
...
....
....
....
...
....
....
....
....
...
....
....
....
....
...
....
....
....
...

..
....
....
....
....
...
....
....
....
...
....
....
....
....
...
....
....
....
....
...
....
....
....
...
....
....
....
....
...
....
....
....
....
...
....
....
....
...

..
....
....
....
....
...
....
....
....
...
....
....
....
....
...
....
....
....
....
...
....
....
....
...
....
....
....
....
...
....
....
....
....
...
....
....
....
...

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

..
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
..

...
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
.

...

..
...
..
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
.

..
..
.
..
.
..

..
..
.
..
.
..

..

..

.

..

.

..

..

..
.
..
.
..

..
..
.
..
.
..

..
..
.
..
.
..

..
..
.
..
.
..

..

..
.
..
.
..

..
..
.
..
.
..

..
..
.
..
.
..

..

..
.
..
.
..

..

..
.
..
.
..

..
..
.
..
.
....

...
...
..

..
...
...
..

..

...
...
..

..

...
...
..

..
...
...
..

..
...
...
..

..
...
...
..

..

...
...
..

..
...
...
..

..
...
...
..

..

...
...
..

..

...
...
..

..
...
...
..

..........

..........

..........

..........

..........

..........

..........

..........

..........

...
..
..
...
.

...
..
..
..
.

..
..
..
..
..

..
..
...
..
.

...
..
..
..
.

..
..
..
..
..

..
..
...
..
.

..
..
..
..
..

..
..
..
...
.

.

..........

..........

..........

..........

..........

..........

..........

..........

..........

...
..
..
...
.

...
..
..
..
.

..
..
..
..
..

..
..
...
..
.

...
..
..
..
.

..
..
..
..
..

..
..
...
..
.

..
..
..
..
..

..
..
..
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..x0

x1

x2

x3

x4

x5

x6

x7

y0

y4

y2

y6

y1

y5

y3

y7

Figure 10.3: FFT network for 8 elements. (Such a network is not built in practice)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0
1
1

0 01
0 1

0
0 1

0
1
1

1
0

0
1

1
10

0

xxxxxxxx

xxxxxxxx

.

..

...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...

.

..

...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...

.

..

...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...

...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
.

.

...
..
...
.

.

...
..
...
.

.

...
..
...
.

.

...
..
...
.

.

...
...
..
.

.

...
...
..
.

.

...
...
..
.

..

..

...
..
.

..

..

...
...

.

.

...
..
...
.

.

...
..
...
.

.

...
..
...
.

.

...
..
...
.

.

...
...
..
.

.

...
...
..
.

.

...
...
..
.

..

..

...
..
.

..
..
...
...

.

.

...
..
...
.

.

...
..
...
.

.

...
..
...
.

.

...
..
...
.

.

...
...
..
.

.

...
...
..
.

.

...
...
..
.

..
..
...
..
.

..
..
...
...

.

.

...
..
...
.

.

...
..
...
.

.

...
..
...
.

.

...
..
...
.

.

...
...
..
.

.

...
...
..
.

.

...
...
..
.

..

..
...
..
.

..
..
...
...

.

xxxxxxxx

xxxxxxxx

.

..

...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...

.

..

...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...

.

..

...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...

...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
.

.

...
..
...
.

.

...
..
...
.

.

...
..
...
.

.

...
..
...
.

.

...
...
..
.

.

...
...
..
.

.

...
...
..
.

..

..

...
..
.

..

..
...
...

.

.

...
..
...
.

.

...
..
...
.

.

...
..
...
.

.

...
..
...
.

.

...
...
..
.

.

...
...
..
.

.

...
...
..
.

..

..
...
..
.

..
..
...
...

.

.

...
..
...
.

.

...
..
...
.

.

...
..
...
.

.

...
..
...
.

.

...
...
..
.

.

...
...
..
.

.

...
...
..
.

..

..

...
..
.

..

..
...
...

.

.

...
..
...
.

.

...
..
...
.

.

...
..
...
.

.

...
..
...
.

.

...
...
..
.

.

...
...
..
.

.

...
...
..
.

..
..
...
..
.

..
..
...
...

.

0
1

..

.

.

..

.

..

.

.

..

.

..

.

.

..

..

..
..
..
..
..
..
..
..

.

.

..

..

.

..

..

.

..

.

..

..

.

..

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

.

.

..

.

..

.

..

.

..

.

..

.

..

...

..
..
..
..
..
.
..
..
..

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
.
..
..
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.block pos

parity

inside pos

new block

previous

next
phase

phase
the i-th bit
becomes �rst

Figure 10.4: The output of FFT is in bit-reversed order.

10.4.2 FFT on parallel machines

In a realistic case, on a parallel machine some bits in the input address are local to one processor.
The communication network can be seen in Fig. 4, left. FFT requires a large amount of commu-
nication; indeed it has fewer operations per communication than usual dense linear algebra. One
way to increase this ratio is to combine some layers into one, as in Fig. 4, right. If s consecutive
layers are combined, in one step a 2s � 2s matrix multiplication must be performed. Since matrix
multiplication vectorizes and usually there are optimized routines to do it, such a step is more
e�cient than communicating all small parts. Such a modi�ed algorithm is called the High Radix

FFT.

The FFT algorithm on the CM-2 is basically a High Radix FFT. However, on the CM-5 data
motion is organized in a di�erent way. The idea is the following: if s bits of the address are local
to one processor, the last s phases of the FFT do not require communication. Let 3 bits be local

66 Math 18.337, Spring 1996

Figure 10.5: Left: more than one element per processor. Right: one box is a 4� 4 matrix multiply.

to one processor, say. On the CM-5 the following data rearrangement is made: the data from the

ipip�1ip�2 : : : i3ji2i1i0 -th
processor is moved to the

i2i1i0ip�3ip�4 : : : i3jipip�1ip�2 -th!

This data motion can be arranged in a clever way; after that the next 3 steps are local to processors.
Hence the idea is to perform all communication at once before the actual operations are made.

10.4.3 Exercise

1. In Matlab use the flops function to obtain a
ops count for FFT's for di�erent power of 2
size FFT's. Make you input complex. Guess a
op count of the form a+bn+c logn+dn logn.
Remembering that Matlab's \ operator solves least squares problems, �nd a; b; c and d. Guess
whether Matlab is counting
ops or using a formula.

10.5 Matrix Multiplication

Everyone thinks that to multiply two 2-by-2 matrices requires 8 multiplications. However, Strassen
gave a method, which requires only 7 multiplications! Actually, compared to the 8 multiplies and
4 adds of the traditional way, Strassen's method requires only 7 multiplies but 18 adds. Nowadays
when multiplication of numbers is as fast as addition, this does not seem so important. However
when we think of block matrices, matrix multiplication is very slow compared to addition. Strassen's
method will give an O(n2:8074) algorithm for matrix multiplication, in a recursive way very similar
to the FFT.

First we describe Strassen's method for two block matrices:�
A1;1 A1;2

A2;1 A2;2

�
�
�
B1;1 B1;2

B2;1 B2;2

�
=

�
P1 + P4 � P5 + P7 P3 + P5

P2 + P4 P1 + P3 � P2 + P6

�

Chapter 10 Primitives 67

where

P1 = (A1;1 + A1;2)(B1;1 +B2;2) ;

P2 = (A2;1 + A2;2)B1;1 ;

P3 = A1;1(B1;2 �B2;2) ;

P4 = A2;2(B2;1 �B1;1) ;

P5 = (A1;1 + A1;2)B2;2 ;

P6 = (A2;1 � A1;1)(B1;1 +B1;2) ;

P7 = (A1;2 � A2;2)(B2;1 +B2;2) :

If, as in the FFT algorithm, we assume that n = 2p, the matrix multiply of two n-by-n matrices
calls 7 multiplications of (n=2)-by-(n=2) matrices. Hence the time required for this algorithm is
O(nlog2 7) = O(n2:8074). Note that Strassen's idea can further be improved (of course, with the loss
that several additions have to be made and the constant is impractically large) the current such
record is an O(n2:376)-time algorithm.

A �nal note is that, again as in the FFT implementations, we do not recur and use Strassen's
method with 2-by-2 matrices. For some su�cient p, we stop when we get 2p � 2p matrices and use
direct matrix multiply which vectorizes well on the machine.

10.6 Basic Data Communication Operations

We conclude this section by list the set of basic data communication operations that are commonly
used in a parallel program.

� Single Source Broadcast:
� All-to-All Broadcast:
� All-to-All Personalized Communication:

� Array Indexing or Permutation: There are two types of array indexing: the left array
indexing and the right array indexing.

� Polyshift: SHIFT and EOSHIFT.

� Sparse Gather and Scatter:

� Reduction and Scan:

68 Math 18.337, Spring 1996

III Multipole Methods

Di�erential-equation based numerical methods are very important and have been applied to a
large class of scienti�c problems. \However, not everyone has a complete faith in di�erential-
equation based methods. Particles methods provide them with an alternative numerical approach to
formulate and solve their problems from �rst principles" { paraphrased from Ahmed Sameh.

Chapter 11

Particle Methods

11.1 Reduce and Broadcast: A function viewpoint

[This section is being rewritten with what we hope will be the world's clearest explnation of the
fast multipole algorithm. Readers are welcome to take a quick look at this section, or pass to the
next section which leads up to the multipole algorithm through the particle method viewpoint]

Imagine we have P processors, and P functions f1(z); f2(z); : : : ; fP (z), one per processor. Our
goal is for every processor to know the sum of the functions f(z) = f1(z) + : : :+ fP (z). Really this
is no di�erent from the reduce and broadcast situation given in the introduction.

As a practical question, how can functions be represented on the computer? Probably we should
think of Taylor series or multipole expansion. If all the Taylor series or multipole expansions are
centered at the same point, then the function reduction is easy. Simply reduce the corresponding
coe�cients. If the pairwise sum consists of functions represented using di�erent centers, then a
common center must be found and the functions must be transformed to that center before a
common sum may be found.

Example: Reducing Polynomials Imagine that processor i contains the polynomial
fi(z) = (z� i)3. The coe�cients may be expanded out as fi(z) = a0+a1z+a2z

2+a3z
3.

Each processor i contains a vector (a0; a1; a2; a3). The sum of the vectors may be
obtained by a usual reduce algorithm on vectors.

An alternative that may seem like too much trouble at �rst is that every time we
make a pairwise sum we shift to a common midpoint. For example,

An example will go here

There is another complication that occurs when we form pairwise sums of functions. If the
expansions are multipole or Taylor expansions, we may shift to a new center that is outside the
region of convergence. The coe�cients may then be meaningless. Numerically, even if we shift
towards the boundary of a region of convergence, we may well lose accuracy, especially since most
computations choose to �x the number of terms in the expansion to keep.

Di�culties with shifting multipole or Taylor Expansions

69

70 Math 18.337, Spring 1996

The fast multipole algorithm accounts for these di�culties in a fairly simple manner. Instead
of computing the sum of the functions all the way up the tree and then broadcasting back, it saves
the intermediate partial sums summing them in only when appropriate. The �gure below indicates
when this is appropriate.

11.2 Particle Methods: An Application

Imagine we want to model the basic mechanics of our solar system. We would probably start with
the sun, somehow representing its mass, velocity, and position. We might then add each of the nine
planets in turn, recording their own masses, velocities, and positions at a point in time. Let's say
we add in a couple of hundred of the larger asteroids, and a few of our favorite comets. Now we set
the system in motion. Perhaps we would like to know where Pluto will be in a hundred years, or
whether a comet will hit us soon. To solve Newton's equations directly with more than even two
bodies is intractably di�cult. Instead we decide to model the system using discrete time intervals,
and computing at each time interval the force that each body exerts on each other, and changing
the velocities of the bodies accordingly. This is an example of an N-body problem. To solve the
problem in a simple way requires O(n2) time for each time step. With some considerable e�ort, we
can reduce this to O(n) (using the fast multipole algorithm to be described below). A relatively
simple algorithm the Barnes-Hut Algorithm, to be described below) can compute movement in
O(n log(n)) time.

11.3 Outline

� Formulation and applications

� \The easiest part": the Euler method to move bodies.

� Direct methods for force computation.

� Hierarchical methods (Barnes-Hut, Appel, Greengard and Rohklin)

11.4 What is N-Body Simulation?

We take n bodies (or particles) with state describing the initial position ~x1; ~x2; : : : ; ~xn 2 <k and
initial velocities ~v1; ~v2; : : : ; ~vn 2 <k.

We want to simulate the evolution of such a system, i.e., to compute the trajectories of each
body, under an interactive force: the force exerted on each body by the whole system at a given
point. For di�erent applications we will have di�erent interaction forces, such as gravitational or
Coulombic forces. We could even use these methods to model spring systems, although the advanced
methods, which assume forces decreasing with distance, do not work under these conditions.

11.5 Examples

� Astrophysics: The bodies are stars or galaxies, depending on the scale of the simulation.
The interactive force is gravity.

� Plasma Physics: The basic particles are ions, electrons, etc; the force is Coulombic.

Chapter 11 Particle Methods 71

Update configuration

Compute Force of Interaction

Collect statistical information

Figure 11.1: Basic Algorithm of N-body Simulation

� Molecular Dynamics: Particles are atoms or clusters of atoms; the force is electrostatic.

� Fluid Dynamics: Vortex method where particle are
uid elements (
uid blobs).

Typically, we call this class of simulation methods, the particle methods. In such simulations,
it is important that we choose both spatial and temporal scales carefully, in order to minimize
running time and maximize accuracy. If we choose a time scale too large, we can lose accuracy
in the simulation, and if we choose one too small, the simulations will take too long to run. A
simulation of the planets of the solar system will need a much larger timescale than a model of
charged ions. Similarly, spatial scale should be chosen to minimize running time and maximize
accuracy. For example, in applications in
uid dynamics, molecular level simulations are simply
too slow to get useful results in a reasonable period of time. Therefore, researchers use the vortex
method where bodies represent large aggregates of smaller particles. Hackney and Eastwood's
book Computer Simulations Using Particles,, McGraw Hill (1981), explores the applications
of particle methods applications, although it is somewhat out of date.

11.6 The Basic Algorithm

Figure 11.1 illustrates the key steps in n-body simulation. The step of collecting statistical infor-
mation is application dependent, and some of the information gathered at this step may be used
during the next time interval.

We will use gravitational forces as an example to present N-body simulation algorithms. Assume
there are n bodies with massesm1; m2; : : : ; mn, respectively, initially located at ~x1; :::; ~xn 2 <3 with
velocity ~v1; :::; ~vn. The gravitational force exert on the ith body by the jth body is given by

~Fij = G
mimj

r2
= G

mimj

j ~xj � ~xij3 (~xj � ~xi);

where G is the gravitational constant. Thus the total force on the ith body is the vector sum
of all these forces and is give by,

~Fi =
X
j 6=i

~Fij :

Let ~ai = d~vi=dt be the acceleration of the body i, where where ~vi = d~xi=dt. By Newton's second
law of motion, we have ~Fi = mi~ai = mid~vi=dt.

72 Math 18.337, Spring 1996

11.6.1 Finite Di�erence and the Euler Method

In general, the force calculation is the most expensive step for N-body simulations. We will present
several algorithms for this later on, but �rst assume we have already calculated the force ~Fi act-
ing one each body. We can use a numerical method (such as the Euler method) to update the
con�guration.

To simulate the evolution of an N -body system, we decompose the time interval into discretized
time steps: t0; t1; t2; t3; :::. For uniform discretizations, we choose a �t and let t0 = 0 and tk = k�t.
The Euler method approximates the derivative by �nite di�erence.

~ai(tk) = ~Fi=mi =
~vi(tk)� ~vi(tk ��t)

�t

~vi(tk) =
~xi(tk + �t)� ~xi(tk)

�t
;

where 1 � i � n. Therefore,

~vi(tk) = ~vi(tk�1) + �t(~Fi=mi) (11.1)

~xi(tk+1) = ~xi(tk) + �t~vi(tk): (11.2)

From the given initial con�guration, we can derive the next time step con�guration using the
formulae by �rst �nding the force, from which we can derive velocity, and then position, and then
force at the next time step.

~Fi ! vi(tk)! xi(tk + �t)! ~Fi+1:

High order numerical methods can be used here to improve the simulation. In fact, the Euler
method that uses uniform time step discretization performs poorly during the simulation when two
bodies are very close. We may need to use non-uniform discretization or a sophisticated time scale
that may vary for di�erent regions of the N-body system.

In one region of our simulation, for instance, there might be an area where there are few bodies,
and each is moving slowly. The positions and velocities of these bodies, then, do not need to be
sampled as frequently as in other, higher activity areas, and can be determined by extrapolation.
See �gure 11.2 for illustration.1

How many
oating point operations (
ops) does each step of the Euler method take? The
velocity update (step 1) takes 2n
oating point multiplications and one addition and the position
updating (step 2) takes 1 multiplication and one addition. Thus, each Euler step takes 5n
oating
point operations. In Big-O notation, this is an O(n) time calculation with a constant factor 5.

Notice also, each Euler step can be parallelized without communication overhead. In data
parallel style, we can express steps (1) and (2), respectively, as

V = V + �t(F=M)

X = X + �tV;

where V is the velocity array; X is the position array; F is the force array; and M is the mass
array. V;X; F;M are 3� n arrays with each column corresponding to a particle. The operator = is
the elementwise division.

1In �gure 11.2 we see an example where we have some close clusters of bodies, and several relatively disconnected
bodies. For the purposes of the simulation, we can ignore the movement of relatively isolated bodies for short periods
of time and calculate more frames of the proximous bodies. This saves computation time and grants the simulation
more accuracy where it is most needed. In many ways these sampling techniques are a temporal analogue of the later
discussed Barnes and Hut and Multipole methods.

Chapter 11 Particle Methods 73

Low sampling rate

Medium sampling rate

High sampling rate

Figure 11.2: Adaptive Sampling Based on Proximity

11.7 Methods for Force Calculation

Computationally, the force calculation is the most time expensive step for N-body simulation. We
now discuss some methods for computing forces.

11.7.1 Direct force calculation

The simplest way is to calculate the force directly from the de�nition.

~Fij = G
mimj

r2
= G

mimj

j ~xj � ~xij3 (~xj � ~xi);

Note that the step for computing ~Fij takes 9
ops. It takes n
ops to add ~Fij (1 � j � n).

Since ~Fij = � ~Fji, the total number of
ops needed is roughly 5n2. In Big-O notation, this is an
O(n2) time computation. For large scale simulation (e.g., n = 100 million), the direct method is
impractical with today's level of computing power.

It is clear, then, that we need more e�cient algorithms. The one fact that we have to take
advantage of is that in a large system, the e�ects of individual distant particles on each other may
be insigni�cant and we may be able to disregard them without signi�cant loss of accuracy. Instead
we will cluster these particles, and deal with them as though they were one mass. Thus, in order
to gain e�ciency, we will approximate in space as we did in time by discretizing.

11.7.2 Potential based calculation

For N-body simulations, sometimes it is easier to work with the (gravitational) potential rather
than with the force directly. The force can then be calculated as the gradient of the potential.

In three dimensions, the gravitational potential at position ~x de�ned by n bodies with masses
m1; :::; mn at position ~x1; ::::; ~xn, respectively is equal to

�(~x) =
nX
i=1

G
mi

jj~x� ~xijj :

The force acting on a body with unit mass at position ~x is given by the gradient of �, i.e.,

F = �r�(x):

74 Math 18.337, Spring 1996

The potential function is a sum of local potential functions

�(~x) =
nX
i=1

�~xi(~x) (11.3)

where the local potential functions are given by

�~xi(~x) =
G �mi

jj~x� ~xijj in <3 (11.4)

11.7.3 Poisson Methods

The earlier method from 70s is to use Poisson solver. We work with the gravitational potential
�eld rather than the force �eld. The observation is that the potential �eld can be expressed as the
solution of a Poisson equation and the force �eld is the gradient of the potential �eld.

The gravitational potential at position ~x de�ned by n bodies with masses m1; :::; mn at position
~x1; ::::; ~xn, respectively is equal to

�(~x) =
nX
i=1

G
mi

j~x� ~xij :

The force acting on a body with unit mass at position ~x is given by the gradient of �:

~F = �r�(~x):

So, from � we can calculate the force �eld (by numerical approximation).
The potential �eld � satis�es a Poisson equation:

r2� =
@2�

@x2
+
@2�

@y2
+
@2�

@z2
= �(x; y; z);

where � measures the mass distribution can be determined by the con�guration of the N -body
system. (The function � is harmonic away from the bodies and near the bodies, divr� = r2� is
determined by the mass distribution function. So � = 0 away from bodies).

We can use �nite di�erence methods to solve this type of partial di�erential equations. In three
dimensions, we discretize the domain by a structured grid.

We approximate the Laplace operator r2 by �nite di�erence and obtain from r2� = �(x; y; z)
a system of linear equations. Let h denote the grid spacing. We have

�(xi; yj ; zk) =
1

h2
(�(xi + h; yj; zk) + �(xi � h; yj ; zk) + �(xi; yj + h; zk)

+�(xi; yj � h; zk) + �(xi; yj; zk + h) + �(xi; yj ; zk � h)� 6�(xi; yj ; zk))

= �(xi; yj ; zk):

The resulting linear system is of size equal to the number of grid points chosen. This can be solved
using methods such as FFT (fast Fourier transform), SOR (successive overrelaxation), multigrid
methods or conjugate gradient. If n bodies give a relatively uniform distribution, then we can use
a grid which has about n grid points. The solution can be fairly e�cient, especially on parallel
machines. For highly non-uniform set of bodies, hybrid methods such as �nding the potential
induced by bodies within near distance by direct method, and approximate the potential �eld
induced by distant bodies by the solution of a much smaller Poisson equation discretization. More
details of these methods can be found in Hockney and Eastwood's book.

Chapter 11 Particle Methods 75

rr1 r2

m particles n particles

Figure 11.3: Well-separated Clusters

11.7.4 Hierarchical methods

We now discuss several methods which use a hierarchical structure to decompose bodies into clus-
ters. Then the force �eld is approximated by computing the interaction between bodies and clusters
and/or between clusters and clusters. We will refer this class of methods hierarchical methods or
tree-code methods.

The crux of hierarchical N-body methods is to decompose the potential at a point x, �(x), into
the sum of two potentials: �N (x), the potential induced by \neighboring" or \near-�eld" particles;
and �F (x), the potential due to \far-�eld" particles [5, 41]. In hierarchical methods, �N(x) is
computed exactly, while �F (x) is computed approximately.

The approximation is based on a notion of well-separated clusters [5, 41]. Suppose we have two
clusters A and B, one of m particles and one of n particles, the centers of which are separated by
a distance r. See Figure 11.3.

Suppose we want to �nd the force acting on all bodies in A by those in B and vice versa. A
direct force calculation requires O(mn) operations, because for each body in A we need to compute
the force induced by every body in B.

Notice that if r is much larger than both r1 and r2, then we can simplify the calculation
tremendously by replacing B by a larger body at its center of mass and replacing A by a larger
body at its center of mass. Let MA andMB be the total mass of A and B, respectively. The center
of mass cA and cB is given by

cA =

P
i2Amixi
MA

cB =

P
j2Bmjxj

MB
:

We can approximate the force induced by bodies in B on a body of mass mx located at position
s by viewing B as a single mass MB at location cB. That is,

F (x) � GmxMB(x� cB)

jjx� cBjj3 :

Such approximation is second order: The relative error introduced by using center of mass is
bounded by (max(r1; r2)=r)2. In other words, if f(x) be the true force vector acting on a body at

76 Math 18.337, Spring 1996

P Pl r

P

Figure 11.4: Binary Tree (subdivision of a straight line segment)

x, then

F (x) = f(x)

1 +O

 �
max(r1; r2)

r

�2
!!

:

This way, we can �nd all the interaction forces between A and B in O(n+m) time. The force
calculations between one m particle will computed separately using a recursive construction. This
observation gives birth the idea of hierarchical methods.

We can also describe the method in terms of potentials. If r is much larger than both r1 and r2,
i.e., A and B are \well-separated", then we can use the pth order multipole expansion (to be given
later) to express the pth order approximation of potential due to all particles in B. Let �

p
B(x)

denote such a multipole expansion. To (approximately) compute the potential at particles in A,
we simply evaluate �

p
B() at each particle in A. Suppose �

p
B() has g(p; d) terms. Using multipole

expansion, we reduce the number of operations to g(p; d)(jAj+ jBj). The error of the multipole-
expansion depends on p and the ratio max(r1; r2)=r. We say A and B are �-well-separated, for a
� > 2, if max(r1; r2)=r � 1=�. As shown in [41], the error of the pth order multipole expansion is
bounded by (1=(� � 1))p.

11.8 Quadtree (2D) and Octtree (3D) : Data Structures for
Canonical Clustering

Hierarchical N-body methods use quadtree (for 2D) and octtree (for 3D) to generate a canonical
set of boxes to de�ne clusters. The number of boxes is typically linear in the number of particles,
i.e., O(n).

Quadtrees and octtrees provide a way of hierarchically decomposing two dimensional and three
dimensional space. Consider �rst the one dimensional example of a straight line segment. One way
to introduce clusters is to recursively divide the line as shown in Figure 11.4.

This results in a binary tree2.

In two dimensions, a box decomposition is used to partition the space (Figure 11.5). Note that
a box may be regarded as a \product" of two intervals. Each partition has at most one particle in
it.

2A tree is a graph with a single root node and a number of subordinate nodes called leaves or children. In a binary
tree, every node has at most two children.

Chapter 11 Particle Methods 77

Figure 11.5: Quadtree

Figure 11.6: Octtree

A quadtree [83] is a recursive partition of a region of the plane into axis-aligned squares. One
square, the root , covers the entire set of particles. It is often chosen to be the smallest (up to a
constant factor) square that contains all particles. A square can be divided into four child squares,
by splitting it with horizontal and vertical line segments through its center. The collection of squares
then forms a tree, with smaller squares at lower levels of the tree. The recursive decomposition
is often adaptive to the local geometry. The most commonly used termination condition is: the
division stops when a box contains less than some constant (typically m = 100) number of particles
(See Figure 11.5).

Octtree is the three-dimension version of quadtree. The root is a box covering the entire set
of particles. Octtree are constructed by recursively and adaptively dividing a box into eight child-
boxes, by splitting it with hyperplanes normal to each axes through its center (See Figure 11.6).

11.9 Barnes-Hut Method (1986)

The Barnes-Hut method uses these clustered data structures to represent the bodies in the simu-
lation, and takes advantage of the distant-body simpli�cation mentioned earlier to reduce compu-
tational complexity to O(n log(n)).

The method of Barnes and Hut has two steps.

1. Upward evaluation of center of mass

Refer to Figure 11.5 for the two dimensional case. Treating each box as a uniform cluster, the
center of mass may be hierarchically computed. For example, consider the four boxes shown
in Figure 11.7.

78 Math 18.337, Spring 1996

m
1

m
2

m
4

m
3

c
2

c
1

c
4

c
3

Figure 11.7: Computing the new Center of Mass

x
_ b

Figure 11.8: Pushing the particle down the tree

The total mass of the system is

m =m1 +m2 +m3 +m4 (11.5)

and the center of mass is given by

~c =
m1~c1 +m2 ~c2 +m3~c3 +m4 ~c4

m
(11.6)

The total time required to compute the centers of mass at all layers of the quadtree is pro-
portional to the number of nodes, or the number of bodies, whichever is greater, or in Big-O
notation, O(n+ v), where v is for vertex

This result is readily extendible to the three dimensional case.

2. Pushing the particle down the tree

Consider the case of the octtree i.e. the three dimensional case. In order to evaluate the
potential at a point ~xi, start at the top of the tree and move downwards. At each node, check
whether the corresponding box, b, is well separated with respect to ~xi (Figure 11.8).

Let the force at point ~xi due to the cluster b be denoted by ~F (i; b). This force may be
calculated using the following algorithm:

Chapter 11 Particle Methods 79

� if b is \far" i.e. well separated from ~xi, then

~F (~xi) := ~F (~xi) +
GmxMb(~x� ~cb)

jj~xi � ~cbjj3 in <3 (11.7)

� else if b is \close" to ~xi

for k = 1 to 8
~F (~xi) = ~F (~xi) + ~F (i; child(b; k)) (11.8)

(11.9)

The computational complexity of pushing the particle down the tree has the upper bound
9hn, where h is the height of the tree and n is the number of particles. (Typically, for more
or less uniformly distributed particles, h = log4 n.)

11.9.1 Approximating potentials

We now rephrase Barnes and Hut scheme in term of potentials. Let

mA = total mass of particles in A
mB = total mass of particles in B
~cA = center of mass of particles in A
~cB = center of mass of particles in B

The potential at a point ~x due to the cluster B, for example, is given by the following second order
approximation:

�(~x) � mB

jj~x� ~cBjj(1 +
1

�2
) in <3 (11.10)

In other words, each cluster may be regarded as an individual particle when the cluster is su�ciently
far away from the evaluation point ~x.

A more advanced idea is to keep track of a higher order (Taylor expansion) approximation of
the potential function induced by a cluster. Such an idea provides better tradeo� between time
required and numerical precision. The following sections provide the two dimensional version of
the fast multipole method developed by Greengard and Rokhlin.

The Barnes-Hut method discussed above uses the particle-cluster interaction between two well-
separated clusters. Greengard and Rokhlin showed that the cluster-cluster intersection among
well-separated clusters can further improve the hierarchical method. Suppose we have k clusters
B1 ..., Bk that are well-separated from a cluster A. Let �p

i () be the pth order multipole expansion
of Bi. Using particle-cluster interaction to approximate the far-�eld potential at A, we need to
perform g(p; d)jAj(jB1j + jB2j + ::: + jBkj) operations. Greengard and Rokhlin [41] showed that
from �p

i () we can e�ciently compute a Taylor expansion 	p
i () centered at the centroid of A that

approximates �p
i (). Such an operation of transforming �p

i () to 	
p
i () is called a FLIP. The cluster-

cluster interaction �rst
ips �p
i () to 	p

i (); we then compute 	p
A() =

Pk
i=1	

p
i () and use 	p

A() to
evaluate the potential at each particle in A. This reduces the number of operations to the order of

g(p; d)(jAj+ jB1j+ jB2j+ :::+ jBkj):

80 Math 18.337, Spring 1996

11.10 Outline

� Introduction

� Multipole Algorithm: An Overview

� Multipole Expansion

� Taylor Expansion

� Operation No. 1 | SHIFT

� Operation No. 2 | FLIP

� Application on Quad Tree

� Expansion from 2-D to 3-D

11.11 Introduction

For N-body simulations, sometimes, it is easier to work with the (gravitational) potential rather
than with the force directly. The force can then be calculated as the gradient of the potential.

In two dimensions, the potential function at zj due to the other bodies is given by

�(zj) =
nX

i=1;i6=j
qi log(zj � zi)

=
nX

i=1;i6=j
�zi(zj)

with
�zi(z) = qi log jz � zij

where z1, : : :, zn the position of particles, and q1, : : :, qn the strength of particles. The potential
due to the bodies in the rest of the space is

�(z) =
nX
i=1

qi log(z � zi)

which is singular at each potential body. (Note: actually the potential is Re �(z) but we take the
complex version for simplicity.)

With the Barnes and Hut scheme in term of potentials, each cluster may be regarded as an
individual particle when the cluster is su�ciently far away from the evaluation point. The following
sections will provide the details of the fast multipole algorithm developed by Greengard and Rokhlin.

Many people are often mysti�ed why the Green's function is a logarithm in two dimensions,
while it is 1=r in three dimensions. Actually there is an intuitive explanation. In d dimensions
the Green's function is the integral of the force which is proportional 1=rd�1. To understand the
1=rd�1 just think that the lines of force are divided \equally" on the sphere of radius r. One might
wish to imagine an d dimensional ball with small holes on the boundary �lled with d dimensional
water. A hose placed at the center will force water to
ow out radially at the boundary in a uniform
manner. If you prefer, you can imagine 1 ohm resistors arranged in a polar coordinate manner,
perhaps with higher density as you move out in the radial direction. Consider the
ow of current
out of the circle at radius r if there is one input current source at the center.

Chapter 11 Particle Methods 81

Z

Z

Z

Z

Z

Z

1

2

Point

3

4

n

Zc

Faraway
Evaluation

Cluster of Bodies

Figure 11.9: Potential of Faraway Particle due to Cluster

11.12 Multipole Algorithm: An Overview

There are three important concepts in the multipole algorithm:

� function representations (multipole expansions and Taylor series)

� operators to change representations (SHIFTs and FLIPs)

� the general tree structure of the computation

11.13 Multipole Expansion

The multipole algorithm
ips between two point of views, or to be more precise, two representations
for the potential function. One of them, which considers the cluster of bodies corresponding to many
far away evaluation points, is treated in detail here. This part of the algorithm is often called the
Multipole Expansion.

In elementary calculus, one learns about Taylor expansions for functions. This power series
represents the function perfectly within the radius of convergence. A multipole expansion is also
a perfectly valid representation of a function which typically converges outside a circle rather than
inside. For example, it is easy to show that

�zi(z) = qi log(z � zi)

= qi log(z � zc) +
1X
k=1

�qi
k

�
zi � zc
z � zc

�k

where zc is any complex number. This series converges in the region jz� zcj > jz� zij, i.e., outside
of the circle containing the singularity. The formula is particularly useful if jz� zcj � jz � zij, i.e.,
if we are far away from the singularity.

Note that

�zi(z) = qi log(z � zi)

= qi log[(z � zc)� (zi � zc)]

= qi

�
log(z � zc) + log(1� zi � zc

z � zc
)

�

82 Math 18.337, Spring 1996

The result follows from the Taylor series expansion for log(1� x). The more terms in the Taylor
series that are considered, the higher is the order of the approximation.

By substituting the single potential expansion back into the main equation, we obtain the
multipole expansion as following

�(z) =
nX
i=1

�zi(z)

=
nX
i=1

qi log(z � zc) +
nX
i=1

1X
k=1

qi

�1
k

�
zi � zc
z � zc

�k!

= Q log(z � zc) +
1X
k=1

ak

�
1

z � zc

�k

where

ak = �
nX
i=1

qi(zi � zc)
k

k

When we truncate the expansion due to the consideration of computation cost, an error is
introduced into the resulting potential. Consider a p-term expansion

�p(z) = Q log(z � zc) +
pX

k=1

ak
1

(z � zc)k

An error bound for this approximation is given by

jj�(z)� �p(z)jj � A��� z�zc
r

��� 1
� ���� r

z � zc

����p
where r is the radius of the cluster and

A =
nX
i=1

jqij

This result can be shown as the following

Error =

������
1X

k=p+1

ak
1

(z � zc)k

������
=

�������
1X

k=p+1

nX
i=1

qi
k

�
zi � zc
z � zc

�k������
�

1X
k=p+1

nX
i=1

jqij
���� r

z � zc

����k

� A
1X

k=p+1

���� r

z � zc

����k

� A

��� r
z�zc

���p+1

1�
��� r
z�zc

���
� A���z�zc

r

��� 1
� ���� r

z � zc

����p

Chapter 11 Particle Methods 83

ZC

Z1

Z2

Z

Evaluation Points

Z

3

4

q

q

q

1

2

3

Faraway

Cluster of

Figure 11.10: Potential of Particle Cluster

At this moment, we are able to calculate the potential of each particle due to cluster of far away
bodies, through multipole expansion.

11.14 Taylor Expansion

In this section, we will brie
y discuss the other point of view for the multipole algorithm, which
considers the cluster of evaluation points with respect to many far away bodies. It is called Taylor
Expansion. For this expansion, each processor "ownes" the region of the space de�ned by the
cluster of evaluation points, and compute the potential of the cluster through a Taylor series about
the center of the cluster zc.

Generally, the local Taylor expansion for cluster denoted by C (with center zc) corresponding
to some body z has the form

�C;zc(z) =
1X
k=0

bk(z � zc)
k

Denote z�zi = (z�zc)�(zi�zc) = �(zi�zc)(1��). Then for z such that jz�zcj < min(zc; C),
we have j�j < 1 and the series �C;zc(z) converge:

�C;zc(z) =
X
C

qi log(�(zi � zc)) +
X
C

qi log(1� �)

=
X
C

qi log(�(zi � zc)) +
1X
k=1

 X
C

qi

!
k�1(zi � zc)

�k(z � zc)
k

= b0 +
1X
k=1

bk(z � zc)
k

where formul� for coe�cients are

b0 =
X
C

qi log(�(zi � zc)) and bk = k�1
X
C

qi(zi � zc)
�k k > 0:

De�ne the p-order truncation of local expansion �pC;zc as follows

�pC;zc(z) =
pX

k=0

bk(z � zc)
k:

84 Math 18.337, Spring 1996

Z

C-Child2Z

C-Child1Z C-Child3Z

C-Child4Z

C-Parent

Figure 11.11: SHIFT the Center of Reference

We have error bound

����C;zc(z)� �pC;zc(z)
��� =

������
1X

k=p+1

k�1
X
C

qi

�
z � zc
zi � zc

�k������
� 1

p+ 1

X
C

jqij
1X

k=p+1

���� z � zc
min(zc; C)

����k = A

(1 + p)(1� c)
cp+1;

where A =
P

C jqij and c = jz � zcj=min(zc; C) < 1.
By now, we can also compute the local potential of the cluster through the Taylor expansion.

During the process of deriving the above expansions, it is easy to see that

� Both expansions are singular at the position of any body;

� Multipole expansion is valid outside the cluster under consideration;

� Taylor expansion converges within the space de�ned the cluster.

At this point, we have �nished the basic concepts involved in the multipole algorithm. Next, we will
begin to consider some of the operations that could be performed on and between the expansions.

11.15 Operation No.1 | SHIFT

Sometimes, we need to change the location of the center of the reference for the expansion series,
either the multipole expansion or the local Taylor expansion. To accomplish this goal, we will
perform the SHIFT operation on the expansion series.

For the multipole expansion, consider some far away particle with position z such that both
series �z0 and �z1 , corresponding to di�erent center of reference z0 and z1, converge: jz � z0j >
max(z0; C) and jz � z1j > max(z1; C). Note that

z � z0 = (z � z1)� (z0 � z1) = (z � z1)

�
1� z0 � z1

z � z1

�
= (z � z1)(1� �)

for appropriate � and if we also assume z su�ciently large to have j�j < 1, we get identity

(1� �)�k =

 1X
l=0

�l
!k

=
1X
l=0

k + l� 1

l

!
�l:

Chapter 11 Particle Methods 85

Now, we can express the SHIFT operation for multipole expansion as

�z1(z) = SHIFT (�z0(z); z0) z1)

= SHIFT

a0 log(z � z0) +

1X
k=1

ak(z � z0)
�k ; z0) z1

!

= a0 log(z � z1) + a0 log(1� �) +
1X
k=1

ak(1� �)�k(z � z1)
�k

= a0 log(z � z1)� a0

1X
k=1

k�1�k +
1X
k=1

1X
l=1

ak

k + l � 1

l

!
�l(z � z1)

�k

= a0 log(z � z1) +
1X
l=1

lX

k=1

ak(z0 � z1)
l�k

l� 1

k � 1

!
� a0l

�1(z0 � z1)
l

!
(z � z1)

�l

We can represent �z1(z) as a sequence of its coe�cients a
0
k:

a00 = a0 and a0l =
lX

k=1

ak(z0 � z1)
l�k

l � 1

k � 1

!
� a0l

�1(z0 � z1)
l l > 0:

Note that a0l depends only on a0; a1; : : : ; al and not on the higher coe�cients. It shows that
given �pz0 we can compute �pz1 exactly, that is without any further error! In other words, operators
SHIFT and truncation commute on multipolar expansions:

SHIFT (�pz0; z0) z1) = �pz1 :

Similarly, we can obtain the SHIFT operation for the local Taylor expansion, by extending the
operator on the domain of local expansion, so that SHIFT (�C;z0 ; z0) z1) produces �C;z1 . Both
series converges for z such that jz � z0j < min(z0; C), jz � z1j < min(z1; C). Then

�C;z1(z) = SHIFT (�C;z0(z); z0) z1)

=
1X
k=0

bk((z � z1)� (z0 � z1))
k

=
1X
k=0

bk

1X
l=0

(�1)k�l

k

l

!
(z0 � z1)

k�l(z � z1)
l

=
1X
l=0

 1X
k=l

bk(�1)k�l

k

l

!
(z0 � z1)

k�l
!
(z � z1)

l

Therefore, formula for transformation of coe�cients bk of �C;z0 to b
0
l of �C;z1 are

b0l =
1X
k=l

ak(�1)k�l

k

l

!
(z0 � z1)

k�l:

Notice that in this case, b0l depends only on the higher coe�cients, which means knowledge of
the coe�cients b0; b1; : : : ; bp from the truncated local expansion in z0 does not su�ce to recover the
coe�cients b00; b01; : : : b0p at another point z1. We do incur an error by the SHIFT operation applied
to truncated local expansion:

���SHIFT (�pC;z0 ; z0) z1)� �pC;z1

��� =

������
1X
l=0

0
@ 1X
k=p+1

bk(�1)k�l(z0 � z1)
k�l
1
A (z � z1)

l

������

86 Math 18.337, Spring 1996

I I

Taylor Expansion

I

I

I

N

N

N

C

Multipole Expansion

FLIP

Figure 11.12: FLIP from Multipole to Taylor Expansion

�
������

1X
k=p+1

bk(z1 � z0)
k

������
�����
1X
l=0

�
z � z1
z1 � z0

�l�����
=

������
1X

k=p+1

k�1
X
C

qi

�
z1 � z0
zi � z0

�k������
�����
1X
l=0

�
z � z1
z0 � z1

�l�����
� A

(p+ 1)(1� c)(1�D)
cp+1;

where A =
P

C jqij. c = jz1 � z0j=min(z0; C) and D = jz � z1j=jz0 � z1j.
At this moment, we have obtained all the information needed to perform the SHIFT operation

for both multipole expansion and local Taylor expansion. Next, we will consider the operation
which can transform multipole expansion to local Taylor expansion.

11.16 Operation No.2 | FLIP

At this section, we will introduce the more powerful operation in multipole algorithm, namely
the FLIP operation. For now, we will consider only the transformation in the direction from the
multipole expansion �z0(z) to the local Taylor expansion �C;z1(z), denoted by

FLIP (�z0 ; z0) z1) = �C;z1

For jz � z0j > max(z0; C) and jz � z1j < min(z1; C) both series converge. Note that

z � z0 = �(z0 � z1)(1� z � z1
z0 � z1

) = �(z0 � z1)(1� �)

and assume also j�j < 1. Then,

�z0(z) = a0 log(z � z0) +
1X
k=1

ak(z � z0)
�k

= a0 log(�(z0 � z1)) + a0 log(1� �) +
1X
k=1

ak(�1)k(z0 � z1)
�k(1� �)�k

Chapter 11 Particle Methods 87

N

C

N

N

Figure 11.13: First Level of Quad Tree

= a0 log(�(z0 � z1)) +
1X
l=1

�a0l�1�l +
1X
k=1

(�1)kak(z0 � z1)
�k

1X
l=0

k + l� 1

l

!
�l

=

a0 log(�(z0 � z1)) +

1X
k=1

(�1)kak(z0 � z1)
�k
!
+

1X
l=1

a0l

�1(z0 � z1)
�l +

1X
k=1

(�1)kak

k + l� 1

l

!
(z0 � z1)

�(k+l)

!
(z � z1)

l:

Therefore coe�cients ak of �z0 transform to coe�cients bl of �C;z1 by the formula

b0 = a0 log(�(z0 � z1)) +
1X
k=1

(�1)kak(z0 � z1)
�k

bl = a0l
�1(z0 � z1)

�l +
1X
k=1

(�1)kak

k + l� 1

l

!
(z0 � z1)

�(k+l) l > 0

Note that FLIP does not commute with truncation since one has to know all coe�cients
a0; a1; : : : to compute b0; b1; : : : ; bp exactly. For more information on the error in case of truncation,
see Greengard and Rokhlin (1987).

11.17 Application on Quad Tree

In this section, we will go through the application of multipole algorithm on quad tree in detail.
During the process, we will also look into the two di�erent operations SHIFT and FLIP , and
gain some experience on how to use them in real situations.

We will start at the lowest level h of the tree. For every node of the tree, it computes the
multipole expansion coe�cients for the bodies inside, with origin located at the center of the cell.
Next, it will shift all of the four centers for the children cells into the center of the parent node,
which is at the h � 1 level, through the SHIFT operation for the multipole expansion. Adding up
the coe�cients from the four shifted expansion series, the multipole expansion of the whole parent
node is obtained. And this SHIFT and ADD process will continue upward for every level of the
tree, until the multipole expansion coe�cients for each node of the entire tree are stored within
that node. The computational complexity for this part is O(N).

Before we go to the next step, some terms have to be de�ned �rst.

88 Math 18.337, Spring 1996

C

I

N I I

I

I

I I

I

NN

II

I I

Figure 11.14: Second Level of Quad Tree

F

C

F F F F F

F

F

F F F F F

F

F F

F

FF

F

I

I

I I I

I

I

I

I

I

I

I

N N

N

Figure 11.15: Third Level of Quad Tree

Chapter 11 Particle Methods 89

� NEIGHBOR | a neighbor N to a cell C is de�ned as any cell which shares either an edge
or a corner with C

� INTERACTIVE | an interactive cell I to a cell C is de�ned as any cell whose parent is a
neighbor to parent of C, excluding those which are neighbors to C

� FARAWAY | a faraway cell F to a cell C is de�ned as any cell which is neither a neighbor
nor an interactive to C

Now, we start at the top level of the tree. For each cell C, FLIP the multipole expansion for the
interactive cells and combine the resulting local Taylor expansions into one expansion series. After
all of the FLIP and COMBINE operations are done, SHIFT the local Taylor expansion from the
node in this level to its four children in the next lower level, so that the information is conserved
from parent to child. Then go down to the next lower level where the children are. To all of
the cells at this level, the faraway �eld is done (which is the interactive zone at the parent level).
So we will concentrate on the interactive zone at this level. Repeat the FLIP operation to all of
the interactive cells and add the
ipped multipole expansion to the Taylor expansion shifted from
parent node. Then repeat the COMBINE and SHIFT operations as before. This entire process
will continue from the top level downward until the lowest level of the tree. In the end, add them
together when the cells are close enough.

11.18 Expansion from 2-D to 3-D

For 2-D N-body simulation, the potential function is given as

�(zj) =
nX
i=1

qi log(zj � zi)

where z1, : : :, zn the position of particles, and q1, : : :, qn the strength of particles. The corresponding
multipole expansion for the cluster centered at zc is

�zc(z) = a0 log(z � zc) +
1X
k=1

ak
1

(z � zc)k

The corresponding local Taylor expansion looks like

�C;zc(z) =
1X
k=0

bk
1

(z � zc)k

In three dimensions, the potential as well as the expansion series become much more compli-
cated. The 3-D potential is given as

�(x) =
nX
i=1

qi
1

jjx� xijj
where x = f(r; �; �). The corresponding multipole expansion and local Taylor expansion as follow-
ing

�multipole(x) =
1X
n=0

1

rn+1

nX
m=�n

amn Y
m
n (�; �)

�Taylor(x) =
1X
n=0

nX
m=�n

rnbmn Y
m
n (�; �)

90 Math 18.337, Spring 1996

where Y m
n (�; �) is the Spherical Harmonic function. For a more detailed treatment of 3-D expan-

sions, see Nabors and White (1991).

11.19 Parallel Implementation

In Chapter 17.2, we will discussion issues on parallel N-body implementation.

Chapter 11 Particle Methods 91

IV Numerical Linear Algebra

92 Math 18.337, Spring 1996

Chapter 12

Numerical Discretization

12.1 Mathematical Modeling and Numerical Methods

The complex mathematical models for scienti�c problems are typically governed by partial dif-
ferential equations. Therefore, at the center of scienti�c computing is the numerical solution of
di�erential equations. To \solve" PDEs on computer, we need to discretize the continuous problem
and approximate it by a �nite representation, usually, in the form of system of equations.

12.1.1 PDEs for Modeling

To motivate, we now list three basic partial di�erential equations and brie
y mention the physical
problems modeled by the equations. For a scalar function u (in two or three dimensions), let ru
denote the gradient of u. Let r2u be the Laplacian of u, i.e., for two dimensional function u,

r2u =
@2u

@x2
+
@2u

@y2
:

� Poisson's equation in a domain
 with boundary �.

�r2u = f in

The boundary value condition can be given as u = c on �, where c = 0 for many problems
(known as Dirichlet condition) or ru = g on � (known as Neumann condition).

A number of problems in physics and mechanics are modeled by Poisson equation; u may
represent for example a temperature, an electro-magnetic potential or the displacement of an
elastic membrane �xed at the boundary under a transversal load of intensity f .

Laplace's equation is a special case Poisson's equation with f = 0.

� Navier-Stokes' equation in a domain
 in IRd with boundary � for incompressible
ow.

@ui
@t

+ u � rui = � @p

@xi

1

�
+ �r2ui + fi; in
, i = 1; 2; :::; d

r � u = 0in
,

where u(x; t) is the velocity, p(x; t) is the pressure, x and t are space and time, respectively,
f(x; t) is the prescribed force, � is the
uid density, and � is the
uid kinematic viscosity.
Initial conditions are given to u and boundary conditions u �n and no-slip condition u � s = 0
are given to u.

93

94 Math 18.337, Spring 1996

� Schr�odinger's equation for quantum chemistry.

H	 = E	;

where H is the Hamiltonian operator, given bellow, which has a Laplacian term, representing
the electron kinetic energy, and a second term representing potential energy.

H = �
X
a

1

2ma
r2
a +

1

2

X
a;b

QaQb

jra � rbj

Other important PDEs include the Maxwell's equation for electromagnetic, Euler's equa-
tion for an incompressible inviscid
uid in a domain, etc. We will discuss the application of
numerical methods at the end of the tutorial.

12.1.2 Numerical Methods

There are two basic schools of numerical approaches: equation based methods and particle methods.
We will cover the particle methods in Chapter ??. In this chapter, we discuss the set of key problems
in the �rst approach. The basic scheme of equation based numerical methods has �ve steps.

1. Problem Formulation and Geometric Modeling: describe the geometry and the bound-
ary of a continuous domain D and the governing partial di�erential equations.

2. Mesh Generation: generate a well-shaped mesh M to approximate the domain.

3. Numerical System Formulation: generate a system of equations overM for the governing
PDEs, for example, assemble the sti�ness matrix and the right hand vector.

4. Solution to Numerical Systems: solve the system of equations.

5. Adaptive Re�nement: adaptively re�ne the mesh based on the estimated errors (for bound-
ary value problems) or properly move the mesh (for initial value problems), and then return
to Step 3 to reduce the error or to do the next time step simulation.

We start from a continuous problem which is described by a set of PDEs on a continuous domain.
We must �rst arrive to a discretized problem. To obtain a proper discretize problem, we need �rst
discretize the continuous domain by a step of mesh generation. The purpose of mesh generation is
to decompose the domain into a collection of simple geometric elements such as squares, boxes, or
triangles.

From the discretization, we derive a �nite approximation of the PDEs. There are two leading
numerical formulations: Finite di�erence and Finite element formulations. Both methods construct
a system of linear equations to approximate the PDEs.

We then need to solve the linear equations and, if necessary, adaptively re�ne the discretization
and approximation to achieve more accurate numerical solutions.

This tutorial will discuss each of the above steps with focus on the parallel implementation. One
fundamental problem that will be called upon in the parallel implementation of each of the above
steps in the partitioning problem, that is how to divide a large complex problem into relatively
independent ones so that we can map them on a parallel machine to achieve load balancing and
to reduce communication overhead. We will discuss several practically used partitioning methods
and show how to use them to support the �ve steps above.

Chapter 12 Numerical Discretization 95

Figure 12.1: Triangulation of well-spaced point set around a singularity

12.2 Well-Shaped Meshes

Numerical methods approximate a continuous physical problem by discretizing the geometric do-
main into simple cells or elements. The resulting mesh is a graph embedded in two or three
dimensions. The most versatile type of mesh is the unstructured triangular mesh in which each
element is a simplex, i.e., a triangle in 2D or a tetrahedron in 3D. However, not all discretizations
serve equally well. Numerical and discretization errors depend on the geometric quality of the mesh,
which is often measured by the size and shape of the elements. A typical quality guarantee gives
a lower bound on the minimum angle (e.g., greater than 30 degree). A mesh with such a quality
guarantee is called a well-shaped mesh.

The simplest mesh is the regular Cartesian grid, which is used in �nite di�erence methods.
However, regular grids are only useful in practice for problems whose domain is simple and whose
solution changes slowly. For problems with complex geometry whose solution changes rapidly,
we need to use an unstructured mesh to reduce the problem size. For example, when modeling
earthquake we want a dense discretization near the quake center and a sparse discretization in
the regions with low activities. It would be waste to give regions with low activities as �ne a
discretization as the regions with high activities. See �gure 12.1.

One important aspect that distinguishes a �nite element or �nite di�erence mesh from a regular
graph is that it has two structures: the combinatorial structure and the geometric structure. In
general, it can be represented by a pair (G; xyz) where G describes the combinatorial structure of
the mesh and xyz gives the geometric information.

To properly approximate a continuous function, in addition to the conditions that a mesh must
conform to the boundaries of the region and be �ne enough, each individual element of the mesh
must be well shaped. A common shape criterion for elements is the condition that the angles of
each element are not too small, or the aspect ratio of each element is bounded [6, 33].

Several de�nitions of the aspect ratio have been used in literature. We list some of them.

1. The ratio of the longest dimension to the shortest dimension of the simplex S, denoted by
A1(S). For a triangle in IR2, it is the ratio of the longest side divided by the altitude from
the longest side.

2. The ratio of the radius of the smallest containing sphere to the radius of the inscribed sphere
of S, denoted by A2(S).

3. The ratio of the radius of the circumscribing sphere to the radius of the inscribed sphere of
S, denoted by A3(S).

96 Math 18.337, Spring 1996

4. The ratio of the diameter to the dth root of the volume of the simplex S, denoted by A4(S),
where the diameter of a d-simplex S is the maximum distance between any pair of points in
S.

12.3 From PDEs to Systems of Linear Equations

12.3.1 Finite Di�erence Approximations

Finite di�erence uses pointwise approximation to construct a linear system AU = F for PDEs
Lu = f . In its simplest form, �nite di�erence uses a regular grid to discretize a continuous physical
domain and replace derivatives by di�erence quotients.

Let us �rst consider the two-point boundary value problem:

�u(x)00 = f(x) 0 < x < 1

u(0) = u(1) = 0

The �nite di�erence method discretizes the domain [0; 1] into n intervals by introducing the
grid points xj = jh, where h = 1=n. At each n� 1 internal grid points, we approximate u00(xi) by
(u(xi�1) � 2u(xi) + u(xi+1))=h

2. Let F = (f1; :::; fn�1) and U = (u1; :::; un�1), where fi = f(xi)
and ui = u(xi). The �nite di�erence approximation results an linear system AhUh = F h for the
original PDE, where

Ah =
1

h2

0
BBBBB@

2 �1
�1 2 �1

. . .
. . .

. . .

�1 2 1
�1 2

1
CCCCCA :

The linear system has n�1 variables and n�1 equation and its matrix Ah is symmetric positive
de�nite.

Analogously, we can use �nite di�erence method for approximating two dimensional PDEs. We
consider the Poisson's equation on a
 with boundary � which is given by

�uxx � uyy = f(x; y) (x; y) 2

u(x; y) = 0 (x; y) 2 �:

We will illustrate the basic formulation on the unit square, i.e.,
 = [0; 1]� [0; 1].
The �nite di�erence discretizes the domain
 by a regular n � n grid. So each grid point is of

format (xi; yj) where xi = ih and yj = jh, and where h = 1=n. Replacing �uxx � uyy = f(x; y) by
�nite di�erence, we have obtain (n� 1)2 linear equations of form

�ui�1;j + 2ui;j � ui+1;j

h2
+
�ui;j�1 + 2ui;j � ui;j+1

h2
= fi;j

ui;j = 0 if i = 0 or i = n or j = 0 or j = n, and 0 < i < n, 0 < j < n.

If we order the vertices by the lexicographic ordering of their coordinates, we can express the
above linear system in form of AhhUhh = Fhh, where

Ahh =
1

h2

0
BBBBB@

Ah �I
�I Ah �I

. . .
. . .

. . .

�I Ah I

�I Ah

1
CCCCCA ;

Chapter 12 Numerical Discretization 97

where Ah is the one dimensional �nite di�erence matrix with space h.

Computationally we need to solve the linear system described above. Finite di�erence has
also be extended to unstructured discretization. Mathematically, there are two key steps in the
numerical analysis of the �nite di�erence approximation:

1. Use a Taylor series expansion to bound the discretization error.

2. Show that the discretization solution Uhh is globally stable, that is Uhh depends continuously
on Fhh as the mesh space h approach to zero.

The pointwise discretization error Ehh
i;j = uxi;xj�uhhi;j , where ui;j is the exact solution of the �nite

di�erence linear system. We can show that the �nite di�erence is a second order approximation in
the sense that norm of the the discretization error is bounded as

jjEhhjj � Ch2; for a constant C independent of h:

12.3.2 Finite Element Approximations

As we have seen, �nite di�erence methods approximate PDEs by pointwise approximation. This is
one of the basic approaches to make a continuous problem discrete. The other way is choose a �nite
number of functions T1; :::; Tn, called basis functions. We approximate the continuous function u as
a linear combination of Ti's, that is, �nd the set of coe�cients ui (1 � i � n) so that the functionPn

i=1 = uiTi is as close as to the continuous function u as possible.

Clearly, the choice of the basis functions is very important to the second approach. If these
functions are sins and cosines, then we approximate the continuous function by �nite Fourier series.
Finite element methods use piecewise polynomials (or even linear functions) as basis functions. It
starts with a discretization of a physical domain by a mesh (structured or unstructured). Then it
generates a polynomial (or linear) basis function for each mesh point, which takes value zero outside
the mesh elements that are incident to the mesh points. Therefore, we can choose basis functions
that �t the geometry of the problem. The choice of polynomials or linear basis functions is to
ensure that such basis functions can be generated automatically by computer from the mesh. The
decision that a basis function is zero outside the neighboring elements is to reduce the complexity
of the linear system generated by the �nite element method, so that we only need to solve a sparse
linear system as in the �nite di�erence methods.

Galerkin Variational Formulation

To illustrate the basic idea of using basis functions, we �rst consider the two-point boundary
value problem discussed in the previous subsection. We can show that the two-point boundary
value problem is equivalent to the following variational form, known as weak Galerkin form: Find
an u with u(0) = u(1) = 0 such that

R 1
0 �u00(x)v(x)dx =

R 1
0 f(x)v(x)dx, for all v that satis�es

v(0) = v(1) = 0.

By integration by part, we have
R 1
0 u

00(x)v(x)dx =
R 1
0 u

0(x)v0(x)dx. Let (u; v) =
R 1
0 u(x)v(x)dx.

So we are looking for a function u such that (u0; v0) = (f; v) for all v that satis�es v(0) = v(1) = 0.

The basic idea of �nite element formulation is to construct a set of basis functions T1; :::; Tn
and �nd the solution to the following set of equations:

(
nX
i=1

uiTi)
0; (Tj)0

!
= (f; Tj) 1 � j � n: (12.1)

98 Math 18.337, Spring 1996

xj−1 j j+1xx

1

Figure 12.2: A basis function for 1D �nite element

The approximation to the continuous problem is then is given as u =
Pn

i=1 uiTi. Clearly, given
T1; :::; Tn, equations (12.1) yield a linear system Au = b in variables u1; :::; un. We call A the
sti�ness matrix and b the right hand vector or load vector.

The Choice of Basis Functions

The choice of the basis functions is essential in �nite element formulation. The set of basis functions
need to satisfy the following conditions.

1. Small Discretization Error: The solution u =
Pn

i=1 uiTi for Equations (12.1) approximates
the solution to the PDEs closely.

2. E�cient Solution: The resulting linear system Ax = b can be solved e�ciently.

Similar to the �nite di�erence method, the �nite element method �rst discretizes the domain.
In its simplest format, it generates a linear function Ti for each mesh point pi so that the function
Ti takes value 1 at the mesh point and 0 at all other mesh points. Ti is linear in the elements that
adjacent to the mesh point pi.

We �rst illustrate the basic idea by the two-point boundary value problem. In one dimension,
we discretize the interval [0; 1] into a collection of subintervals. The basis function at a mesh point
is the continuous piecewise linear function as shown in the following Figure 12.2

The �nal solution from the �nite element formulation is also a piecewise linear function.
It is important to notice that the sti�ness matrix so generated is very sparse. For one dimen-

sional problem, it is a triangular matrix. The basis function of a mesh point only overlap with the
basis functions its neighboring mesh points. In the special case of the uniform discretization of the
interval, the sti�ness matrix is the same as the matrix generated by the �nite di�erence method.
The sti�ness matrix over a two dimension regular grid will be di�erent from the matrix generated
by the �nite di�erence method.

Two dimensional �nite element formulation is similar to its one dimensional formulation. We
use the Poisson's equation on a domain
 to illustrate. Recall that the Poisson's equation one

with boundary � which is given by

�uxx � uyy = f(x; y) (x; y) 2

u(x; y) = 0 (x; y) 2 �:

The �nite element method constructs a mesh M of the domain
 and use M to generate the
basis and trial function.

Chapter 12 Numerical Discretization 99

Figure 12.3: A basis function for 2D �nite element

The Galerkin variational formulation of the Poisson equation become: Find an u which is equal
to zero on � such that

R R

�(uxx(x; y) + uyy(x; y))v(x; y)dxdy =

R R

 f(x; y)v(x; y)dxdy, for all v

on
 that satis�es the condition that v is equal to zero on �.
Integrating by part, we haveZ Z

(uxx(x; y) + uyy(x; y))v(x; y)dxdy =

Z Z

(ux(x; y)vx(x; y) + uy(x; y)vy(x; y))dxdy:

So the formulation is symmetric with respect to both u and v. For each mesh point pi of M
we construct a basis function fi which is a piecewise linear function that takes value 1 at pi and 0
in all other mesh points. The function fi in nonzero only in the elements that incidents to pi. See
Figure 12.3 for illustration.

Again, we assume u =
Pn

i=1 uiTi and use fT1; :::; Tng as trial functions to generate n linear
equations as following.

Z Z

nX
i=1

ui((Ti)x(x; y)(Tj)x(x; y) + (Ti)y(x; y)(Tj)y(x; y))dxdy 1 � j � n:

From the integration formulation, we obtain a linear system Au = b where A is the sti�ness
matrix. Notice that Ai;j is nonzero i� pi and pj share an element. Therefore if we use the regular
two dimensional grid as the mesh, the sti�ness matrix is di�erent from the matrix generated by
the �nite di�erence method in that each mesh point is connected to its eight nearest mesh points
instead of the four as the in the �nite di�erence method.

The �nite element basis functions are more
exible than the pointwise di�erence formulae.
For PDEs with complex geometry domain, the �nite element approximation enables us to design
a mesh that conform to the geometry so that we can approximate the continuous problem with
smaller number of mesh points and hence with smaller number of linear equations. The Finite
element method will be more important for 3D simulation where the scale of simulation is normally
determined by the memory size and I/O capacity of a parallel machines.

We refer interested read to the Book of Johnson and Strang and Fix for more detailed discussion.

100 Math 18.337, Spring 1996

Chapter 13

Dense Linear Algebra

13.1 Outline

� Introduction

� Applications

� Records

� Software Libraries

� Software Engineering

13.2 Introduction

We next look at Dense Linear Systems of the form Ax = b. Before solving dense linear algebra
problems, we should de�ne the terms sparse, dense, and structured.

Defn: A sparse matrix is a matrix with enough zeros that it is worth taking advantage of them.

Defn: A structured matrix has enough structure that it is worthwhile to use it.
Eg. Toeplitz Matrix 2n parameters

ToeplitzMatrix =

2
666666664

1 4
2 1 4

2 1 4
. ..

. . .
. . .

. . .
. . .

. . .

2 1 4
2 1

3
777777775

Defn: A dense matrix is neither sparse nor structured.

13.3 Applications

There are not many applications for large dense linear algebra routines, perhaps due to the law of
nature below. However, it would be wrong to conclude that the world does not need large linear

101

102 Math 18.337, Spring 1996

Year Size of Dense System Machine

1950's � 100

1991 55,296

1992 75,264 Intel

1993 75,264 Intel

1993 76,800 CM

1993 128,600 Intel

Table 13.1: Largest Dense Matrices Solved

algebra libraries. Medium sized problems are most easily solved with these libraries, and the �rst
pass at larger problems are best done with the libraries. Dense methods are the easiest to use,
reliable, predictable, easiest to write, and work best for small to medium problems.
For large problems, it is not clear whether dense methods are best, but other approaches often
require far more work.

� \Law of Nature": Nature does not throw n2 numbers at us haphazardly, therefore there are
few dense matrix problems. Some believe that there are no real problems that will turn up n2

numbers to populate the n� n matrix without exhibiting some form of underlying structure.
This implies that we should seek methods to identify the structure underlying the matrix.
This becomes particularly important when the size of the system becomes large.

13.4 Records

Table 13.1 shows the largest dense matrices solved. Problems that warrant such huge systems to
be solved are typically things like the Stealth bomber and large Boundary Element codes1. We
see here that space considerations, not processor speeds, are what bound the ability to tackle such
large systems. Another application for large dense problems arise in the \methods of moments",
electro-magnetic calculations used by the military.

Memory is the bottleneck in solving these large dense systems. Only a tiny portion of the ma-
trix can be stored inside the computer at any one time.

13.5 Software Libraries

There are libraries of routines that provide standard algorithms used in scienti�c computing. These
routines are meant to be fast, accurate, and portable.

History of Library Development:

� LINPACK - Linear Systems

� EISPACK - Eigenvalue Problems

1Typically this method involves a transformation using Greens Theorem from 3D to a dense 2D representation of
the problems. This is where the large data sets are generated.

Chapter 13 Dense Linear Algebra 103

Slow Memory Memory

CacheFast memory

Fastest Memory Register

Figure 13.1: Matrix Operations on 1 processor

� LAPACK - Combination of LinPack and EisPack that takes advantage of vectorization

� scaLAPACk - Linear Algebra Pack for Parallel Machines (2/28/95)

LINPACK is high quality numerical software, but has no knowledge of blocking or layout.
EISPACK enhanced LINPACK by adding the power of eigenvalues. Both packages are outdated
by LAPACK. scaLAPACK is the current package under development.
Extensions to Scalapack:

� BLACS - C stands for communication

� PB �BLACS - Parallel Block BLAS

� PBLAS - basic BLAS plus communication tied together

Other packages include IMSL and NAG.

There is a library specially made for the CM machines -

� CMSSL - Connection Machine Scienti�c Software Libraries.

13.6 Software Engineering

Wrong View of linear algebra on parallel machines:

� one element per processor

� lots of processors

� communication is instantaneous

This is taught frequently in theory classes, but has no practical application.

Right View

� Large Chunks of each matrix on each processor

104 Math 18.337, Spring 1996

=X

Figure 13.2: Matrix Multiply

Instruction Operations Memory Accesses Ops /Mem Ref
(load/stores)

BLAS1: SAXPY (Single Precision Ax Plus y) 2n 3n 2
3

BLAS1: SAXPY � = x . y 2n 2n 1

BLAS2: Matrix-vec y = Ax+ y 2n2 n2 2

BLAS3: Matrix-Matrix C = AB + C 2n3 4n2 1
2n

Table 13.2: Basic Linear Algebra Subroutines (BLAS)

Time to execute an arithmetic operation depends on the number of accesses to slow memory. In
Figure 13.1, the amount of memory is proportional to the area in the triangle. As seen, there is
only a small amount of fast memory, and larger amounts of slower memory. The need for many
memory references to slow memory slows down many computations.

An example is Matrix Multiply as shown in Figure 13.2.

This pseudo code produces terrible performance because too many memory references are needed
to do the column times row vector calculation.

Table 2 shows why people vectorize. Blocking calculations are faster. The lesson of vector
computers is that computations should be blocked to maximize e�ciency.

The grand plan is that manufacturers would write fast BLAS (not quite successful). LAPACK
would write codes that calls the BLAS.

Load Balancing:

We will use Gaussian Elimination to demonstrate the advantage of cyclic order in dense linear
algebra. In consecutive order, as the computation proceeds, processors in the lower triangular part
become idle. In Figure 13.3, the lower processors would become idle as speci�ed by the shaded
processors, 4 and 7. Thus, this is bad load-balancing. While in cyclic order, we eliminate the same
load for each processor, and the load remains balanced as the computation proceeds (See Figure
13.4) .

There are two methods to eliminate load imbalances:

Chapter 13 Dense Linear Algebra 105

7

2 31

5 6

8 9

4

Figure 13.3: Gaussian Elimination With Bad Load Balancing

9

1 2 3

4 5 6

7 8

Figure 13.4: Row and Column Block Cyclic Ordering of Data

106 Math 18.337, Spring 1996

Figure 13.5: A stage in Gaussian elimination using cyclic order, where the shaded portion refers to
the zeros and the unshaded refers to the non-zero elements

� Rearrange the data for better load balancing (costs: communication).

� Rearrange the calculation: eliminate in unusual order.

So, should we convert the data from consecutive to cyclic order and from cyclic to consecutive
when we are done? The answer is \no", and the better approach is to reorganize the algorithm
rather than the data. The idea behind this approach is to regard matrix indices as a set (not
necessarily ordered) instead of an ordered sequence.

In general if you have to rearrange the data, maybe you can rearrange the calculation.

Lesson of Computation Ordering: Matrix indices are a set (unordered), not a sequence (or-
dered). We have been taught in school to do operations in a linear order, but there is no mathe-
matical reason to do this.

As Figure 13.5 demonstrates, we store data consecutively but do Gaussian Elimination cyclicly. In
particular, if the block size is 10� 10, the pivots are 1, 11, 21, 31, : : :, 2, 22, 32, : : :.

We can apply the above reorganized algorithm in block form, where each processor does one
block at a time and cycles through.

Here we are using all of our lessons, blocking for vectorization, and rearrangement of the calculation,
not the data.

Chapter 14

Sparse Linear Algebra

The solution of a linear system Ax = b is one of the most important computational problems in
scienti�c computing. As we shown in the previous section, these linear systems are often derived
from a set of di�erential equations, by either �nite di�erence or �nite element formulation over a
discretized mesh.

The matrixA of a discretized problem is usually very sparse, namely it has enough zeros that can
be taken advantage of algorithmically. Sparse matrices can be divided into two classes: structured
sparse matrices and unstructured sparse matrices. A structured matrix is usually generated from
a structured regular grid and an unstructured matrix is usually generated from a non-uniform,
unstructured grid. Therefore, sparse techniques are designed in the simplest case for structured
sparse matrices and in the general case for unstructured matrices.

14.1 Cyclic Reduction for Structured Sparse Linear Systems

The simplest structured linear system is perhaps the tridiagonal system of linear equations Ax = b
where A is symmetric and positive de�nite and of form

A =

0
BBBBB@

b1 c1
c1 b2 c2

. . .
. . .

. . .

cn�2 bn�1 cn�1

cn�1 bn

1
CCCCCA

For example, the �nite di�erence formulation of the one dimensional model problems

�u00(x) + �u(x) = f(x); 0 < x < 1; � � 0 (14.1)

subject to the boundary conditions u(0) = u(1) = 0, on a uniform discretization of spacing h yields
of a triangular linear system of n = 1=h variables, where bi = 2+�h2 and ci = �1 for all 1 � i � n.

Sequentially, we can solve a triangular linear system Ax = b by factor A into A = LDLT , where
D is a diagonal matrix with diagonal (d1; d2; :::; dn) and L is of form

L =

0
BBB@

1 0
e1 1 0

. ..
. . .

. . .

en�1 1

1
CCCA :

The factorization can be computed by the following simple algorithm.

107

108 Math 18.337, Spring 1996

Algorithm Sequential Tridiagonal Solver

1. d1 = b1

2. e=c1=d1

3. for i = 2 : n

(a) d1 = bi � ei�1ci�1

(b) if i < n then ei = ci=di

The number
oat point operations is 3n upto a additive constant. With such factorization, we
can then solve the tridiagonal linear system in additional 5n
oat point operations. However, this
method is very reminiscent to the naive sequential algorithm for the pre�x sum whose computation
graph has a critical path of length O(n). The cyclic reduction, developed by Golub and Hockney
[?], is very similar to the parallel pre�x algorithm presented in Section ?? and it reduces the length
of dependency in the computational graph to the smallest possible.

The basic idea of the cyclic reduction is to �rst eliminate the odd numbered variables to obtain
a tridiagonal linear system of dn=2e equations. Then we solve the smaller linear system recursively.
Note that each variable appears in three equations. The elimination of the odd numbered variables
gives a tridiagonal system over the even numbered variables as following:

c02i�2x2i�2 + b02ix2i + c02ix2i+2 = f 02i;

for all 2 � i � n=2, where

c02i�2 = �(c2i�2c2i�1=b2i�1)

b02i = (b2i � c22i�1=b2i�1 � c22i=b2i+1)

c02i = c2ic2i+1=b2i+1

f 02i = f2i � c2i�1f2i�1=b2i�1 � c2if2i+1=b2i+1

Recursively solving this smaller linear tridiagonal system, we obtain the value of x2i for all
i = 1; :::; n=2. We can then compute the value of x2i�1 by the simple equation:

x2i�1 = (f2i�1 � c2i�2x2i�2 � c2i�1x2i)=b2i�1:

By simple calculation, we can show that the total number of
oat point operations is equal to
16n upto an additive constant. So the amount of total work is doubled compare with the sequential
algorithm discussed. But the length of the critical path is reduced to O(logn). It is worthwhile to
point out the the total work of the parallel pre�x sum algorithm also double that of the sequential
algorithm. Parallel computing is about the trade-o� of parallel time and the total work. The
discussion show that if we have n processors, then we can solve a tridiagonal linear system in
O(logn) time.

When the number of processor p is much less than n, similar to pre�x sum, we hybrid the cyclic
reduction with the sequential factorization algorithm. We can show that the parallel
oat point
operations is bounded by 16n(n+ logn)=p and the number of round of communication is bounded
by O(log p). The communication pattern is the nearest neighbor.

Cyclic Reduction has been generalized to two dimensional �nite di�erence systems where the
matrix is a block tridiagonal matrix.

Chapter 14 Sparse Linear Algebra 109

14.2 Sparse Direct Methods

Direct methods for solving sparse linear systems are important because of their generality and
robustness. For linear systems arising in certain applications, such as linear programming and some
structural engineering applications, they are the only feasible methods for numerical factorization.

14.2.1 LU Decomposition and Gaussian Elimination

The basis of direct methods for linear system is Gaussian Elimination, a process where we zero
out certain entry of the original matrix in a systematically way. Assume we want to solve Ax = b
where A is a sparse n � n symmetric positive de�nite matrix. The basic idea of direct method is
to factor A into the product of triangular matrices A = LLT . Such a processor is called Cholesky
factorization.

The �rst step of Cholesky factorization is given by the following matrix equation:

A =

d vT

v C

!
=

 p
d 0

v=
p
d I

!
1 0
0 C � (vvT)=d

! p
d vT=

p
d

0 I

!

where v is n� 1� 1 and C is n� 1�n� 1. Note that d is positive since A is positive de�nite. The
term C � vvt

d is the Schur complement of A. We call this step the elimination with the �rst row as
the pivot. The above decomposition is now carried out on the Schur complement recursively. We
therefore have the following algorithm for the Cholesky decomposition.

For k = 1; 2; : : : ; n
a(k; k) =

p
a(k; k)

a(k+ 1 : n; k) = a(k+1:n;k)
a(k;k)

a(k+ 1 : n; k+ 1 : n) = a(k + 1 : n; k+ 1 : n)� a(k + 1 : n; k)Ta(k + 1 : n; k)
end

The entries on and below the diagonal of the resulting matrix are the entries of L. The main
step the algorithm is a rank 1 update to an n� 1� n� 1 block.

Notice that some �ll-in may occur when we carry out the decomposition. i.e., L may be
signi�cantly less sparse than A. An important problem in direct solution to sparse linear system is
to �nd a \good" ordering of the rows and columns of the matrix to reduce the amount of �ll.

As we shown in the previous section that the matrix of the linear system generated by the �nite
element or �nite di�erence formulation is associated with the graph given by the mesh. In fact,
the nonzero structure of each matrix A can be represented by a graph, G(A), where the rows is
represented by a vertex and every nonzero element by an edge. Graph theoretically, the graph of
the Schur complement after eliminating a row can be obtained from G(A) by deleting the node of
the row and connect its graph neighbor by a complete graph. See Figure 14.1.

The �ll-in of the Cholesky decomposition can be computed as follows. First form a clique on
the neighbors of node 1. Then form a clique on the neighbors of node 2 etc. The edges which are
added correspond to entries of the matrix which are �lled in. (Of course the �lled in entry might
be a zero due to cancelation but we ignore this possibility.) In our matrix the �lled in entries are
given by �. This calculation of �ll-in can be done relatively cheaply.

In the context of parallel computation, an important parameter the height of elimination tree,
which is the number of parallel elimination steps need to factor with an unlimited number of
processors. The elimination tree de�ned as follows from the �ll-in calculation which was described
above. Let j > k. De�ne j >L k if ljk 6= 0 where ljk is the (j; k) entry of L, the result of the

110 Math 18.337, Spring 1996

2
3

4

56

1

6 5

4

32

Eliminate 1

Figure 14.1: Graphical Representation of Elimination

decomposition. Let the parent of k, p(k) =minfj : j >L kg. This de�nes a tree since if � >L �,

 >L � and
 > � then
 >L �.

The order of elimination determines both �ll and elimination tree height. Unfortunately, but
inevitably, �nding the best ordering is NP-complete. Heuristics are used to reduce �ll-in. The
following lists some commonly used ones.

� Ordering by minimum degree (this is SYMMD in Matlab)

� nested dissection

� Cuthill-McKee ordering.

� reverse Cuthill-McKee (SYMRCM)

� ordering by number of non-zeros (COLPERM or COLMMD)

We now examine an ordering method called nested dissection, which uses vertex separators in
a divide-and-conquer node ordering for sparse Gaussian elimination. Nested dissection [35, 36, 55]
was originally a sequential algorithm, pivoting on a single element at a time, but it is an attractive
parallel ordering as well because it produces blocks of pivots that can be eliminated independently
in parallel [9, 28, 38, 57, 70].

Consider a regular �nite di�erence grid. By dissecting the graph along the center lines (enclosed
in dotted curves), the graph is split into four independent graphs, each of which can be solved in
parallel.

The connections are included only at the end of the computation in an analogous way to domain
decomposition discussed in earlier lectures. Figure 14.3 shows how a single domain can be split up
into two roughly equal sized domains A and B which are independent and a smaller domain C

that contains the connectivity.
One can now recursively order A and B, before �nally proceeding to C. More generally, begin

by recursively ordering at the leaf level and then continue up the tree. The question now arises as
to how much �ll is generated in this process. A recursion formula for the �ll F generated for such
a 2-dimension nested dissection algorithm is readily derived.

F (n) = 4F (
n

2
) +

(2
p
n)2

2
(14.2)

Chapter 14 Sparse Linear Algebra 111

Figure 14.2: Nested Dissection

A B
C

Figure 14.3: Vertex Separators

112 Math 18.337, Spring 1996

This yields upon solution

F (n) = 2n log(n) (14.3)

In an analogous manner, the elimination tree height is given by:

H(n) = H(
n

2
) + 2

p
n (14.4)

H(n) = const� pn (14.5)

Nested dissection can be generalized to three dimensional regular grid or other classes of graphs
that have small separators. We will come back to this point in the section of graph partitioning.

14.2.2 Parallel Factorization: the Multifrontal Algorithm

Nested dissection and other heuristics give the ordering. To factor in parallel, we need not only to
�nd a good ordering in parallel, but also to perform the elimination in parallel. To achieve better
parallelism and scalability in elimination, a popular approach is to modify the algorithm so that
we are performing a rank k update to an n� k� n� k block. The basic step will now be given by

A =

D V T

V C

!
=

LD 0

V L�TD I

!
I 0
0 C � VD�1V T

!
LTD L�1

D V T

0 I

!

where C is n� k�n� k, V is n� k� k and D = LDL
T
D is k� k. D can be written in this way

since A is positive de�nite. Note that V D�1V T = (V L�TD)(L�1
D V T).

The elimination tree shows where there is parallelism since we can \go up the separate branches
in parallel." i.e. We can update a column of the matrix using only the columns below it in the
elimination tree. This leads to the multifrontal algorithm. The sequential version of the algorithm
is given below. For every column j there is a block �Uj (which is equivalent to V D�1V T).

�Uj = �
X
k

0
BBBB@

ljk
li1k
...
lirk

1
CCCCA (ljk li1k : : : lirk)

where the sum is taken over all descendants of j in the elimination tree. j; i1; i2; : : : ; ir are the
indices of the non-zeros in column j of the Cholesky factor.

For j = 1; 2; : : : ; n. Let j; i1; i2; : : : ; ir be the indices of the non-zeros in column j of L. Let
c1; : : : ; cs be the children of j in the elimination tree. Let �U = Uc1 l : : : l Ucs where the Ui's were
de�ned in a previous step of the algorithm. l is the extend-add operator which is best explained
by example. Let

R =

 5 8

5 p q
8 u v

!
; S =

 5 9

5 w x
9 y z

!

(The rows of R correspond to rows 5 and 8 of the original matrix etc.) Then

R l S =

0
B@

5 8 9

5 p+ w q x
8 u v 0
9 y 0 z

1
CA

Chapter 14 Sparse Linear Algebra 113

De�ne

Fj =

0
B@

ajj : : : ajir
...

. . .

airj : : : airir

1
CA l �U

(This corresponds to C � V D�1V T)

Now factor Fj0
BBBB@

ljj 0 : : : 0
li1j
... I

lirj

1
CCCCA

0
BBBB@

1 0 : : : 0
0
... Uj
0

1
CCCCA

0
BBBB@

ljj li1j : : : lirj
0
... I

0

1
CCCCA

(Note that Uj has now been de�ned.)

We can use various BLAS kernels to carry out this algorithm. Recently, Kumar and Karypis
have shown that direct solver can be parallelized e�cient. They have designed a parallel algorithm
for factorization of sparse matrices that is more scalable than any other known algorithm for this
problem. They have shown that our parallel Cholesky factorization algorithm is asymptotically
as scalable as any parallel formulation of dense matrix factorization on both mesh and hypercube
architectures. Furthermore, their algorithm is equally scalable for sparse matrices arising from two-
and three-dimensional �nite element problems.

They have also implemented and experimentally evaluated the algorithm on a 1024-processor
nCUBE 2 parallel computer and a 1024-processor Cray T3D on a variety of problems. In structural
engineering problems (Boeing-Harwell set) and matrices arising in linear programming (NETLIB
set), the preliminary implementation is able to achieve 14 to 20 GFlops on a 1024-processor Cray
T3D.

In its current form, they algorithm is applicable only to Cholesky factorization of sparse sym-
metric positive de�nite (SPD) matrices. SPD systems occur frequently in scienti�c applications
and are the most benign in terms of ease of solution by both direct and iterative methods. How-
ever, there are many applications that involve solving large sparse linear systems which are not
SPD. An e�cient parallel algorithm for a direct solution to non-SPD sparse linear systems will be
extremely valuable because the theory of iterative methods is far less developed for general sparse
linear systems than it is for SPD systems.

14.3 Basic Iterative Methods

These methods will focus on the solution to the linear system Ax = b where A 2 Rn�n and
x; b 2 Rn, although the theory is equally valid for systems with complex elements.

Choose some initial guess, xo, for the solution vector. Generate a series of solution vectors,
fx1; x2; : : : ; xkg, through an iterative process taking advantage of previous solution vectors.

De�ne x� as the true (optimal) solution vector. Each iterative solution vector is chosen such
that the absolute error, ei = kx� � xik, is decreasing with each iteration for some de�ned norm.
De�ne also the residual error, ri = kb� Axik, at each iteration. These error quantities are clearly
related by a simple transformation through A.

ri = b�Axi = Ax� �Axi = Aei

114 Math 18.337, Spring 1996

14.3.1 Jacobi Method

Perform the matrix decomposition A = D � L � U where D is some diagonal matrix, L is some
strictly lower triangular matrix and U is some strictly upper triangular matrix.

Any solution satisfying Ax = b is also a solution satisfying Dx = (L + U)x+ b. This presents
a straightforward iteration scheme with small computation cost at each iteration. Solving for the
solution vector on the right-hand side involves inversion of a diagonal matrix. Assuming this inverse
exists, the following iterative method may be used.

xi = D�1 (L+ U) xi�1 +D�1b

This method presents some nice computational features. The inverse term involves only the
diagonal matrix, D. The computational cost of computing this inverse is minimal. Additionally,
this may be carried out easily in parallel since each entry in the inverse does not depend on any
other entry.

14.3.2 Gauss-Seidel Method

This method is similar to Jacobi Method in that any solution satisfying Ax = b is now a solution
satisfying (D � L)x = Ub for the A = D � L� U decomposition. Assuming an inverse exists, the
following iterative method may be used.

xi = (D � L)�1Uxi�1 + (D� L)�1

This method is often stable in practice but is less easy to parallelize. The inverse term is now
a lower triangular matrix which presents a bottleneck for parallel operations.

This method presents some practical improvements over the Jacobi method. Consider the
computation of the jth element of the solution vector xi at the ith iteration. The lower triangular
nature of the inverse term demonstrates only the information of the (j + 1)th element through
the nth elements of the previous iteration solution vector xi�1 are used. These elements contain
information not available when the jth element of xi�1 was computed. In essence, this method
updates using only the most recent information.

14.3.3 Splitting Matrix Method

The previous methods are specialized cases of Splitting Matrix algorithms. These algorithms utilize
a decomposition A =M�N for solving the linear system Ax = b. The following iterative procedure
is used to compute the solution vector at the ith iteration.

Mxi = Nxi�1 + b

Consider the computational tradeo�s when choosing the decomposition.

� cost of computing M�1

� stability and convergence rate

It is interesting the analyze convergence properties of these methods. Consider the de�nitions
of absolute error, ei = x� � xi, and residual error, ri = Axi � b. An iteration using the above
algorithm yields the following.

Chapter 14 Sparse Linear Algebra 115

x1 = M�1Nx0 +M�1b
= M�1(M �A)x0 +M�1b

= x0 +M�1r0

A similar form results from considering the absolute error.

x� = x0 + e0
= x0 +A�1r0

This shows that the convergence of the algorithm is in some way improved if the M�1 term
approximates A�1 with some accuracy. Consider the amount of change in the absolute error after
this iteration.

e1 = A�1r0 �M�1r0
= e0 �M�1Ae0
= M�1Ne0

Evaluating this change for a general iteration shows the error propagation.

ei =
�
M�1N

�i
e0

This relationship shows a bound on the error convergence. The largest eigenvalue, or spectral
eigenvalue, of the matrixM�1N determines the rate of convergence of these methods. This analysis
is similar to the solution of a general di�erence equation of the form xk = Axk�1. In either case,
the spectral radius of the matrix term must be less than 1 to ensure stability. The method will
converge to 0 faster if all the eigenvalue are clustered near the origin.

14.3.4 Weighted Splitting Matrix Method

The splitting matrix algorithm may be modi�ed by including some scalar weighting term. This
scalar may be likened to the free scalar parameter used in practical implementations of Newton's
method and Steepest Descent algorithms for optimization programming. Choose some scalar, w,
such that 0 < w < 1, for the following iteration.

xi = (1� w)x0 + w
�
x0 +M�1v0

�
= x0 + wM�1v0

14.4 Red-Black Ordering for parallel Implementation

The concept of ordering seeks to separate the nodes of a given domain into subdomains. Red-black
ordering is a straightforward way to achieve this. The basic concept is to alternate assigning a
\color" to each node. Consider the one- and two-dimensional examples on regular grids..

The iterative procedure for these types of coloring schemes solves for variables at nodes with a
certain color, then solves for variables at nodes of the other color. A linear system can be formed
with a block structure corresponding to the color scheme."

BLACK MIXED
MIXED RED

#

This method can easily be extended to include more colors. A common practice is to choose
colors such that no nodes has neighbors of the same color. It is desired in such cases to minimize
the number of colors so as to reduce the number of iteration steps.

116 Math 18.337, Spring 1996

14.5 Conjugate Gradient Method

The Conjugate Gradient Method is the most prominent iterative method for solving sparse sym-
metric positive de�nite linear systems. We now examine this method from parallel computing
perspective. The following is a copy of a pseudocode for the conjugate gradient algorithm.
Algorithm: Conjugate Gradient

1. x0 = 0; r0 = b� Ax0 = b

2. do m = 1, to n steps

(a) if m = 1, then p1 = r0

else

� = rTm�1rm�1=r
T
m�2rm�2

pm = rm�1 + �pm�1

endif

(b) �m = rTm�1rm�1=p
T
mApm

(c) xm = xm�1 + �mpm

(d) rm = rm�1 � �mApm

When A is symmetric positive de�nite, the solution of Ax = b is equivalent to �nd a solution
to the following quadratic minimization problem.

min
x

�(x) =
1

2
xTAx� xT b:

In this setting, r0 = �r� and pTi Apj = 0, i.e., pTi and pj are conjugate with respect to A.
How many iterations shall we perform and how to reduce the number of iterations?

Theorem 14.5.1 Suppose the condition number is �(A) = �max(A)=�min(A), since A is Symmet-
ric Positive De�nite, 8x0, suppose x� is a solution to Ax = b, then

jjx� � xmjjA � 2jjx� � x0jjA(
p
�� 1p
�+ 1

)m;

where jjV jjA = V TAV

Therefore, jjemjj � 2jje0jj � (
p
��1p
�+1

)m .

Another high order iterative method is Chebyshev iterative method. We refer interested readers
to the book by Own Axelsson (Iterative Solution Methods, Cambridge University Press). Conjugate
gradient method is a special Krylov subspace method. Other examples of Krylov subspace are
GMRES (Generalized Minimum Residual Method) and Lanczos Methods.

14.6 Preconditioning

Preconditioning is important in reducing the number of iterations needed to converge in many
iterative methods. Given a linear system Ax = b a parallel preconditioner is an invertible matrix
C satisfying the following:

Chapter 14 Sparse Linear Algebra 117

1. The inverse C�1 is relatively easy to compute. More precisely, after preprocessing the matrix
C, solving the linear system Cy = b0 is much easier than solving the system Ax = b. Further,
there are fast parallel solvers for Cy = b0.

2. Iterative methods for solving the system C�1Ax = C�1b, such as, conjugate gradient1 should
converge much more quickly than they would for the system Ax = b.

Generally a preconditioner is intended to reduce �(A).
Now the question is: how to choose a preconditioner C? There is no de�nite answer to this.

We list some of the popularly used preconditioning methods.

� The basic splitting matrix method and SOR can be viewed as preconditioning methods.

� Incomplete factorization preconditioning: the basic idea is to �rst choose a good \spar-
sity pattern" and perform factorization by Gaussian elimination. The method rejects those
�ll-in entries that are either small enough (relative to diagonal entries) or in position outside
the sparsity pattern. In other words, we perform an approximate factorization L�U� and
use this product as a preconditioner. One e�ective variant is to perform block incomplete
factorization to obtain a preconditioner.

� Subgraph preconditioning: The basic idea is to choose a subgraph of the graph de�ned
by the matrix of the linear system so that the linear system de�ned by the subgraph can be
solved e�ciently and the edges of the original graph can be embedded in the subgraph with
small congestion and dilation, which implies small condition number of the preconditioned
matrix. In other words, the subgraph can \support" the original graph.

� Block Diagonal Preconditioning: The observation of this method is that a matrix in
many applications can be naturally partitioned in the form of a 2� 2 blocks

A =

A11 A12

A21 A22

!

Moreover, the linear system de�ned by A11 can be solved more e�ciently. Block diagonal
preconditioning chooses a preconditioner with format

C =

B11 0
0 B22

!

with the condition that B11 and B22 are symmetric and

�1A11 � B11 � �2A11

�1A22 � B22 � �2A22

Block diagonal preconditioning methods are often used in conjunction with domain decom-
position technique. We can generalize the 2-block formula to multi-blocks, which correspond
to multi-region partition in the domain decomposition,

Other preconditioning methods include Schur complement preconditioning and various heuris-
tics of computing an approximate matrix inverses and use them as preconditioners.

1In general the matrix C�1
A is not symmetric. Thus the formal analysis uses the matrix LALT where C�1 = LLT

[?].

118 Math 18.337, Spring 1996

14.7 Main Issues

The most computational expensive step in conjugate gradient (and the Krylov method in general)
is a sparse matrix-vector multiplication. This is true for most iterative methods. We will discuss
parallel sparse matrix-vector product in the section of graph partitioning.

Numerically and algorithmically, the important problem is to e�ciently construct good precon-
ditioners.

14.8 E�cient sparse matrix algorithms

14.8.1 Scalable algorithms

By a scalable algorithm for a problem, we mean one that maintains e�ciency bounded away from
zero as the number p of processors grows and the size of the data structures grows roughly linearly
in p.

Notable e�orts at analysis of the scalability of dense matrix computations include those of Li
and Coleman [54] for dense triangular systems, and Saad and Schultz [80]; Ostrouchov, et al. [69],
and George, Liu, and Ng [37] have made some analyses for algorithms that map matrix columns
to processors. Rothberg and Gupta [76] is a important paper for its analysis of the e�ect of caches
on sparse matrix algorithms.

Consider any distributed-memory computation. In order to assess the communication costs
analytically, it s useful to employ certain abstract lower bounds. Our model assumes that machine
topology is given. It assumes that memory consists of the memories local to processors. It assumes
that the communication channels are the edges of a given undirected graph G = (W;L), and
that processor{memory units are situated at some, possibly all, of the vertices of the graph. The
model includes hypercube and grid-structured message-passing machines, shared-memory machines
having physically distributed memory (the Tera machine) as well as tree-structured machines like
a CM-5.

Let V � W be the set of all processors and L be the set of all communication links.

We assume identical links. Let � be the inverse bandwidth (slowness) of a link in seconds
per word. (We ignore latency in this model; most large distributed memory computations are
bandwidth limited.)

We assume that processors are identical. Let � be the inverse computation rate of a processor
in seconds per
oating-point operation. Let �0 be the rate at which a processor can send or receive
data, in seconds per word. We expect that �0 and � will be roughly the same.

A distributed-memory computation consists of a set of processes that exchange information by
sending and receiving messages. Let M be the set of all messages communicated. For m 2 M ,
jmj denotes the number of words in m. Each message m has a source processor src(m) and a
destination processor dest(m), both elements of V .

For m 2M , let d(m) denote the length of the path taken by m from the source of the message
m to its destination. We assume that each message takes a certain path of links from its source to
its destination processor. Let p(m) = (`1; `2; : : : ; `d(m)) be the path taken by message m. For any
link ` 2 L, let the set of messages whose paths utilize `, fm 2M j ` 2 p(m)g, be denoted M(`).

The following are obviously lower bounds on the completion time of the computation. The �rst
three bounds are computable from the set of message M , each of which is characterized by its size
and its endpoints. The last depends on knowledge of the paths p(M) taken by the messages.

Chapter 14 Sparse Linear Algebra 119

1. (Average
ux) P
m2M jmj � d(m)

jLj � �:

This is the total
ux of data, measured in word-hops, divided by the machine's total commu-
nication bandwidth, L=�.

2. (Bisection width) Given V0; V1 � W , V0 and V1 disjoint, de�ne

sep(V0; V1) � min jfL0 � L j L0 is an edge separator of V0 and V1gj

and

flux(V0; V1) �
X

fm2M j src(m)2Vi;dest(m)2V1�ig
jmj :

The bound is
flux(V0; V1)

sep(V0; V1)
� �:

This is the number of words that cross from one part of the machine to the other, divided by
the bandwidth of the wires that link them.

3. (Arrivals/Departures (also known as node congestion))

max
v2V

X
dest(m) = v

jmj�0;

max
v2V

X
src(m) = v

jmj�0:

This is a lower bound on the communication time for the processor with the most tra�c into
or out of it.

4. (Edge contention)

max
`2L

X
m2M(`)

jmj�:

This is a lower bound on the time needed by the most heavily used wire to handle all its
tra�c.

Of course, the actual communication time may be greater than any of the bounds. In particular,
the communication resources (the wires in the machine) need to be scheduled. This can be done
dynamically or, when the set of messages is known in advance, statically. With detailed knowledge
of the schedule of use of the wires, better bounds can be obtained. For the purposes of analysis
of algorithms and assignment of tasks to processors, however, we have found this more realistic
approach to be unnecessarily cumbersome. We prefer to use the four bounds above, which depend
only on the integrated (i.e. time-independent) informationM and, in the case of the edge-contention
bound, the paths p(M). In fact, in the work below, we won't assume knowledge of paths and we
won't use the edge contention bound.

120 Math 18.337, Spring 1996

14.8.2 Cholesky factorization

We'll use the techniques we've introduced to analyze alternative distributed memory implemen-
tations of a very important computation, Cholesky factorization of a symmetric, positive de�nite
(SPD) matrix A. The factorization is A = LLT where L is lower triangular; A is given, L is to be
computed.

The algorithm is this:

1. L := A
2. for k = 1 to N do

3. Lkk :=
p
Lkk

4. for i = k + 1 to N do

5. Lik := LikL
�1
kk

6. for j = k + 1 to N do

7. for i = j to N do

8. Lij := Lij � LikL
T
jk

We can let the elements Lij be scalars, in which case this is the usual or \point" Cholesky algorithm.
Or we can take Lij to be a block, obtained by dividing the rows into contiguous subsets and making
the same decomposition of the columns, so that diagonal blocks are square. In the block case, the
computation of

p
Lkk (Step 3) returns the (point) Cholesky factor of the SPD block Lkk . If A is

sparse (has mostly zero entries) then L will be sparse too, although less so than A. In that case,
only the non-zero entries in the sparse factor L are stored, and the multiplication/division in lines
5 and 8 are omitted if they compute zeros.

Mapping columns

Assume that the columns of a dense symmetric matrix of order N are mapped to processors
cyclically: column j is stored in processor map(j) � j mod p. Consider communication costs on
two-dimensional grid or toroidal machines. Suppose that p is a perfect square and that the machine
is a
p
p � pp grid. Consider a mapping of the computation in which the operations in line 8 are

performed by processor map(j). After performing the operations in line 5, processor map(k) must
send column k to all processors fmap(j) j j > kg.

Let us �x our attention on 2D grids. There are L = 2p+O(1) links. A column can be broadcast
from its source to all other processors through a spanning tree of the machine, a tree of total length
p reaching all the processors. Every matrix element will therefore travel over p � 1 links, so the
total information
ux is (1=2)N2p and the average
ux bound is (1=4)N2�.

Only O(N2=p) words leave any processor. If N � p, processors must accept almost the whole
(1=2)N2 words of L as arriving columns. The bandwidth per processor is �0, so the arrivals bound
is (1=2)N2�0 seconds. If N � p the bound drops to half that, (1=4)N2�0 seconds. We summarize
these bounds for 2D grids in Table 14.1.

We can immediately conclude that this is a nonscalable distributed algorithm. We may not
take p > N�

� and still achieve high e�ciency.

Mapping blocks

Dongarra, Van de Geijn, and Walker [25] have shown that on the Intel Touchstone Delta ma-
chine (p = 528), mapping blocks is better than mapping columns in LU factorization. In such a
mapping, we view the machine as an pr � pc grid and we map elements Aij and Lij to processor

Chapter 14 Sparse Linear Algebra 121

Type of Bound Lower bound

Arrivals 1
4N

2�0

Average
ux 1
4N

2�

Table 14.1: Communication Costs for Column-Mapped Full Cholesky.

Type of Bound Lower bound

Arrivals 1
4N

2�
�

1
pr
+ 1

pc

�

Edge contention N2�
�

1
pr
+ 1

pc

�

Table 14.2: Communication Costs for Torus-Mapped Full Cholesky.

(mapr(i); mapc(j)). We assume a cyclic mappings here: mapr(i) � i mod pr and similarly for
mapc.

The analysis of the preceding section may now be done for this mapping. Results are summarized
in Table 14.2. With pr and pc both O(

p
p), the communication time drops like O(p�1=2). With this

mapping, the algorithm is scalable even when � � �. Now, with p = O(N2), both the compute
time and the communication lower bounds agree; they are O(N). Therefore, we remain e�cient
with storage per processor is O(1). (This scalable algorithm for distributed Cholesky is due to
O'Leary and Stewart [68].)

14.8.3 Distributed sparse Cholesky and the model problem

In the sparse case, the same holds true. To see why this must be true, we need only observe
that most of the work in sparse Cholesky factorization takes the form of the factorization of dense
submatrices that form during the Cholesky algorithm. Rothberg and Gupta demonstrated this fact
in their work in 1992 { 1994.

Unfortunately, with naive cyclic mappings, block-oriented approaches su�er from poor balance
of the computational load and modest e�ciency. Heuristic remapping of the block rows and columns
can remove load imbalance as a cause of ine�ciency.

Several researchers have obtained excellent performance using a block-oriented approach, both
on �ne-grained, massively-parallel SIMD machines [22] and on coarse-grained, highly-parallel
MIMD machines [77]. A block mapping maps rectangular blocks of the sparse matrix to pro-
cessors. A 2-D mapping views the machine as a 2-D pr � pc processor grid, whose members are
denoted p(i; j). To date, the 2-D cyclic (also called torus-wrap) mapping has been used: block Lij
resides at processor p(i mod pr; j mod pc). All blocks in a given block row are mapped to the same
row of processors, and all elements of a block column to a single processor column. Communication
volumes grow as the square root of the number of processors, versus linearly for the 1-D mapping;
2-D mappings also asymptotically reduce the critical path length. These advantages accrue even
when the underlying machine has some interconnection network whose topology is not a grid.

122 Math 18.337, Spring 1996

A 2-D cyclic mapping, however, produces signi�cant load imbalance that severely limits achieved
e�ciency. On systems (such as the Intel Paragon) with high interprocessor communication band-
width this load imbalance limits e�ciency to a greater degree than communication or want of
parallelism.

An alternative, heuristic 2-D block mapping succeeds in reducing load imbalance to a point
where it is no longer the most serious bottleneck in the computation. On the Intel Paragon the
block mapping heuristic produces a roughly 20% increase in performance compared with the cyclic
mapping.

In addition, a scheduling strategy for determining the order in which available tasks are per-
formed adds another 10% improvement.

14.8.4 Parallel Block-Oriented Sparse Cholesky Factorization

In the block factorization approach considered here, matrix blocks are formed by dividing the
columns of the n � n matrix into N contiguous subsets, N � n. The identical partitioning is
performed on the rows. A block Lij in the sparse matrix is formed from the elements that fall
simultaneously in row subset i and column subset j.

Each block Lij has an owning processor. The owner of Lij performs all block operations that
update Lij (this is the \owner-computes" rule for assigning work). Interprocessor communication
is required whenever a block on one processor updates a block on another processor.

Assume that the processors can be arranged as a grid of pr rows and pc columns. In a Cartesian
product (CP) mapping, map(i; j) = p(RowMap(i); ColMap(j)), where RowMap : f0::N � 1g !
f0::pr � 1g, and ColMap : f0::N � 1g ! f0::pc � 1g are given mappings of rows and columns
to processor rows and columns. We say that map is symmetric Cartesian (SC) if pr = pc and
RowMap = ColMap. The usual 2-D cyclic mapping is SC.2

14.9 Load balance with cyclic mapping

Any CP mapping is e�ective at reducing communication. While the 2-D cyclic mapping is CP,
unfortunately it is not very e�ective at balancing computational load. Experiment and analysis
show that the cyclic mapping produces particularly poor load balance; moreover, some serious
load balance di�culties must occur for any SC mapping. Improvements obtained by the use of
nonsymmetric CP mappings are discussed in the following section.

Our experiments employ a set of test matrices including two dense matrices (DENSE1024 and
DENSE2048), two 2-D grid problems (GRID150 and GRID300), two 3-D grid problems (CUBE30
and CUBE35), and 4 irregular sparse matrices from the Harwell-Boeing sparse matrix test set
[26]. Nested dissection or minimum degree orderings are used. In all our experiments, we choose
pr = pc =

p
P , and we use a block size of 48. All M
ops measurements presented here are computed

by dividing the operation counts of the best known sequential algorithm by parallel runtimes. Our
experiments were performed on an Intel Paragon, using hand-optimized versions of the Level-3
BLAS for almost all arithmetic.

14.9.1 Empirical Load Balance Results

We now report on the e�ciency and load balance of the method. Parallel e�ciency is given by
tseq=(P � tpar); where tpar is the parallel runtime, P is the number of processors, and tseq is the

2See [77] for a discussion of domains, portions of the matrix mapped in a 1-D manner to further reduce
communication.

Chapter 14 Sparse Linear Algebra 123

0 2 4 6 8 10 12
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MATRIX NUMBER

E
F

F
IC

IE
N

C
Y

 A
N

D
 L

O
A

D
 B

A
LA

N
C

E

x efficiency, P=64

* balance, P=64

+ efficiency, P=100

o balance, P=100

Figure 14.4: E�ciency and overall balance on the Paragon system (B = 48).

0 2 4 6 8 10 12
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MATRIX NUMBER

LO
A

D
 B

A
LA

N
C

E

+ row bal.

x col bal.

o diag bal.

* overall bal.

Figure 14.5: E�ciency bounds for 2-D cyclic mapping due to row, column and diagonal imbalances
(P = 64; B = 48).

runtime for the same problem on one processor. For the data we report here, we measured tseq
by factoring the benchmark matrices using our parallel algorithm on one processor. The overall
balance of a distributed computation is given by worktotal=(P � workmax); where worktotal is the
total amount of work performed in the factorization, P is the number of processors, and workmax

is the maximum amount of work assigned to any processor. Clearly, overall balance is an upper
bound on e�ciency.

Figure 1 shows e�ciency and overall balance with the cyclic mapping. Observe that load
balance and e�ciency are generally quite low, and that they are well correlated. Clearly, load
balance alone is not a perfect predictor of e�ciency. Other factors limit performance. Examples
include interprocessor communication costs, which we measured at 5%| 20% of total runtime, long
critical paths, which can limit the number of block operations that can be performed concurrently,
and poor scheduling, which can cause processors to wait for block operations on other processors
to complete. Despite these disparities, the data indicate that load imbalance is an important
contributor to reduced e�ciency.

We next measured load imbalance among rows of processors, columns of processors, and di-
agonals of processors. De�ne work[i; j] to be the runtime due to updating of block Lij by
its owner. To approximate runtime, we use an empirically calibrated estimate of the form

124 Math 18.337, Spring 1996

work = operations + ! � block-operations; on the Paragon, ! = 1; 000.
De�ne RowWork[i] to be the aggregate work required by blocks in row i: RowWork[i] =PN�1

j=0 work[i; j]:An analogous de�nition applies for ColWork, the aggregate column work. De�ne
row balance by worktotal=pr � workrowmax; where workrowmax = maxr

P
i:RowMap[i]=rRowWork[i]:

This row balance statistic gives the best possible overall balance (and hence e�ciency), obtained
only if there is perfect load balance within each processor row. It isolates load imbalance due to an
overloaded processor row caused by a poor row mapping. An analogous expression gives column
balance, and a third analogous expression gives diagonal balance. (Diagonal d is made up of the
set of processors p(i; j) for which (i � j) mod pr = d.) While these three aggregate measures of
load balance are only upper bounds on overall balance, the data we present later make it clear that
improving these three measures of balance will in general improve the overall load balance.

Figure 2 shows the row, column, and diagonal balances with a 2-D cyclic mapping of the
benchmark matrices on 64 processors. Diagonal imbalance is the most severe, followed by row
imbalance, followed by column imbalance.

These data can be better understood by considering dense matrices as examples (although the
following observations apply to a considerable degree to sparse matrices as well). Row imbalance
is due mainly to the fact that RowWork[i], the amount of work associated with a row of blocks,
increases with increasing i. More precisely, since work[i; j] increases linearly with j and the number
of blocks in a row increases linearly with i, it follows that RowWork[i] increases quadratically in i.
Thus, the processor row that receives the last block row in the matrix receives signi�cantly more
work than the processor row immediately following it in the cyclic ordering, resulting in signi�cant
row imbalance. Column imbalance is not nearly as severe as row imbalance. The reason, we believe,
is that while the work associated with blocks in a column increases linearly with the column number
j, the number of blocks in the column decreases linearly with j. As a result, ColWork[j] is neither
strictly increasing nor strictly decreasing. In the experiments, row balance is indeed poorer than
column balance. Note that the reason for the row and column imbalance is not that the 2-D cyclic
mapping is an SC mapping; rather, we have signi�cant imbalance because the mapping functions
RowMap and ColMap are each poorly chosen.

To better understand diagonal imbalance, one should note that blocks on the diagonal of the
matrix are mapped exclusively to processors on the main diagonal of the processor grid. Blocks
just below the diagonal are mapped exclusively to processors just below the main diagonal of the
processor grid. These diagonal and sub-diagonal blocks are among the most work-intensive blocks in
the matrix. In sparse problems, moreover, the diagonal blocks are the only ones that are guaranteed
to be dense. (For the two dense test matrices, diagonal balance is not signi�cantly worse than row
balance.) The remarks we make about diagonal blocks and diagonal processors apply to any SC
mapping, and do not depend on the use of a cyclic function RowMap(i) = i mod pr.

14.10 Heuristic Remapping

Nonsymmetric CP mappings, which map rows independently of columns, are a way to avoid diag-
onal imbalance that is automatic with SC mappings. We shall choose the row mapping RowMap

to maximize the row balance, and independently choose ColMap to maximize column balance.
Since the row mapping has no e�ect on the column balance, and vice versa, we may choose the row
mapping in order to maximize row balance independent of the choice of column mapping.

The problems of determining RowMap and ColMap are each cases of a standard NP-complete
problem, number partitioning [34], for which a simple heuristic is known to be good 3. This

3Number partitioning is a well studied NP-complete problem. The objective is to distribute a set of numbers

Chapter 14 Sparse Linear Algebra 125

heuristic obtains a row mapping by considering the block rows in some prede�ned sequence. For
each processor row, it maintains the total work for all blocks mapped to that row. The algorithm
iterates over block rows, mapping a block row to the processor row that has received the least work
thus far. We have experimented with several di�erent sequences, the two best of which we now
describe.

The Decreasing Work (DW) heuristic considers rows in order of decreasing work. This is a
standard approach to number partitioning; that small values toward the end of the sequence allow
the algorithm to lessen any imbalance caused by large values encountered early in the sequence.

The Increasing Depth (ID) heuristic considers rows in order of increasing depth in the
elimination tree. In a sparse problem, the work associated with a row is closely related to its depth
in the elimination tree.

The e�ect of these schemes is dramatic. If we look at the three aggregate measures of load
balance, we �nd that these heuristics produce row and column balance of 0:98 or better, and
diagonal balance of 0:93 or better, for test case BCSSTK31, which is typical. With ID as the row
mapping we have produced better than a 50% improvement in overall balance, and better than
a 20% improvement in performance, on average over our test matrices, with P = 100. The DW
heuristic produces only slightly less impressive improvements The choice of column mapping, as
expected, is less important. In fact, for our test suite, the cyclic column mapping and ID row
mapping gave the best mean performance. 4

We also applied these ideas to four larger problems: DENSE4096, CUBE40, COPTER2 (a
helicopter rotor blade model, from NASA) and 10FLEET (a linear programming formulation of
an airline
eet assignment problem, from Delta Airlines). On 144 and 196 processors the heuristic
(increasing depth on rows and cyclic on columns) again produces a roughly 20% performance
improvement over a cyclic mapping. Peak performance of 2:3 G
ops for COPTER2 and 2:7 G
ops
for 10FLEET were achieved; for the model problems CUBE40 and DENSE4096 the speeds were
3:2 and 5:2 G
ops.

In addition to the heuristics described so far, we also experimented with two other approaches
to improving factorization load balance. The �rst is a subtle modi�cation of the original heuristic.
It begins by choosing some column mapping (we use a cyclic mapping). This approach then iterates
over rows of blocks, mapping a row of blocks to a row of processors so as to minimize the amount
of work assigned to any one processor . Recall that the earlier heuristic attempted to minimize the
aggregate work assigned to an entire row of processors. We found that this alternative heuristic
produced further large improvements in overall balance (typically 10-15% better than that of our
original heuristic). Unfortunately, realized performance did not improve. This result indicates
that load balance is not the most important performance bottleneck once our original heuristic is
applied.

A very simple alternate approach reduces imbalance by performing cyclic row and column
mappings on a processor grid whose dimensions pc and pr are relatively prime; this reduces diagonal
imbalance. We tried this using 7� 9 and 9� 11 processor grids (using one fewer processor that for
our earlier experiments with P = 64 and P = 100.) The improvement in performance is somewhat
lower than that achieved with our earlier remapping heuristic (17% and 18% mean improvement
on 63 and 99 processors versus 20% and 24% on 64 and 100 processors). On the other hand, the
mapping needn't be computed.

among a �xed number of bins so that the maximum sum in any bin is minimized.
4Full experimental data has appeared in another paper [78].

126 Math 18.337, Spring 1996

14.11 Scheduling Local Computations

The next questions to be addressed, clearly, are: (i) what is the most constraining bottleneck after
our heuristic is applied, and (ii) can this bottleneck be addressed to further improve performance?

One potential remaining bottleneck is communication. Instrumentation of our block factoriza-
tion code reveals that on the Paragon system, communication costs account for less than 20% of
total runtime for all problems, even on 196 processors. The same instrumentation reveals that most
of the processor time not spent performing useful factorization work is spent idle, waiting for the
arrival of data.

We do not believe that the idle time is due to insu�cient parallelism. Critical path analysis for
problem BCSSTK15 on 100 processors, for example, indicates that it should be possible to obtain
nearly 50% higher performance than we are currently obtaining. The same analysis for problem
BCSSTK31 on 100 processors indicates that it should be possible to obtain roughly 30% higher
performance. We therefore suspected that the scheduling of tasks by our code was not optimal.

To that end we tried alternative scheduling policies. They are:
FIFO. Tasks are initiated in the order in which the processor discovers that they are ready.
Destination depth. Ready tasks initiated in order of the destination block's elimination tree

depth.
Source depth. Ready tasks initiated in order of the source block's elimination tree depth.
For the FIFO policy, a queue of ready tasks is used, while for the others, a heap is used. We

experimented with 64 processors, using BSCCST31, BCSSTK33, and DENSE2048. Both priority-
based schemes are better than FIFO; destination depth seems slightly better than source depth. We
observed a slowdown of 2% due to the heap data structure on BCSSTK33; the destination priority
scheme then improved performance by 15% for a net gain of 13%. For BSCCST31 the net gain
was 8%. For DENSE2048, however, there was no gain. This improvement is encouraging. There
may be more that can be achieved through the pursuit of a better understanding of the scheduling
question.

Chapter 15

Domain Decomposition for PDE

Domain decomposition is a term used by at least two di�erent communities. Literally, the words
indicate the partitioning of a region. As we will see in Part ?? of this book, an important com-
putational geometry problem is to �nd good ways to partition a region. This is not what we will
discuss here.

In scienti�c computing, domain decomposition refers to the technique of solving partial di�er-
ential equations using subroutines that solve problems on subdomains. Originally, a domain was
a contiguous region in space, but the idea has generalized to include any useful subset of the dis-
cretization points. Because of this generalization, the distinction between domain decomposition
and multigrid has become increasingly blurred.

Domain decomposition is an idea that is already useful on serial computers, but it takes on a
greater importance when one considers a parallel machine with, say, a handful of very powerful
processors. In this context, domain decomposition is a parallel divide-and-conquer approach to
solving the PDE.

To guide the reader, we quickly summarize the choice space that arises in the domain decom-
position literature. As usual a domain decomposition problem starts as a continuous problem on a
region and is disretized into a �nite problem on a discrete domain.

We will take as our model problem the solution of the elliptic equation r2u = f on a region

which is the union of at least subdomains
1 and
2. Domain decomposition ideas tend to be best
developed for elliptic problems, but may be applied in more general settings.

Ω2

Ω1

Figure 15.1: Domain divided into two subdomains without overlap

127

128 Math 18.337, Spring 1996

Ω1

Γ

Γ1

Ω2

2

Figure 15.2: Example domain of circle and square with overlap

Ω
Ω

Ω2

3

1
4

5Ω
Ω

Figure 15.3: Example domain with many overlapping regions

Chapter 15 Domain Decomposition for PDE 129

Domain Decomposition Outline

1. Geometric Issues

Overlapping or non-overlapping regions

Geometric Discretization

Finite Di�erence or Finite Element

Matching or non-matching grids

2. Algorithmic Issues

Algebraic Discretization

Schwarz Approaches: Additive vs Multiplicative

Substructuring Approaches

Accelerants

Domain Decomposition as a Preconditioner

Course (Hierarchical/Multilevel) Domains

3. Theoretical Considerations

15.1 Geometric Issues

The geometric issues in domain decomposition are 1) how are the domains decomposed into subre-
gions, and 2) how is the region discretized using some form of grid or irregular mesh. We consider
these issues in turn.

15.1.1 Overlapping vs Non-overlapping regions

So as to emphasize the issue of overlap vs non-overlap, we can simplify all the other issues by
assuming that we are solving the continuous problem (no discretization) exactly on each domain
(no choice of algorithm). The reader may be surprised to learn that domain decomposition methods
divide neatly into either being overlapping or nonoverlapping methods. Though one can �nd much
in common between these two methods, they are really rather di�erent in
avor. When the methods
overlap, the methods are sometimes known as Schwarz methods, while when there is no overlap,
the methods are sometimes known as substructuring. (Historically, the former name was used in
the continuous case, and the latter in the discrete case, but this historical distinction has been. and
even should be, blurred.)

We begin with the overlapping region illustrated in Figure 15.2. Schwarz in 1870 devised an
obvious alternating procedure for solving Poisson's equation r2u = f :

1. Start with any guess for u2 on �1.

2. Solve r2u = f on
1 by taking u = u2 on �1. (i.e. solve in the square using boundary data
from the interior of the circle)

3. Solve r2u = f on
2 by taking u = u1 on �2 (i.e. solve in the circle using boundary data
from the interior of the square)

4. Goto 2 and repeat until convergence is reached

130 Math 18.337, Spring 1996

One of the characteristics of elliptic PDE's is that the solution at every point depends on global
conditions. The information transfer between the regions clearly occurs in the overlap region.

If we \choke" the transfer of information by considering the limit as the overlap area tends to
0, we �nd ourselves in a situation typi�ed by Figure 15.1. The basic Schwarz procedure no longer
works? Do you see why? No matter what the choice of data on the interface, it would not be
updated. The result would be that the solution would not be di�erentiable along the interface.

One approach to solving the non-overlapped problem is to concentrate directly on the domain of
intersection. Let g be a current guess for the solution on the interface. We can then solve r2u = f

on
1 and
2 independently using the value of g as Dirichlet conditions on the interface. We can
de�ne the map

T : g ! @g

@n1
+

@g

@n2
:

This is a map from functions on the interface to functions on the interface de�ned by taking a
function to the jump in the derivative. The operator T is known as the Steklov-Poincar�e operator.

Suppose we can �nd the exact solution to Tg = 0. We would then have successfully decoupled
the problem so that it may be solved independly into the two domains
1 and
2. This is a
\textbook" illustration of the divide and conquer method, in that solving Tg = 0 constitutes the
\divide."

15.1.2 Geometric Discretization

In the previous section we contented ourselves with formulating the problem on a continuous
domain, and asserted the existence of solutions either to the subdomain problems in the Schwarz
case, or the Stekhlov-Poincar�e operator in the continuous case.

Of course on a real computer, a discretizatization of the domain and a corresponding discretiza-
tion of the equation is needed. The result is a linear system of equations.

Finite Di�erences or Finite Elements

Finite di�erences is actually a special case of �nite elements, and all the ideas in domain decom-
position work in the most general context of �nite elements. In �nite di�erences, one typically
imagines a square mesh. The prototypical example is the �ve point stencil for the Laplacian in two
dimensions. An analog computer to solve this problem would consist of a grid of one ohm resistors.
In �nite elements, the protypical example is a triangulation of the region, and the appropriate
formulation of the PDE on these elements.

Matching vs Non-matching grids

When solving problems as in our square-circle example of Figure 15.2, it is necessary to discretize
the interior of the regions with either a �nite di�erence style grid or a �nite element style mesh. The
square may be nicely discretized by covering it with Cartesian graph-paper, while the circle may
be more conveniently discretized by covering it with Polar graph-paper. Under such a situation,
the grids do not match, and it becomes necessary to transfer points interior to
2 to the boundary
of
1 and vice versa.

15.2 Algorithmic Issues

Once the domain is discretized, numerical algorithms must be formulated. There is a de�nite line
drawn between Schwarz (overlapping) and substructuring (non-overlapping) approaches.

Chapter 15 Domain Decomposition for PDE 131

15.2.1 Schwarz approaches: additive vs multiplicative

A procedure that alternates between solving an equation in
1 and then
2 does not seem to be
parallel at the highest level because if processor 1 contains all of
1 and processor 2 contains all of

2 then each processor must wait for the solution of the other processor before it can execute. Such
approaches are known as multiplicative approaches because of the form of the operator applied to
the error. Alternatively, approaches that allow for the solution of subproblems simultaneously are
known as additive methods. The di�erence is akin to the di�erence between Jacobi and Gauss-
Seidel. We proceed to explain this in further detail.

Classical Iterations and their block equivalents

Let us review the basic classical methods for solving pde's on a discrete domain.

1. Jacobi - At step n, the neighboring values used are from step n � 1

2. Gauss-Seidel - Values at step n are used if available, otherwise the values are used from step
n� 1

3. Red Black Ordering - If the grid is a checkerboard, solve all red points in parallel using black
values at n� 1, then solve all black points in parallel using red values at step n

Analogous block methods may be used on a domain that is decomposed into a number of multiple
regions. Each region is thought of as an element used to solve the larger problem. This is known
as block Jacobi, or block Gauss-Seidel.

1. Gauss-Seidel - Solve each region in series using the boundary values at n if available.

2. Jacobi - Solve each region on a separate processor in parallel and use boundary values at
n� 1. (Additive scheme)

3. Coloring scheme - Color the regions so that like colors do not touch and solve all regions with
the same color in parallel. (Multiplicative scheme)

The block Gauss-Seidel algorithm is called a multiplicative scheme for reasons to be explained
shortly. In a corresponding manner, the block Jacobi scheme is called an additive scheme.

Overlapping regions: A notational nightmare?

When the grids match it is somewhat more convenient to express the discretized PDE as a simple
matrix equation on the gridpoints.

Unfortunately, we have a notational di�culty at this point. It is this di�culty that is probably
the single most important reason that domain decomposition techniques are not used as extensively
as they can be. Even in the two domain case, the di�culty is related to the fact that we have domains
1 and 2 that overlap each other and have internal and external boundaries. By setting the boundary
to 0 we can eliminate any worry of external boundaries. I believe there is only one reasonable way
to keep the notation manageable. We will use subscripts to denote subsets of indices. d1 and d2
will represent those nodes in domain 1 and domain 2 respectively. b1 and b2 will represent those
notes in the boundary of 1 and 2 respectively that are not external to the entire domain.

Therefore ud1 denotes the subvector of u consisting of those elements interior to domain 1, while
Au1;b1 is the rectangular subarray of A that map the interior of domain 1 to the internal boundary

132 Math 18.337, Spring 1996

of domain 1. If we were to write uT as a row vector, the components might break up as follows
(the overlap region is unusually large for emphasis:)

-� �-d1 b1

-��- d2b2

Correspondingly, the matrix A (which of course would never be written down) has the form

The reader should �nd Ab1;b1 etc., on this picture. To further simplify notation, we write 1 and
2 for d1 and d2,1b and 2b for b1 and b2, and also use only a single index for a diagonal block of a
matrix (i.e. A1 = A11).

Now that we have leisurely explained our notation, we may return to the algebra. Numerical
analysts like to turn problems that may seem new into ones that they are already familiar with. By
carefully writing down the equations for the procedure that we have described so far, it is possible
to relate the classical domain decomposition method to an iteration known as Richardson iteration.
Richardson iteration solves Au = f by computing uk+1 = uk +M(f �Auk), where M is a \good"
approximation to A�1. (Notice that if M = A�1, the iteration converges in one step.)

The iteration that we described before may be written algebraically as

A1u
k+1=2
1 +A1;1bu

k
1b = f1

A2u
k+1
2 +A2;2bu

k+1=2
2b

= f2

Notice that values of uk+1=2 updated by the �rst equation, speci�cally the values on the boundary
of the second region, are used in the second equation.

With a few algebraic manipulations, we have

u
k+1=2
1 = uk�1

1 +A�1
1 (f �Auk�1)1

uk+1
2 = u

k+1=2
2 + A�1

2 (f �Auk+1=2)2

Chapter 15 Domain Decomposition for PDE 133

Problem Domain

Ω1

Ω2I

Figure 15.4: Problem Domain

This was already obviously a Gauss-Seidel like procedure, but those of you familiar with the alge-
braic form of Gauss-Seidel might be relieved to see the form here.

A roughly equivalent block Jacobi method has the form

u
k+1=2
1 = uk�1

1 +A�1
1 (f �Auk�1)1

uk2 = u
k+1=2
2 +A�1

2 (f �Auk)2

It is possible to eliminate uk+1=2 and obtain

uk+1 = uk + (A�1
1 + A�1

2)(f �Auk);

where the operators are understood to apply to the appropriate part of the vectors. It is here that
we see that the procedure we described is a Richardson iteration with operator M = A�1

1 + A�1
2 .

15.2.2 Substructuring Approaches

Figure 15.4 shows an example domain of a problem for a network of resistors or a discretized
region in which we wish to solve the Poisson equation, We will see that the discrete version of the
Steklov-Poincar�e operator has its algebraic equivalent in the form of the Schur complement.
52v = g

In matrix notation, Av = g; where

A =

0
B@ A1 0 A1I

0 A2 A2I

AI1 AI2 AI

1
CA

One of the direct methods to solve the above equation is to use LU or LDU factorization. We
will do an analogous procedure with blocks. We can rewrite A as,

A =

0
B@ I 0 0

0 I 0
AI1A

�1
1 AI2A

�1
2 I

1
CA
0
B@ I 0 0

0 I 0
0 0 S

1
CA
0
B@ A1 0 A1I

0 A2 A2I

0 0 I

1
CA

134 Math 18.337, Spring 1996

where,

S = AI � AI1A
�1
1 A1I �AI2A

�1
2 A2I

We really want A�1

A�1 =

0
B@ A�1

1 0 �A�1
1 A1I

0 A�1
2 �A�1

2 A2I

0 0 I

1
CA
0
B@ I 0 0

0 I 0
0 0 S�1

1
CA
0
B@ I 0 0

0 I 0
�AI1A

�1
1 �AI2A

�1
2 I

1
CA (15.1)

Inverting S turns out to be the hardest part.

A�1

0
B@ V
1

V
2
VInterface

1
CA ! V oltages in region
1
! V oltages in region
2
! V oltages at interface

Let us examine Equation 15.1 in detail.

In the third matrix,
A�1
1 - Poisson solve in
1

AI1 - is putting the solution onto the interface
A�1
2 - Poisson solve in
2

AI2 - is putting the solution onto the interface

In the second matrix,
Nothing happening in domain 1 and 2
Complicated stu� at the interface.

In the �rst matrix we have,
A�1
1 - Poisson solve in
1

A�1
2 - Poisson solve in
2

A�1
1 A1I and A�1

2 A1I- Transferring solution to interfaces

In the above example we had a simple 2D region with neat squares but in reality we might have
to solve on complicated 3D regions which have to be divided into tetrahedra with 2D regions at
the interfaces. The above concepts still hold.

Getting to S�1,
a b
c d

!
=

1 0
c=a 1

!
a b
0 d� bc=a

!

where, d� bc=a is the Schur complement of d.

In Block form
A B

C D

!
=

1 0

CA�1 1

!
A B

0 D � CA�1B

!

We have

S = AI � AI1A
�1
1 A1I �AI2A

�1
2 A2I

Chapter 15 Domain Decomposition for PDE 135

Arbitrarily break AI as

AI = A1
I +A2

I

Think of A as 0
B@ A1 0 A1I

0 0 0
AI1 0 A1

I

1
CA+

0
B@ 0 0 0

0 A2 A2I

0 AI2 A2
I

1
CA

Schur Complements are

S1 = A1
I � AI1A

�1
1 A1I

S2 = A2
I � AI2A

�1
2 A2I

and

S = S1 + S2

A�1
1 ! Poisson solve on
1

A�1
2 ! Poisson solve on
2
AI1
1! I

A21
2! I
A1I I !
1
A2I I !
2
Sv - Multiplying by the Schur Complement involves 2 Poisson solves and some cheap transfer-

ring.
S�1v should be solved using Krylov methods. People have recommended the use of S�1

1 or S�1
2

or (S�1
1 + S�1

2) as a preconditioner

15.2.3 Accerlerants

Domain Decomposition as a Preconditioner

It seems wasteful to solve subproblems extremely accurately during the early stages of the algorithm
when the boundary data is likely to be fairly inaccurate. Therefore it makes sense to run a few
steps of an iterative solver as a preconditioner for the solution to the entire problem.

In a modern approach to the solution of the entire problem, a step or two of block Jacobi
would be used as a preconditioner in a Krylov based scheme. It is important at this point not to
lose track what operations may take place at each level. To solve the subdomain problems, one
might use multigrid, FFT, or preconditioned conjugate gradient, but one may choose to do this
approximately during the early iterations. The solution of the subdomain problems itself may serve
as a preconditioner to the solution of the global problem which may be solved using some Krylov
based scheme.

The modern approach is to use a step of block Jacobi or block Gauss-Seidel as a preconditioner
for use in a Krylov space based subsolver. There is not too much point in solving the subproblems
exactly on the smaller domains (since the boundary data is wrong) just an approximate solution
su�ces ! domain decomposition preconditioning

Krylov Methods - Methods to solve linear systems : Au=g . Examples have names such

136 Math 18.337, Spring 1996

as the Conjugate Gradient Method, GMRES (Generalized Minimum Residual), BCG (Bi Conju-
gate Gradient), QMR (Quasi Minimum Residual), CGS (Conjugate Gradient Squared). For this
lecture, one can think of these methods in terms of a black-box. What is needed is a subroutine
that given u computes Au. This is a matrix-vector multiply in the abstract sense, but of course
it is not a dense matrix-vector product in the sense one practices in undergraduate linear algebra.
The other needed ingredient is a subroutine to approximately solve the system. This is known as a
preconditioner. To be useful this subroutine must roughly solve the problem quickly.

Course (Hierarchical/Multilevel) Techniques

These modern approaches are designed to greatly speed convergence by solving the problem on dif-
ferent sized grids with the goal of communicating information between subdomains more e�ciently.
Here the \domain" is a course grid. Mathematically, it is as easy to consider a contiguous domain
consisting of neighboring points, as it is is to consider a course grid covering the whole region.

Up until now, we saw that subdividing a problem did not directly yield the �nal answer, rather it
simpli�ed or allowed us to change our approach in tackling the resulting subproblems with existing
methods. It still required that individual subregions be composited at each level of re�nement to
establish valid conditions at the interface of shared boundaries.

Multilevel approaches solve the problem using a coarse grid over each sub-region, gradually
accommodating higher resolution grids as results on shared boundaries become available. Ideally
for a well balanced multi-level method, no more work is performed at each level of the hierarchy
than is appropriate for the accuracy at hand.

In general a hierarchical or multi-level method is built from an understanding of the di�erence
between the damping of low frequency and high components of the error. Roughly speaking one
can kill of low frequency components of the error on the course grid, and higher frequency errors
on the �ne grid.

Perhaps this is akin to the Fast Multipole Method where p poles that are \well-separated" from
a given point could be considered as clusters, and those nearby are evaluated more precisely on a
�ner grid.

15.3 Theoretical Issues

This section is not yet written. The rough content is the mathematical formulation that identi�es
subdomains with projection operators.

15.4 A Domain Decomposition Assignment: Decomposing MIT

Perhaps we have given you the impression that entirely new codes must be written for parallel
computers, and furthermore that parallel algorithms only work well on regular grids. We now show
you that this is not so.

You are about to solve Poisson's equation on our MIT domain:

Notice that the letters MIT have been decomposed into 32 rectangles { this is just the right
number for solving

@2u

dx2
+
@2u

dy2
= �(x; y)

on a 32 processor CM-5.

Chapter 15 Domain Decomposition for PDE 137

Figure 15.5: MIT domain

To solve the Poisson equation on the individual rectangles, we will use a FISHPACK library
routine. (I know the French would cringe, but there really is a library called FISHPACK for solving
the Poisson equation.) The code is old enough (from the 70's) but in fact it is too often used to
really call it dusty.

[Can you tell that the paragraphs below were written before the web caught on?]
As a side point, this exercise highlights the ease of grabbing kernel routines o� the network

these days. High quality numerical software is out there (bad stu� too). One good way to �nd it
is via xnetlib.

On athena, type

athena% add netlib

athena% xnetlib

to play with netlib which is actually running o� of a machine in Oak Ridge, TN. Click on Library,
then fishpack, then the �rst routine: fishpack/hwscrt.f

Now click download on the top bar button, then \Get Files Now" as you watch your gas tank
go from empty to full. Xnetlib has now created the directory xnlFiles (x-net-lib-�les). You can
cd xnlFiles/fishpack to see the routine.

Congratulations, you have just obtained free software over the network. You probably want to
have a Friday directory on scout. You can then ftp the code over to scout by typing on athena:

ftp scout.lcs.mit.edu

and using your userid (mit-0?) followed by your password. (If you hit return after your last name
it will not work.) If all the directories are set up right you can type put hwscrt.f to move the �le
to scout.

All of the rectangles on the MIT picture have sides in the ratio 2 to 1; some are horizontal while
others are vertical. We have arbitrarily numbered the rectangles accoding to scheme below, you
might wish to write the numbers in the picture on the �rst page.

4 10 21 21 22 22 23 24 24 25 26 26 27

4 5 9 10 20 23 25 27

3 5 6 8 9 11 20 28

3 6 7 8 11 19 28

138 Math 18.337, Spring 1996

2 7 12 19 29

2 12 18 29

1 13 18 30

1 13 17 30

0 14 17 31

0 14 15 15 16 16 31

In our �le neighbor.data which you can take from ~edelman/summer94/fridaywe have encoded
information about neighbors and connections. A copy of the �le is included in this handout. You
will see numbers such as

1 0 0 0 0 0

4 0 0 0 0 0

0 0 0 0

0

This contains information about the 0th rectangle. The �rst line says that it has a neighbor 1. The
4 means that the neighbor meets the rectangle on top. (1 would be the bottom, 6 would be the
lower right.) We starred out a few entries towards the bottom. Figure out what they should be.

In the actual code (solver.f), a few lines were question marked out for the message passing.
Figure out how the code works and �ll in the appropriate lines. The program may be compiled
with the make�le.

Chapter 16

Multilevel Methods

Multilevel methods can be viewed a family of useful methods for solving sparse linear systems
de�ned on spatial domains. It can also be viewed as an extension of our basic numerical methods
such as the �nite element and �nite di�erence methods. Instead using a single mesh to approximate
PDEs on a physical domain as in the �nite element and di�erence method, the multilevel method (or
called hierarchical methods) use a gradient (series) of meshes M0, ...,Mk , where Mi is a coarsened
mesh of Mi�1, or equivalently Mi�1 is an re�nement of Mi . Two examples are multigrid (MD)
[?] and (multilevel) domain decomposition (DD) [?]. Both methods are iterative in natural. They
perform an iterative computation that transforms partial solutions from one mesh to its coarsened
mesh or re�ned mesh (called its neighboring meshes). It uses interpolation or restriction to go from
mesh to mesh.

16.1 Multigrids

Originally, multigrid methods were developed to solve boundary value problems posed on a (geo-
metric) physical domain. Therefore, there are two important inputs: the PDEs and the geometric
structure of the domain. Such problems are made discrete by choosing a set of grid points.

16.1.1 The Basic Idea

1. Use coarse grids to obtain better initial guesses for the �nest grid.

2. Use coarse grids to correct the error of the solution obtained on the �nest grid. We call such
a scheme a coarse grid correction scheme.

16.1.2 Restriction and Interpolation

For supporting both approach, we need to de�ne

� an operator to transfer a �ne grid vector to a coarse grid vector.

� an operator to a coarse grid vector to a �ne grid vector.

� the corresponding linear systems for coarse grids.

To move the solution from a coarse grid to a �ne one, we use interpolation. Conversely, to move
the solution from a �ne grid to a coarse one we apply restriction. Many methods for interpolation

139

140 Math 18.337, Spring 1996

and restriction can be used. Here we discuss some simple ones that are commonly used in multigrid
implementation. These simple ones are quite e�ective in practice.

Let Ih2h denote the interpolation operator. It takes a coarse grid vector v2h and return a �ne
grid vector vh, i.e., Ih2hv

2h = vh. For one dimensional �ne grid of n � 1 points , the following
interpolation vector is the most commonly used one:

vh2j = v2hj

vh2j+1 = (v2hj + v2hj+1)=2;

where 0 � j � n=2� 1.
Notice that the interpolation operator is an linear operator and can be written as a matrix

vector product. We else use Ih2h to denote the transformation matrix.
For two dimensional grids, the interpolation operator can be de�ned in a similar way. One

again, we let Ih2h denote the interpolation operator and hence, Ih2hv
2h = vh. The components of vh

are then given by

vh2i;2j = v2hi;j

vh2i+1;2j = (v2hi;j + v2hi+1;j)=2

vh2i;2j+1 = (v2hi;j + v2hi;j+1)=2

vh2i+1;2j+1 = (v2hi;j + v2hi+1;j + v2hi;j+1 + v2hi+1;j+1

where 0 � i; j � n=2� 1.
Because the regular grids used in multigrid are well-nested. The simplest way to transfer vector

from a �ne grid to a coarse grid is by injection, i.e., by assign v2hj = vh2j for one dimensional case.

An alternative restriction operator is called full weighting and we denoted it by I2hh . It takes a �ne
grid vector vh and return a coarse grid vector v2h, i.e., I2hh vh = v2h. The components of vh are
given by

v2hj = (vh2j�1 + 2vh2j + vh2j+1)=4;

where 1 � j � n=2� 1.
As a linear operator, we have Ih2h = 2(I2hh)T , where (I2hh)T is the transpose of (I2hh).
Similarly, we can de�ne the full weighting restriction operator for two dimensional regular grid,

I2hh vh = v2h. The components of vh are given by

vj2h = f(vh2i�1;2j�1 + 2vh2i�1;2j+1 + vh2i+1;2j�1 + 2vh2i+1;2j+1)

(vh2i;2j�1 + 2vh2i;2j+1 + vh2i�1;2j + 2vh2i+1;2j) + 4vh2i;2jg
where 1 � i; j � n=2� 1. Again, we have Ih2h = 2(I2hh)T : Clearly in theory, we can use other convex
combination of the values of the neighboring points in the restriction formulation.

Numerically, the interpolation can restriction operator transfer the vector of errors on one grid
to another. So its numerical e�ectiveness and correctness depends on the assumption that the
error is \smooth". Notice that if the error is highly oscillatory, then clearly the interpolation and
the full weighted restriction may produce an error vector that is not very accurate. Fortunately,
for multigrid, the iterative process at each grid eliminates the oscillatory components of the error
vector and hence produce an error vector that is much smooth. The process of interpolation,
restriction, and local relaxation complement each other. That is the intuition why multigrid can
be very e�ective.

Clearly, for regular grids, the computation in both interpolation and restriction involves values
only from nearest neighbors and can be written again as a sparse matrix time a vector. Therefore
such operation can be supported e�ciently on parallel machines.

Chapter 16 Multilevel Methods 141

16.1.3 The Multigrid Scheme

To simplify our discussion, we introduction some notation.

� Let Ah denote the linear system associated with grid of spacing h.

� For each vector name, say v, let vh denote a vector for the grid of spacing h.

Therefore, if h is the spacing of the �nest grid, then the linear systems associated with the �nest
grid is give as Ahuh = fh.

The simplest multigrid scheme is the use the coarse grid to relax the error. Such a scheme is
referred as a V-cycle scheme in the literature.

Algorithm V-cycle MG(vh; fh)
if
h is the coarsest grid, solve Ahuh = fh directly (if Ah is small enough),
or apply an iterative method k times to relax the equation Ahuh = fh with
initial solution vh to obtain a new vh.
else

1. apply an iterative method k1 times to relax the equation Ahuh = fh

with initial solution vh to obtain a new vh.

2. r2h = I2hh (fh �Ahvh)

3. e2h = 0

4. e2h = V-cycle MG(e2h, r2h)

5. eh = Ih2h(e
2h)

6. vh = vh + eh

7. apply an iterative method k2 times to relax the equation Ahuh = fh

with initial solution vh to obtain a new vh.

Suppose u� is the exact solution to approximation eh of e.Ahuh = fh. The basic idea here is to
�rst solve the �nest grid linear equation Ahuh = fh iteratively with an initial guess vh to obtain a
new vh. Therefore the error of the solution is e = u�� vh and the residual error is rh = fh�Ahvh.
Therefore u� = vh + e. We also know that Ahe = frh. Instead to �nd e on the �nest grid, we
transfer rh to r2h and try to approximate A2he2h = r2h on the coarse grid (recursively). After
obtain an approximation e2h, we transfer e2h back to the �ner grid to obtain an approximation of
eh. The new approximation to the linear system is then vh + eh.

142 Math 18.337, Spring 1996

V Graph and Geometric Algo-

rithms

Chapter 17

Partitioning and Load Balancing

Handling a large mesh or a linear system on a supercomputer or on a workstation cluster usually
requires that the data for the problem be somehow partitioned and distributed among the pro-
cessors. The quality of the partition a�ects the speed of solution: a good partition divides the
work up evenly and requires as little communication as possible. Unstructured meshes may ap-
proximate irregular physical problems with fewer mesh elements, their use increases the di�culty
of programming and requires new algorithms for partitioning and mapping data and computations
onto parallel machines. Partitioning is also important for VLSI circuit layout and parallel circuit
simulation.

17.1 Motivation from the Parallel Sparse Matrix Vector Multipli-
cation

Multiplying a sparse matrix by a vector is a basic step of most commonly used iterative methods
(conjugate gradient, for example). We want to �nd a way of e�ciently parallelizing this operation.

Say that processor i holds the value of vi. To update this value, processor need to compute a
weighted sum of values at itself and all of its neighbors. This means it has to �rst receiving values
from processors holding values of its neighbors and then computing the sum. Viewing this in graph
terms, this corresponds to communicating with a node's nearest neighbors.

We therefore need to break up the vector (and implicitly matrix and graph) so that:

� We balance the computational load at each processor. This is directly related to the number
of non-zero entries in its matrix block.

� We minimize the communication overhead. How many other values does a processor have to
receive? This equals the number of these values that are held at other processors.

We must come up with a proper division to reduce overhead. This corresponds to dividing
up the graph of the matrix among the processors so that there are very few crossing edges. First
assume that we have 2 processors, and we wish to partition the graph for parallel processing. As an
easy example, take a simplistic cut such as cutting the 2D regular grid of size n in half through the
middle. Let's de�ne the cut size as the number of edges whose endpoints are in di�erent groups.
A good cut is one with a small cut size. In our example, the cut size would be

p
n. Assuming that

the cost of each communication is 10 times more than an local arithmetic operation. Then the
total parallel cost of perform matrix-vector product on the grid is (4n)=2+ 10

p
n = 2n+10

p
n. In

general, for p processors, to need to partition the graph into p subgraphs.

143

144 Math 18.337, Spring 1996

Various methods are used to break up a graph into parts such that the number of crossing edges
is minimized. Here we'll examine the case where p = 2 processors, and we want to partition the
graph into 2 halves.

17.2 Separators

The following de�nitions will be of use in the discussion that follows. Let G = (V;E) be an
undirected graph.

� A bisection of G is a division of V into V1 and V2 such that jV1j = jV2j. (If jV j is odd,
then the cardinalities di�er by at most 1). The cost of the bisection (V1; V2) is the number
of edges connecting V1 with V2.

� If � 2 [1=2; 1), a �-bisection is a division of V such that V1;2 � �jV j.

� An edge separator of G is a set of edges that if removed, would break G into 2 pieces with
no edges connecting them.

� A p-way partition is a division of V into p pieces V1,V2,: : :,Vp where the sizes of the various
pieces di�er by at most 1. The cost of this partition is the total number of edges crossing the
pieces.

� A vertex separator is a set C of vertices that break G into 3 pieces A, B, and C where no
edges connect A and B. We also add the requirement that A and B should be of roughly
equal size.

Usually, we use edge partitioning for parallel sparse matrix-vector product and vertex parti-
tioning for the ordering in direct sparse factorization.

17.3 Spectral Partitioning { One way to slice a problem in half

The three steps to illustrate the solution of that problem are:

A. Electrical Networks (for motiving the Laplace matrix of a graph)

B. Laplacian of a Graph

C. Partitioning (that uses the spectral information)

17.3.1 Electrical Networks

As an example we choose a certain con�guration of resistors (1 ohm), which are combined as shown
in �g. 17.1. A battery is connected to the nodes 3 and 4. It provides the voltage VB. To obtain
the current, we have to calculate the e�ective resistance of the con�guration

I =
VB

e�. res.
: (17.1)

This so called Graph is by de�nition a collection of nodes and edges.

Chapter 17 Partitioning and Load Balancing 145

1

2

3 4

5

6

1

2

3

4 6

m

nBattery

V volts
B

5

7

8

nodes

edges

Figure 17.1: Resistor network with nodes and edges

17.3.2 Laplacian of a Graph

Kircho�'s Law tells us

0
BBBBBBB@

2 �1 �1
�1 3 �1 �1
�1 �1 3 �1

�1 3 �1 �1
�1 �1 3 �1

�1 �1 2

1
CCCCCCCA

0
BBBBBBB@

V1
V2
V3
V4
V5
V6

1
CCCCCCCA
=

0
BBBBBBB@

0
0
1
�1
0
0

1
CCCCCCCA

(17.2)

The matrix contains the information of how the resistors are connected, it is called the Laplacian
of the Graph

r2
G = n� n matrix, G. . . graph

n. . . nodes
m. . . edges

(17.3)

�
r2
G

�
ii

= degree of node i (17.4)

�
r2
G

�
ij

=

(
0 if 6 9 edge between node i and node j
�1 if 9 edge between node i and node j

(17.5)

Yet there is another way to obtain the Laplacian. First we have to set up the so called Node{edge
Incidence matrix, which is a m � n matrix and its elements are either 1, �1 or 0 depending on
whether the edge (row of the matrix) connects the node (column of matrix) or not. We �nd

146 Math 18.337, Spring 1996

A B

Long distance calls

Local calls
Local calls

Figure 17.2: Partitioning of a telephone net as an example for a graph comparable in cost

nodes 1 2 3 4 5 6

MG =

edges
1
2
3
4
5
6
7
8

0
BBBBBBBBBBBBBB@

1 �1
1 �1

1 �1
1 �1

1 �1
1 �1

1 �1
1 �1

1
CCCCCCCCCCCCCCA

(17.6)

MT
GMG = r2

G (17.7)

17.3.3 Spectral Partitioning

Partitioning means that we would like to break the problem into 2 parts A and B, whereas the
number of connections between both parts are to be as small as possible (because they are the
most expensive ones), see �g. 17.2. Now we de�ne a vector x 2 Rn having the values xi = �1.
+1 stands for belongs to part A, �1 means belongs to part B. With use of some vector calculus we
can show the following identity

nX
i=1

(MG x)
2
i = (MG x)

T(MG x) = xT MT
GMG x = xT r2

G x (17.8)

xT r2
G x = 4� (# edges between A and B).

In order to �nd the vector x with the least connections between part A and B, we want to solve
the minimization problem:

Min. xT r2
G x

xi = �1P
xi = 0

9>=
>; �

8>>><
>>>:

Min. xT r2
G x

xi 2 RnP
x2i = nP
xi = 0

(17.9)

Chapter 17 Partitioning and Load Balancing 147

Figure 17.3: Tapir (Bern-Mitchell-Ruppert)

Finding an optimal �1 solution is intractable (NP-hard) in general. In practice, we relax the
integer condition and allow the solution to be real. We do require the norm square of the solution,
like the integer case, equal to n (see RHS of eqn. (17.9)). The relaxation enlarges the solution
space, hence its optimal solution is no more than that of its integer counterpart. As an heuristic,
we solve the relaxed version of the problem and \round" the solution to give an �1 solution.

The solution of the problem on the RHS of eqn. (17.9) gives us the second smallest eigenvalue
of the Laplacian r2

G and the corresponding eigenvector, which is in fact the vector x with the least
connections in the relaxation sense. To obtain a partition of the graph, we can divide its node set
according to the vector x. We can even control the ratio of the partition. For example to obtain
a bisection, i.e., a partition of each size, we can �nd the median of x and put those nodes whose
x values is smaller than the median on one side and the remaining on the other side. We can also
use the similar idea to divide the graph into two parts in which one is twice as big as the another.

Figure 17.3 shows a mesh together with its spectral partition. For those of you as ignorant as
your professors, a tapir is de�ned by Webster as any of several large ino�ensive chie
y nocturnal
ungulates (family Tap iridae) of tropical America, Malaya, and Sumatra related to the horses and
rhinoceroses. The tapir mesh is generated by a Matlab program written by Scott Mitchell based
on a non-obtuse triangulation algorithm of Bern-Mitchell-Ruppert. The partition in the �gure is
generated by John Gilbert's spectral program in Matlab.

One has to notice that the above method is merely a heuristic. The algorithm does not come
with any performance guarantee. In the worst case, the partition may be far from the optimal,
partially due to the round-o� e�ect and partially due the requirement of equal-sized partition.
In fact the partition for the tapir graph is not quite optimal. Nevertheless, the spectral method,
with the help of various improvements, works very well in practice. We will cover the partitioning
problem more systematically later in the semester.

The most commonly used algorithm for �nding the second eigenvalue and its eigenvector is
the Lanczos algorithm though it makes far better sense to compute singular values rather than
eigenvalues. Lanczos is an iterative algorithm that can converge quite quickly.

148 Math 18.337, Spring 1996

Figure 17.4: Its Spectral Partition

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

Figure 17.5: The 2nd eigenfunction of MathWork's logo

In general, we may need to divide a graph into more than one piece. The most commonly used
approach is to recursively apply the partitioner that divides the graph into two pieces of roughly
equal size. More systematic treatment of the partitioning problem will be covered in future lectures.

The success of the spectral method in practice has a physical interpretation. Suppose now we
have a continuous domain in place of a graph. The Laplacian of the domain is the continuous
counterpart of the Laplacian of a graph. The kth eigenfunction gives the kth mode of vibration
and the second eigenfunction induce a cut (break) of the domain along the weakest part of the
domain. (See �gure17.5)

17.4 Geometric Methods

The geometric method developed by Miller, Teng, Thurston, and Vavasis guarantees to �nd a
partitioning of a d-dimensional unstructured mesh of n of cut size O(n1�1=d), a bound which is
same as the the cut size for regular grid of the same size. Notice that such a bound does not hold
for spectral method in general.

The partition of the graph into two pieces is de�ned by a circle (that is, a sphere in IRd). The
algorithm chooses the separating circle at random, from a distribution that is carefully constructed

Chapter 17 Partitioning and Load Balancing 149

Finite Element Mesh

Figure 17.6: The input is a mesh with speci�ed coordinates. Every triangle must be "well-shaped",
which means that no angle can be too small. Remarks: The mesh is a subgraph of the intersection
graph of a set of disks, one centered at each mesh point. Because the triangles are well-shaped,
only a bounded number of disks can overlap any point, and the mesh is an "alpha-overlap graph".
This implies that it has a good separator, which we proceed to �nd.

so that the separator will satisfy the O(n1�1=d) bound with high probability. The distribution is
described in terms of a stereographic projection and conformal mapping on the surface of a sphere
of one dimension higher, in IRd+1. To motivate the software development aspect of this approach,
we use the following �gures (Figures 17.6 { 17.13) generated by a Matlab implementation (written
by Gilbert and Teng) to outline the steps for dividing a well-shaped mesh into two pieces. The
algorithm works on meshes in any dimension, but we'll stick to two dimensions for the purpose of
visualization.

150 Math 18.337, Spring 1996

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Mesh Points in the Plane

Figure 17.7: Let's redraw the mesh, omitting the edges for clarity.

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Points Projected onto the Sphere

Figure 17.8: First we project the points stereographically from the plane onto a sphere (of one
higher dimension than the mesh); Now we compute a "centerpoint" for the projected points in
3-space. Every plane through the centerpoint separates the input points into two roughly equal
subsets. (Actually it's too expensive to compute a real centerpoint, so we use a fast, randomized
heuristic to �nd a pretty good approximation.

Chapter 17 Partitioning and Load Balancing 151

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Conformally Mapped Projected Points

Figure 17.9: Next, we conformally map the points so that the centerpoint maps to the center of
the sphere. This takes two steps: First we re
ect the points on the sphere so the centerpoint is on
the z axis, and then we scale the points in the plane to move the centerpoint along the z axis to
the origin. The �gures show the �nal result on the sphere and in the plane.

-3 -2 -1 0 1 2 3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Conformally Mapped Points in the Plane

Figure 17.10: Any plane through the origin divides the points roughly evenly. Also, most planes
only cut a small number of mesh edges (O(sqrt(n)), to be precise). Thus we �nd a separator by
choosing a plane through the origin, which induces a great circle on the sphere. We shift the circle
slightly to make the split exactly even. The second circle is the shifted version.

152 Math 18.337, Spring 1996

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Conformally Mapped Projected Points

Figure 17.11: To translate this into a separator for the mesh, we �rst undo the conformal mapping,
giving a (non-great) circle on the original sphere ...

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Points Projected onto the Sphere

Figure 17.12: ... and then undo the stereographic projection, giving a circle in the original plane.

Chapter 17 Partitioning and Load Balancing 153

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Mesh Points in the Plane

Figure 17.13: This partitions the mesh into two pieces with about n/2 points each, connected by
at most O(sqrt(n)) edges. These connecting edges are called an "edge separator".

17.4.1 Geometric Graphs

This method applies to meshes in both two and three dimensions. It is based on the following
important observation: graphs from large-scale problems in scienti�c computing are often de�ned
geometrically. They are meshes of elements in a �xed dimension (typically two and three dimen-
sions), that are well shaped in some sense, such as having elements of bounded aspect ratio or
having elements with angles that are not too small. In other words, they are graphs embedded in
two or three dimensions that come with natural geometric coordinates and with structures.

We now consider the types of graphs we expect to run these algorithms on. We don't expect to
get a truly random graph. In fact, Erd�os, Graham, and Szemer�edi proved in the 1960s that with
probability = 1, a random graph with cn edges does not have a two-way division with o(n) crossing
edges.

Structured graphs usually have divisions with
p
n crossing edges. The following classes of graphs

usually arise in applications such as �nite element and �nite di�erence methods (see Chapter ??):

� Regular Grids: These arise, for example, from �nite di�erence methods.

� `Quad"-tree graphs and \Meshes": These arise, for example, from �nite di�erence meth-
ods and hierarchical N-body simulation.

� k-nearest neighbour graphs in d dimensions Consider a set P = fp1; p2; : : : ; png of
n points in IRd. The vertex set for the graph is f1; 2; : : : ; ng and the edge set is f(i; j) :
pj is one of the k-nearest neighbours of pi or vice-versag. This is an important class of graphs
for image processing.

� Disk packing graphs: If a set of non-overlapping disks is laid out in a plane, we can tell
which disks are touch. The nodes of a disk packing graph are the centers of the disks, and
edges connect two nodes if their respective disks touch:

154 Math 18.337, Spring 1996

� Planar graphs: These are graphs that can be drawn in a plane without having crossing
edges. Note that disk packing graphs are planar, and in fact every planar graph is isomorphic
to some disk-packing graph (Andreev and Thurston).

17.4.2 Geometric Partitioning: Algorithm and Geometric Modeling

The main ingredient of the geometric approach is a novel geometrical characterization of graphs
embedded in a �xed dimension that have a small separator, which is a relatively small subset of
vertices whose removal divides the rest of the graph into two pieces of approximately equal size. By
taking advantage of the underlying geometric structure, partitioning can be performed e�ciently.

Computational meshes are often composed of elements that are well-shaped in some sense, such
as having bounded aspect ratio or having angles that are not too small or too large. Miller et al.
de�ne a class of so-called overlap graphs to model this kind of geometric constraint.

An overlap graph starts with a neighborhood system, which is a set of closed disks in d-
dimensional Euclidean space and a parameter k that restricts how deeply they can intersect.

De�nition 17.4.1 A k-ply neighborhood system in d dimensions is a set fD1; : : : ; Dng of closed
disks in IRd, such that no point in IRd is strictly interior to more than k of the disks.

A neighborhood system and another parameter � de�ne an overlap graph. There is a vertex for
each disk. For � = 1, an edge joins two vertices whose disks intersect. For � > 1, an edge joins two
vertices if expanding the smaller of their two disks by a factor of � would make them intersect.

De�nition 17.4.2 Let � � 1, and let fD1; : : : ; Dng be a k-ply neighborhood system. The (�; k)-
overlap graph for the neighborhood system is the graph with vertex set f1; : : : ; ng and edge set

f(i; j)j(Di \ (� �Dj) 6= ;) and ((� �Di) \Dj 6= ;)g:

We make an overlap graph into a mesh in d-space by locating each vertex at the center of its disk.

Overlap graphs are good models of computational meshes because every mesh of bounded-
aspect-ratio elements in two or three dimensions is contained in some overlap graph (for suitable
choices of the parameters � and k). Also, every planar graph is an overlap graph. Therefore, any
theorem about partitioning overlap graphs implies a theorem about partitioning meshes of bounded
aspect ratio and planar graphs.

We now describe the geometric partitioning algorithm.

We start with two preliminary concepts. We let � denote the stereographic projection mapping
from IRd to Sd, where Sd is the unit d-sphere embedded in IRd+1. Geometrically, this map may
be de�ned as follows. Given x 2 IRd, append `0' as the �nal coordinate yielding x0 2 IRd+1. Then
compute the intersection of Sd with the line in IRd+1 passing through x0 and (0; 0; : : : ; 0; 1)T . This
intersection point is �(x).

Algebraically, the mapping is de�ned as

�(x) =

2x=�
1� 2=�

!

where � = xTx+1. It is also simple to write down a formula for the inverse of �. Let u be a point
on Sd. Then

��1(u) =
�u

1� ud+1

Chapter 17 Partitioning and Load Balancing 155

where �u denotes the �rst d entries of u and ud+1 is the last entry. The stereographic mapping,
besides being easy to compute, has a number of important properties proved below.

A second crucial concept for our algorithm is the notion of a center point. Given a �nite subset
P � IRd such that jP j = n, a center point of P is de�ned to be a point x 2 IRd such that if H is
any open halfspace whose boundary contains x, then

jP \H j � dn=(d+ 1): (17.10)

It can be shown from Helly's theorem [24] that a center point always exists. Note that center points
are quite di�erent from centroids. For example, a center point (which, in the d = 1 case, is the
same as a median) is largely insensitive to \outliers" in P . On the hand, a single distant outlier
can cause the centroid of P to be displaced by an arbitrarily large distance.
Geometric Partitioning Algorithm

Let P = fp1; : : : ;png be the input points in IRd that de�ne the overlap graph.

1. Given p1; : : : ;pn, compute P
0 = f�(p1); : : : ;�(pn)g so that P 0 � Sd.

2. Compute a center point z of P 0.

3. Compute an orthogonal (d+ 1)� (d+ 1) matrix Q such that Qz = z0 where

z0 =

0
BBBB@

0
...
0
�

1
CCCCA

such that � is a scalar.

4. De�ne P 00 = QP 0 (i.e., apply Q to each point in P 0). Note that P 00 � Sd, and the center
point of P 00 is z0.

5. Let D be the matrix [(1 � �)=(1 + �)]1=2I , where I is the d � d identity matrix. Let P 000 =
�(D��1(P 00)): Below we show that the origin is a center point of P 000.

6. Choose a random great circle S0 on Sd.

7. Transform S0 back to a sphere S � IRd by reversing all the transformations above, i.e.,
S = ��1(Q�1�(D�1��1(S0))):

8. From S compute a set of vertices of G that split the graph as in Theorem ??. In particular,
de�ne C to be vertices embedded \near" S, de�ne A be vertices of G� C embedded outside
S, and de�ne B to be vertices of G� C embedded inside S.

We can immediately make the following observation: because the origin is a center point of
P 000, and the points are split by choosing a plane through the origin, then we know that jAj �
(d+ 1)n=(d+ 2) and jBj � (d+ 1)n=(d+ 2) regardless of the details of how C is chosen. (Notice
that the constant factor is (d + 1)=(d+ 2) rather than d=(d+ 1) because the point set P 0 lies in
IRd+1 rather than IRd.) Thus, one of the claims made in Theorem ?? will follow as soon as we have
shown that the origin is indeed a center point of P 000 at the end of this section.

We now provide additional details about the steps of the algorithm, and also its complexity
analysis. We have already de�ned stereographic projection used Step 1. Step 1 requires O(nd)
operations.

156 Math 18.337, Spring 1996

Computing a true center point in Step 2 appears to a very expensive operation (involving a
linear programming problem with nd constraints) but by using random (geometric) sampling, an
approximate center point can be found in random constant time (independent of n but exponential
in d) [91, 45]. An approximate center point satis�es 17.10 except with (d+ 1 + �)n=(d+ 2) on the
right-hand side, where � > 0 may be arbitrarily small. Alternatively, a deterministic linear-time
sampling algorithm can be used in place of random sampling [61, 90], but one must again compute
a center of the sample using linear programming in time exponential in d [63, 39].

In Step 3, the necessary orthogonal matrix may be represented as a single Householder
re
ection|see [40] for an explanation of how to pick an orthogonal matrix to zero out all but
one entry in a vector. The number of
oating point operations involved is O(d) independent of n.

In Step 4 we do not actually need to compute P 00; the set P 00 is de�ned only for the purpose
of analysis. Thus, Step 4 does not involve computation. Note that the z0 is the center point
of P 00 after this transformation, because when a set of points is transformed by any orthogonal
transformation, a center point moves according to the same transformation (more generally, center
points are similarly moved under any a�ne transformation). This is proved below.

In Step 6 we choose a random great circle, which requires time O(d). This is equivalent to
choosing plane through the origin with a randomly selected orientation. (This step of the algorithm
can be made deterministic; see [?].) Step 7 is also seen to require time O(d).

Finally, there are two possible alternatives for carrying out Step 8. One alternative is that we
are provided with the neighborhood system of the points (i.e., a list of n balls in IRd) as part of the
input. In this case Step 8 requires O(nd) operations, and the test to determine which points belong
in A, B or C is a simple geometric test involving S. Another possibility is that we are provided
with the nodes of the graph and a list of edges. In this case we determine which nodes belong in
A, B, or C based on scanning the adjacency list of each node, which requires time linear in the size
of the graph.

Theorem 17.4.1 If M is an unstructured mesh with bounded aspect ratio, then the graph of M is
a subgraph of a bounded overlap graph of the neighborhood system where we have one ball for each
vertex of M of radius equal to half of the distance to its nearest vertices. Clearly, this neighborhood
system has ply equal to 1.

Theorem 17.4.1 (Geometric Separators [63]) Let G be an n-vertex (�; k)-overlap graph in d
dimensions. Then the vertices of G can be partitioned into three sets A, B, and C, such that

� no edge joins A and B,

� A and B each have at most (d+ 1)=(d+ 2) vertices,

� C has only O(�k1=dn(d�1)=d) vertices.

Such a partitioning can be computed by the geometric-partitioning-algorithm in randomized
linear time sequentially, and in O(n=p) parallel time when we use a parallel machine of p processors.

17.4.3 Other Graphs with small separators

The following classes of graphs all have small separators:

� Lines have edge-separators of size 1. Removing the middle edge is enough.

� Trees have a 1-vertex separator with � = 2=3 - the so-called centroid of the tree.

Chapter 17 Partitioning and Load Balancing 157

� Planar Graphs. A result of Lipton and Tarjan shows that a planar graph of bounded degree
has a

p
8n vertex separator with � = 2=3.

� d dimensional regular grids (those are used for basic �nite di�erence method). As a folklore,
they have a separator of size n1�1=d with beta � = 1=2.

17.4.4 Other Geometric Methods

Recursive coordinate bisection

The simplest form of geometric partitioning is recursive coordinate bisection (RCB) [86, 92]. In
the RCB algorithm, the vertices of the graph are projected onto one of the coordinate axes, and
the vertex set is partitioned around a hyperplane through the median of the projected coordinates.
Each resulting subgraph is then partitioned along a di�erent coordinate axis until the desired
number of subgraphs is obtained.

Because of the simplicity of the algorithm, RCB is very quick and cheap, but the quality of the
resultant separators can vary dramatically, depending on the embedding of the graph in IRd. For
example, consider a graph that is \+"-shaped. Clearly, the best (smallest) separator consists of
the vertices lying along a diagonal cut through the center of the graph. RCB, however, will �nd
the largest possible separators, in this case, planar cuts through the centers of the horizontal and
vertical components of the graph.

Inertia-based slicing

Williams [92] noted that RCB had poor worst case performance, and suggested that it could be
improved by slicing orthogonal to the principal axes of inertia, rather than orthogonal to the
coordinate axes. Farhat and Lesoinne implemented and evaluated this heuristic for partitioning
[31].

In three dimensions, let v = (vx; vy; vz)
t be the coordinates of vertex v in IR3. Then the inertia

matrix I of the vertices of a graph with respect to the origin is given by

I =

0
B@ Ixx Ixy Ixz

Iyx Iyy Iyz
Izx Izy Izz

1
CA

where,

Ixx =
X
v2V

v2y + v2z ; Iyy =
X
v2V

v2x + v2z ; Izz =
X
v2V

v2x + v2y

and, for i; j 2 fx; y; zg; i 6= j,

Iij = Iji = �
X
v2V

vivj

The eigenvectors of the inertia matrix are the principal axes of the vertex distribution. The
eigenvalues of the inertia matrix are the principal moments of inertia. Together, the principal axes
and principal moments of inertia de�ne the inertia ellipse; the axes of the ellipse are the principal
axes of inertia, and the axis lengths are the square roots of the corresponding principal moments.
Physically, the size of the principal moments re
ect how the mass of the system is distributed with
respect to the corresponding axis - the larger the principal moment, the more mass is concentrated
at a distance from the axis.

158 Math 18.337, Spring 1996

Let I1, I2, and I3 denote the principal axes of inertia corresponding to the principal moments
�1 � �2 � �3. Farhat and Lesoinne projected the vertex coordinates onto I1, the axis about
which the mass of the system is most tightly clustered, and partitioned using a planar cut through
the median. This method typically yielded a good initial separator, but did not perform as well
recursively on their test mesh - a regularly structured \T"-shape.

Farhat and Lesoinne did not present any results on the theoretical properties of the inertia
slicing method. In fact, there are pathological cases in which the inertia method can be shown to
yield a very poor separator. Consider, for example, a \+"-shape in which the horizontal bar is
very wide and sparse, while the vertical bar is relatively narrow but dense. I1 will be parallel to
the horizontal axis, but a cut perpendicular to this axis through the median will yield a very large
separator. A diagonal cut will yield the smallest separator, but will not be generated with this
method.

Gremban, Miller, and Teng show how to use moment of inertia to improve the geometric par-
titioning algorithm.

17.4.5 Partitioning Software

� Chaco written by Bruce Hendrickson and Rob Leland. To get code send email to ba-
hendr@cs.sandia.gov (Bruce Hendrickson).

� Matlab Mesh Partitioning Toolbox: written by Gilbert and Teng. It includes both edge and
vertex separators, recursive bipartition, nested dissection ordering, visualizations and demos,
and some sample meshes. The complete toolbox is available by anonymous ftp from machine
ftp.parc.xerox.com as �le /pub/gilbert/meshpart.uu.

� Spectral code: Pothen, Simon, and Liou.

17.5 Load-Balancing N-body Simulation for Non-uniform Parti-
cles

The discussion of Chapter ?? was focused on particles that are more or less uniformly distributed.
However, in practical simulations, particles are usually not uniformly distributed. Particles may
be highly clustered in some regions and relatively scattered in some other regions. Thus, the
hierarchical tree is adaptively generated, with smaller box for regions of clustered particles. The
computation and communication pattern of a hierarchical method becomes more complex and often
is not known explicitly in advance.

17.5.1 Hierarchical Methods of Non-uniformly Distributed Particles

In this chapter, we use the following notion of non-uniformity: We say a point set P = fp1; :::;png
in d dimensions is �-non-uniform if the hierarchical tree generated for P has height log2d(n=m)+�.
In other words, the ratio of the size of smallest leaf-box to the root-box is 1=2log2d (n=m)+�. In
practice, � is less than 100.

The Barnes-Hut algorithm, as an algorithm, can be easily generalized to the non-uniform case.
We describe a version of FMM for non-uniformly distributed particles. The method uses the box-
box interaction. FMM tries to maximize the number of FLIPs among large boxes and also tries to
FLIP between roughly equal sized boxes, a philosophy which can be described as: let parents do as
much work as possible and then do the left-over work as much as possible before passing to the next

Chapter 17 Partitioning and Load Balancing 159

generation. Let c1; :::; c2d be the set of child-boxes of the root-box of the hierarchical tree. FMM
generates the set of all interaction-pairs of boxes by taking the union of Interaction-pair(ci; cj) for
all 1 � i < j � 2d, using the Interaction-Pair procedure de�ned below.
Procedure Interaction-Pair (b1, b2)

� If b1 and b2 are �-well-separated, then (b1; b2) is an interaction-pair.

� Else, if both b1 and b2 are leaf-boxes, then particles in b1 and b2 are near-�eld particles.

� Else, if both b1 and b2 are not leaf-boxes, without loss of generality, assuming that b2 is at
least as large as b1 and letting c1; :::; c2d be the child-boxes of b2, then recursively decide
interaction pair by calling: Interaction-Pair(b1,ci) for all 1 � i � 2d.

� Else, if one of b1 and b2 is a leaf-box, without loss of generality, assuming that b1 is a leaf-box
and letting c1; :::; c2d be the child-boxes of b2, then recursively decide interaction pairs by
calling: Interaction-Pair(b1,ci) for all 1 � i � 2d.

FMM for far-�eld calculation can then be de�ned as: for each interaction pair (b1; b2), letting
�p
i () (i = 1; 2) be the multipole-expansion of bi,
ip �p

1() to b2 and add to b2's potential Taylor-
expansion. Similarly,
ip �p

2() to b1 and add to b1's potential Taylor-expansion. Then traverse
down the hierarchical tree in a preordering, shift and add the potential Taylor-expansion of the
parent box of a box to its own Taylor-expansion.

Note that FMM for uniformly distributed particles has a more direct description (see Chapter
??).

17.5.2 The Communication Graph for N-Body Simulations

In order to e�ciently implement an N-body method on a parallel machine, we need to understand
its communication pattern, which can be described by a graph that characterizes the pattern of
information exchange during the execution of the method. The communication graph is de�ned on
basic computational elements of the method. The basic elements of hierarchical N-body methods
are boxes and points, where points give the locations of particles and boxes are generated by
the hierarchical method. Formally, the communication graph is an edge-weighted directed graph,
where the edges describe the pattern of communication and the weight on an edge speci�es the
communication requirement along the edge.

A Re�ned FMM for Non-Uniform Distributions

For parallel implementation, it is desirable to have a communication graph that uses small edge-
weights and has small in- and out-degrees. However, some boxes in the set of interaction-pairs
de�ned in the last section may have large degree!

FMM described in the last subsection has a drawback which can be illustrated by the following
2D example. Suppose the root-box is divided into four child-boxes A, B, C, and D. Assume further
that boxes A, B and C contains less than m (< 100) particles, and most particles, say n of them,
are uniformly distributed in D, see Figure 17.14. In FMM, we further recursively divide D by
log4(n=m) levels. Notice that A, B, and C are not well-separated from any box in D. Hence the
FMM described in the previous subsection will declare all particles of D as near-�eld particles of
A, B, and C (and vice versa). The drawback is two-folds: (1) From the computation viewpoint, we
cannot take advantage of the hierarchical tree of D to evaluate potentials in A, B, and C. (2) From
the communication viewpoint, boxes A, B, and C have a large in-degree in the sense that each

160 Math 18.337, Spring 1996

A B

C D

Figure 17.14: A non-uniform example

particle in these boxes need to receive information from all n particles in D, making partitioning
and load balancing harder. Notice that in BH most boxes of D are well-separated from particles in
A, B, and C. Hence the well-separation condition is di�erent in BH: because BH uses the particle-
box interaction, the well-separation condition is measured with respect to the size of the boxes in
D. Thus most boxes are well-separated from particles in A, B, and C. In contrast, because FMM
applies the FLIP operation, the well-separation condition must measure up against the size of the
larger box. Hence no box in D is well-separated from A, B, and C.

Our re�ned FMM circumvents this problem by incorporating the well-separation condition of
BH into the Interaction-Pair procedure: if b1 and b2 are not well-separated, and b1, the larger of
the two, is a leaf-box, then we use a well-separation condition with respect to b2, instead of to b1,
and apply the FLIP operation directly onto particles in the leaf-box b1 rather than b1 itself.

We will de�ne this new well-separation condition shortly. First, we make the following ob-
servation about the Interaction-Pair procedure de�ned in the last subsection. We can prove, by
a simple induction, the following fact: if b1 and b2 are an interaction-pair and both b1 and b2
are not leaf-boxes, then 1=2 � size(b1)=size(b2) � 2. This is precisely the condition that FMM
would like to maintain. For uniformly distributed particles, such condition is always true between
any interaction-pair (even if one of them is a leaf-box). However, for non-uniformly distributed
particles, if b1, the larger box, is a leaf-box, then b1 could be much larger than b2.

The new �-well-separation condition, when b1 is a leaf-box, is then de�ned as: b1 and b2 are
�-well-separated if b2 is well-separated from all particles of b1 (as in BH). Notice, however, with the
new condition, we can no longer FLIP the multipole expansion of b1 to a Taylor-expansion for b2.
Because b1 has only a constant number of particles, we can directly evaluate the potential induced
by these particles for b2. This new condition makes the FLIP operation of this special class of
interaction-pairs uni-directional: We only FLIP b2 to b1.

We can describe the re�ned Interaction-Pair procedure using modi�ed well-separation condition
when one box is a leaf-box.

Procedure Re�ned Interaction-Pair (b1, b2)

� If b1 and b2 are �-well-separated and 1=2 � size(b1)=size(b2) � 2, then (b1; b2) is a bi-
directional interaction-pair.

� Else, if the larger box, without loss of generality, b1, is a leaf-box, then the well-separation
condition becomes: b2 is well-separated from all particles of b1. If this condition is true, then
(b1; b2) is a uni-directional interaction-pair from b2 to b1.

� Else, if both b1 and b2 are leaf-boxes, then particles in b1 and b2 are near-�eld particles.

Chapter 17 Partitioning and Load Balancing 161

� Else, if both b1 and b2 are not leaf-boxes, without loss of generality, assuming that b2 is at
least as large as b1 and letting c1; :::; c2d be the child-boxes of b2, then recursively decide
interaction-pairs by calling: Interaction-Pair(b1,ci) for all 1 � i � 2d.

� Else, if one of b1 and b2 is a leaf-box, without loss of generality, assuming that b1 is a leaf
box and letting c1; :::; c2d be the child-boxes of b2, then recursively decide interaction pairs
by calling: Interaction-Pair(b1,ci) for all 1 � i � 2d.

Let c1; :::; c2d be the set of child-boxes of the root-box of the hierarchical tree. Then the
set of all interaction-pair can be generated as the union of Re�ned-Interaction-Pair(ci; cj) for all
1 � i < j � 2d.

The re�ned FMM for far-�eld calculation can then be de�ned as: for each bi-directional inter-
action pair (b1; b2), letting �p

i () (i = 1; 2) be the multipole expansion of bi,
ip �p
1() to b2 and

add to b2's potential Taylor-expansion. Similarly,
ip �p
2() to b1 and add to b1's potential Taylor-

expansion. Then traverse down the hierarchical tree in a preordering, shift and add the potential
Taylor-expansion of the parent box of a box to its own Taylor-expansion. For each uni-directional
interaction pair (b1; b2) from b2 to b1, letting �

p
2() be the multipole-expansion of b2, evaluate �

p
2()

directly for each particle in b2 and add its potential.

Hierarchical Neighboring Graphs

Hierarchical methods (BH and FMM) explicitly use two graphs: the hierarchical tree which connects
each box to its parent box and each particle to its leaf-box, and the near-�eld graph which connects
each box with its near-�eld boxes. The hierarchical tree is generated and used in the �rst step
to compute the multipole expansion induced by each box. We can use a bottom-up procedure to
compute these multipole expansions: First compute the multipole expansions at leaf-boxes and
then SHIFT the expansion to the parent boxes and then up the hierarchical tree until multipole-
expansions for all boxes in the hierarchical tree are computed.

The near-�eld graph can also be generated by the Re�ned-Interaction-Pair procedure. In Section
17.5.3, we will formally de�ne the near-�eld graph.

Fast-Multipole Graphs (FM)

The Fast-Multipole graph, FM� , models the communication pattern of the re�ned FMM. It is a
graph de�ned on the set of boxes and particles in the hierarchical tree. Two boxes b1 and b2 are
connected in FM� i� (1) b1 is the parent box of b2, or vice versa, in the hierarchical tree; or (2)
(b1; b2) is an interaction-pair generated by Re�ned-Interaction-Pair de�ned in Section 17.5.2. The
edge is bi-directional for a bi-directional interaction-pair and uni-directional for a uni-directional
interaction-pair. Furthermore, each particle is connected with the box that contains the particle.

The following Lemma that will be useful in the next section.

Lemma 17.5.1 The re�ned FMM
ips the multipole expansion of b2 to b1 if and only if (1) b2
is well-separated from b1 and (2) neither the parent of b2 is well-separated from b1 nor b2 is well-
separated from the parent of b1.

It can be shown that both in- and out-degrees of FM� are small.

162 Math 18.337, Spring 1996

Barnes-Hut Graphs (BH)

BH de�nes two classes of communication graphs: BH�
S and BH�

P . BH�
S models the sequential

communication pattern and BH�
P is more suitable for parallel implementation. The letters S and

P , in BH�
S and BH�

P , respectively, stand for \Sequential" and \Parallel".

We �rst de�ne BH�
S and show why parallel computing requires a di�erent communication graph

BH�
P to reduce total communication cost.

The graph BH�
S of a set of particles P contains two sets of vertices: P, the particles, and B, the

set of boxes in the hierarchical tree. The edge set of the graph BH�
S is de�ned by the communication

pattern of the sequential BH. A particle p is connected with a box b if in BH, we need to evaluate
p against b to compute the force or potential exerted on p. So the edge is directed from b to p.
Notice that if p is connected with b, then b must be well-separated from p. Moreover, the parent of
b is not well-separated from p. Therefore, if p is connected with b in BH�

S , then p is not connected
to any box in the subtree of b nor to any ancestor of b.

In addition, each box is connected directly with its parent box in the hierarchical tree and each
point p is connected its leaf-box. Both types of edges are bi-directional.

Lemma 17.5.2 Each particle is connected to at most O(logn + �) number of boxes. So the in-

degree of BH�
S is bounded by O(logn+ �).

Notice, however, BH�
S is not suitable for parallel implementation. It has a large out-degree.

This major drawback can be illustrated by the example of n uniformly distributed particles in two
dimensions. Assume we have four processors. Then the \best" way to partition the problem is to
divide the root-box into four boxes and map each box onto a processor. Notice that in the direct
parallel implementation of BH, as modeled by BH�

S , each particle needs to access the information
of at least one boxes in each of the other processors. Because each processor has n=4 particles, the
total communication overhead is
(n), which is very expensive.

The main problem with BH�
S is that many particles from a processor need to access the in-

formation of the same box in some other processors (which contributes to the large out-degree).
We show that a combination technique can be used to reduce the out-degree. The idea is to com-
bine the \same" information from a box and send the information as one unit to another box on
a processor that needs the information. We will show that this combination technique reduces
the total communication cost to O(

p
n logn) for the four processor example, and to O(

p
pn logn)

for p processors. Similarly, in three dimensions, the combination technique reduces the volume of
messages from
(n logn) to O(p1=3n2=3(logn)1=3).

We can de�ne a graph BH�
P to model the communication and computation pattern that uses

this combination technique. Our de�nition of BH�
P is inspired by the communication pattern of

the re�ned FMM. It can be shown that the communication pattern of the re�ned FMM can be
used to guide the message combination for the parallel implementation of the Barnes-Hut method!

The combination technique is based on the following observation: Suppose p is well-separated
from b1 but not from the parent of b1. Let b be the largest box that contains p such that b is
well-separated from b1, using the well-separation de�nition in Section 17.5.2. If b is not a leaf-box,
then (b; b1) is a bi-directional interaction-pair in the re�ned FMM. If b is a leaf-box, then (b; b1) is
a uni-directional interaction-pair from b1 to b. Hence (b; b1) is an edge of FM� . Then, any other
particle q contained in b is well-separated from b1 as well. Hence we can combine the information
from b1 to p and q and all other particles in b as follows: b1 sends its information (just one copy) to
b and b forwards the information down the hierarchical tree, to both p and q and all other particles

Chapter 17 Partitioning and Load Balancing 163

in b. This combination-based-communication scheme de�nes a new communication graph BH�
P for

parallel BH: The nodes of the graph are the union of particles and boxes, i.e., P [B(P). Each
particle is connected to the leaf-box it belongs to. Two boxes are connected i� they are connected
in the Fast-Multipole graph. However, to model the communication cost, we must introduce a
weight on each edge along the hierarchical tree embedded in BH�

P , to be equal to the number of
data units needed to be sent along that edge.

Lemma 17.5.3 The weight on each edge in BH�
P is at most O(logn+ �).

It is worthwhile to point out the di�erence between the comparison and communication patterns
in BH. In the sequential version of BH, if p is connected with b, then we have to compare p

against all ancestors of b in the computation. The procedure is to �rst compare p with the root
of the hierarchical tree, and then recursively move the comparison down the tree: if the current
box compared is not well-separated from p, then we will compare p against all its child-boxes.
However, in terms of force and potential calculation, we only evaluate a particle against the �rst
box down a path that is well-separated from the particle. The graphs BH�

S and BH�
P capture the

communication pattern, rather than the comparison pattern. The communication is more essential
to force or potential calculation. The construction of the communication graph has been one of the
bottlenecks in load balancing BH and FMM on a parallel machine.

17.5.3 Near-Field Graphs

The near-�eld graph is de�ned over all leaf-boxes. A leaf-box b1 is a near-�eld neighbor of a leaf-box
b if b1 is not well-separated from some particles of b. Thus, FMM and BH directly compute the
potential at particles in b induced by particles of b1.

There are two basic cases: (1) if size(b1) � size(b), then we call b1 a geometric near-�eld
neighbor of b. (2) if size(b1) > size(b), then we call b1 a hierarchical near-�eld neighbor of b. In
the example of Section 17.5.2, A, B, C are hierarchical near-�eld neighbors of all leaf-boxes in D;
while A, B, and C have some geometric near-�eld neighbors in D.

We introduce some notations. The geometric in-degree of a box b is the number of its geometric
near-�eld neighbors. The geometric out-degree of a box b is the number of boxes to which b is the
geometric near-�eld neighbors. The hierarchical in-degree of a box b is the number of its hierarchical
near-�eld neighbors. We will de�ne the hierarchical out-degree of a box shortly.

It can be shown that the geometric in-degree, geometric out-degree, and hierarchical in-degree
are small. However, in the example of Section 17.5.2, A, B, and C are hierarchical near-�eld
neighbors for all leaf-boxes in D. Hence the number of leaf-boxes to which a box is a hierarchical
near-�eld neighbor could be very large. So the near-�eld graph de�ned above can have a very large
out-degree.

We can use the combination technique to reduce the degree when a box b is a hierarchical
near-�eld neighbor of a box b1. Let b2 be the ancestor of b1 of the same size as b. Instead of b
sending its information directly to b1, b sends it to b2 and b2 then forwards the information down
the hierarchical tree. Notice that b and b2 are not well-separated. We will refer to this modi�ed
near-�eld graph as the near-�eld graph, denoted by NF �. We also de�ne the hierarchical out-degree
of a box b to be the number of edges from b to the set of non-leaf-boxes constructed above. We
can show that the hierarchical out-degree is also small.

To model the near-�eld communication, similar to our approach for BH, we introduce a weight
on the edges of the hierarchical tree.

Lemma 17.5.4 The weight on each edge in NF � is at most O(logn+ �).

164 Math 18.337, Spring 1996

17.5.4 N-body Communication Graphs

By abusing notations, let FM� = FM� [NF � and BH�
P = BH�

P [NF � . So the communica-
tion graph we de�ned simultaneously supports near-�eld and far-�eld communication, as well as
communication up and down the hierarchical tree. Hence by partitioning and load balancing FM�

and BH�
P , we automatically partition and balance the hierarchical tree, the near-�eld graph, and

the far-�eld graph.

17.5.5 Geometric Modeling of N-body Graphs

Similar to well-shaped meshes, there is a geometric characterization of N-body communication
graphs. Instead of using neighborhood systems, we use box-systems. A box-system in IRd is a set
B = fB1; : : : ; Bng of boxes. Let P = fp1; : : : ;png be the centers of the boxes, respectively. For
each integer k, the set B is a k-ply box-system if no point p 2 IRd is contained in more than k of
int(B1); : : : ; int(Bn).

For example, the set of all leaf-boxes of a hierarchical tree forms a 1-ply box-system. The
box-system is a variant of neighborhood system of Miller, Teng, Thurston, and Vavasis [63], where
a neighborhood system is a collection of Euclidean balls in IRd. We can show that box-systems can
be used to model the communication graphs for parallel adaptive N-body simulation.

Given a box-system, it is possible to de�ne the overlap graph associated with the system:

De�nition 17.5.1 Let � � 1 be given, and let fB1; : : : ; Bng be a k-ply box-system. The �-overlap
graph for this box-system is the undirected graph with vertices V = f1; : : : ; ng and edges

E = f(i; j) : Bi \ (� �Bj) 6= ; and (� �Bi) \Bj 6= ;g:

The edge condition is equivalent to: (i; j) 2 E i� the � dilation of the smaller box touches the
larger box.

As shown in [90], the partitioning algorithm and theorem of Miller et al can be extended to
overlap graphs on box-systems.

Theorem 17.5.1 Let G be an �-overlap graph over a k-ply box-system in IRd, then G can be
partitioned into two equal sized subgraphs by removing at most O(�k1=dn1�1=d) vertices. Moreover,
such a partitioning can be computed in linear time sequentially and in parallel O(n=p) time with p
processors.

The key observation is the following theorem.

Theorem 17.5.2 Let P = fp1; : : : ;png be a point set in IRd that is �-non-uniform. Then the set

of boxes B(P) of hierarchical tree of P is a (log2d n+�)-ply box-system and FM�(P) and BH�
P (P)

are subgraphs of the 3�-overlap graph of B(P).

Therefore,

Theorem 17.5.3 Let G be an N-body communication graph (either for BH or FMM) of a set of
particles located at P = fp1; :::;png in IRd (d = 2 or 3). If P is �-non-uniform, then G can
be partitioned into two equal sized subgraphs by removing at most O(n1�1=d(logn + �)1=d) nodes.
Moreover, such a partitioning can be computed in linear time sequentially and in parallel O(n=p)
time with p processors.

Chapter 18

Mesh Generation

An essential step in scienti�c computing is to �nd a proper discretization of a continuous domain.
This is the problem of mesh generation. Once we have a discretization or sometimes we just say a
\mesh", di�erential equations for
ow, waves, and heat distribution are then approximated by �nite
di�erence or �nite element formulations. However, not all meshes are equally good numerically.
Discretization errors depend on the geometric shape and size of the elements while the computa-
tional complexity for �nding the numerical solution depends on the number of elements in the mesh
and often the overall geometric quality of the mesh as well.

The most general and versatile mesh is an unstructured triangular mesh. Such a mesh is
simply a triangulation of the input domain (e.g., a polygon), along with some extra vertices,
called Steiner points . A triangulation is a decomposition of a space into a collection of interior
disjoint simplices so that two simplices can only intersect at a lower dimensional simplex. We
all know that in two dimensions, a simplex is a triangle and in three dimensions a simplex is a
tetrahedron. A triangulation can be obtained by triangulating a point set, that form the vertices
of the triangulation.

Even among triangulations some are better than others. Numerical errors depend on the quality
of the triangulation, meaning the shapes and sizes of triangles.

In order for a mesh to be useful in approximating partial di�erential equations, it is necessary
that discrete functions generated from the mesh (such as the piecewise linear functions) be capable
of approximating the solutions sought. Classical �nite element theory [17] shows that a su�cient
condition for optimal approximation results to hold is that the minimum angle or the aspect ratio of
each simplex in the triangulation be bounded independently of the mesh used; however, Babuska [4]
shows that while this is su�cient, it is not a necessary condition. See Figure ?? for a triangulation
whose minimum degree is at least 20 degree.

Automatic mesh generation is a relatively new �eld. No mathematically sound procedure for
obtaining the `best' mesh distribution is available. The criteria are usually heuristic.

The input description of physical domain has two components: the geometric de�nition of the
domain and the numerical requirements within the domain. The geometric de�nition provides the
boundary of the domain either in the form of a continuous model or of a discretized boundary
model. Numerical requirements within the domain are typically obtained from an initial numerical
simulation on a preliminary set of points. The numerical requirements obtained from the initial
point set de�ne an additional local spacing function restricting the �nal point set.

An automatic mesh generator try to generate an additional points to the internally and bound-
ary of the domain to smooth out the mesh generation and concentrate mesh density where necessary
- to optimize the total number of mesh points.

165

166 Math 18.337, Spring 1996

Figure 18.1: A well-shaped triangulation

18.1 How to Describe a Domain?

The most intuitive and obvious structure of a domain (for modeling a scienti�c problem) is its
geometry.

One way to describe the geometry is to use constructive solid geometry formula. In this ap-
proach, we have a set of basic geometric primitive shapes, such as boxes, spheres, half-spaces,
triangles, tetrahedra, ellipsoids, polygons, etc. We then de�ne (or approximate) a domain as �nite
unions, intersections, di�erences, and complementation of primitive shapes, i.e., by a well-structured
formula of a �nite length of primitive shapes with operators that include union, intersection, dif-
ference, and complementation.

An alternative way is to discretize the boundary of the domain, and describes the domain as
a polygonal (polyhedral) object (perhaps with holes). Often we convert the constructive solid
geometry formula into the discretized boundary description for mesh generation.

For many computational applications, often, some other information of a domain and the prob-
lem are equally important for quality mesh generation.

The numerical spacing functions, typically denoted by h(x), is usually de�ned at a point x by
the eigenvalues of the Hessian matrix of the solution u to the governing partial di�erential equations
(PDEs) [4, 89, 65]. Locally, u behaves like a quadratic function

u(x+ dx) =
1

2
(xHxT) + xru(x) + u(x);

where H is the Hessian matrix of u, the matrix of second partial derivatives. The spacing of mesh
points, required by the accuracy of the discretization at a point x, is denoted by h(x) and should
depend on the reciprocal of the square root of the largest eigenvalues of H at x.

When solving a PDE numerically, we estimate the eigenvalues of Hessian at a certain set of
points in the domain based on the numerical approximation of the previous iteration [4, 89]. We
then expand the spacing requirement induced by Hessian at these points over the entire domain.

For a problem with a smooth change in solution, we can use a (more-or-less) uniform mesh
where all elements are of roughly equal size. On the other hand, for problem with rapid change in
solution, such as earthquake, wave, shock modeling, we may use much dense grinding in the area
of with high intensity. See Fig 18.2.So, the information about the solution structure can be of a
great value to quality mesh generation.

Other type of information may come in the process of solving a simulation problem. For example,
in adaptive methods, we may start with a much coarse and uniform grid. We then estimate the

Chapter 18 Mesh Generation 167

Figure 18.2: Triangulation of well-spaced point set around a singularity

error of the previous step. Based on the error bound, we then adaptively re�ne the mesh, e.g.,
make the area with larger error much more dense for the next step calculation. As we shall argue
later, unstructured mesh generation is more about �nding the proper distribution of mesh point
then the discretization itself (this is a very personal opinion).

18.2 Types of Meshes

� Structured grids divide the domain into regular grid squares. For examples �nite di�erence
gridding on a square grid. Matrices based on structured grids are very easy and fast to
assemble. Structured grids are easy to generate; numerical formulation and solution based
on structured grids are also relatively simple.

� Unstructured grids decompose the domain into simple mesh elements such as simplices
based on a density function that is de�ned by the input geometry or the numerical require-
ments (e.g., from error estimation). But the associated matrices are harder and slower to
assemble compared to the previous method; the resulting linear systems are also relatively
hard to solve. Most of �nite element meshes used in practice are of the unstructured type.

� Hybrid grids are generated by �rst decomposing the domain into non-regular domain and
then decomposing each such domain by a regular grid. Hybrid grids are often used in domain
decomposition.

Structured grids are much easy to generate and manipulate. The numerical theory of this
discretization is better understood. However, its applications is limited to problems with simple
domain and smooth changes in solution. For problems with complex geometry whose solution
changes rapidly, we need to use an unstructured mesh to reduce the problem size. For example,
when modeling earthquake we want a dense discretization near the quake center and a sparse
discretization in the regions with low activities. It would be waste to give regions with low activities
as �ne a discretization as the regions with high activities. Unstructured meshes are especially
important for three dimensional problems.

The adaptability of unstructured meshes comes with new challenges, especially for 3D problems.
However, the numerical theory becomes more di�cult { this is an outstanding direction for future
research; the algorithmic design becomes much harder.

168 Math 18.337, Spring 1996

Figure 18.3: A quadtree

18.3 Re�nement Methods

A mesh generator usually does two things: (1) it generates a set of points that satis�es both
geometric and numerical conditions imposed on the physical domain. (2) it builds a robust and
well-shaped meshes over this point set, e.g., a triangulation of the point set. Most mesh generation
algorithms merge the two functions, and generate the point set implicitly as part of the mesh
generation phase. A most useful technique is to generate point set and its discretization by an
iterative re�nement. We now discuss hierarchical re�nement and Delaunay re�nement, two of the
most commonly used re�nement methods.

18.3.1 Hierarchical Re�nement

The hierarchical re�nement uses quadtrees in two dimensions and octtrees in three dimensions.
The basic philosophy of using quad- and oct-trees in meshes re�nements and hierarchical N-body
simulation is the same: adaptively re�ning the domain by selectively and recursively divide boxes
enable us to achieve numerical accuracy with close to an optimal discretization. The de�nition of
quad- and oct-tree can be found in Chapter ??. Figure 18.3 shows a quad-tree.

In quadtree re�nement of an input domain, we start with a square box encompassing the
domain and then adaptively splitting a box into four boxes recursively until each box small enough
with respect to the geometric and numerical requirement. This step is very similar to quad-tree
decomposition for N-body simulation. However, in mesh generation, we need to ensure that the
mesh is well-shaped. This requirement makes mesh generation di�erent from hierarchical N-body
approximation. In mesh generate, we need to generate a set of smooth points. In the context of
quad-tree re�nement, it means that we need to make the quad-tree balanced in the sense that no
leaf-box is adjacent to a leaf-box more than twice its side length.

With adaptive hierarchical trees, we can \optimally" approximate any geometric and numerical
spacing function. The proof of the optimality can be found in the papers of Bern, Eppstein, and
Gilbert for 2D and Mitchell and Vavasis for 3D. Formal discuss of the numerical and geometric
spacing function can be found in the point generation paper of Miller, Talmor and Teng.

The following procedure describes the basic steps of hierarchical re�nement.

1. Construct the hierarchical tree for the domain so that the leaf boxes approximate the numer-
ical and geometric spacing functions.

Chapter 18 Mesh Generation 169

200 300 400 500 600 700 800

200

300

400

500

600

700

800

900

Figure 18.4: A well-shaped mesh generated by quad-tree re�nement

2. Balance the hierarchical tree.

3. Warping and triangulation: If a point is too close to a boundary of its leaf box then one of
the corners collapses to that point.

18.3.2 Delaunay Triangulation

Suppose P = fp1; : : : ; png is a point set in d dimensions. The convex hull of d+1 a�nely independent
points from P forms a Delaunay simplex if the circumscribed ball of the simplex contains no point
from P in its interior. The union of all Delaunay simplices forms the Delaunay diagram, DT (P).
If the set P is not degenerate then the DT (P) is a simplex decomposition of the convex hull of P .
We will sometimes refer to the Delaunay simplex as a triangle or a tetrahedron.

Associated with DT (P) is a collection of balls, called Delaunay balls, one for each cell in DT (P).
The Delaunay ball circumscribes its cell. When points in P are in general position, each Delaunay
simplex de�ne a Delaunay ball, its circumscribed ball. By de�nition, there is no point from P lies
in the interior of a Delaunay ball. We denote the set of all Delaunay balls of P by DB(P).

The geometric dual of Delaunay Diagram is the Voronoi Diagram, which of consists a set of
polyhedra V1; : : : ; Vn, one for each point in P , called the Voronoi Polyhedra. Geometrically, Vi is
the set of points p 2 IRd whose Euclidean distance to pi is less than or equal to that of any other
point in P . We call pi the center of polyhedra Vi. For more discussion, see [74, 29].

The DT has some very desired properties for mesh generation. For example, among all triangu-
lations of a point set in 2D, the DT maximizes the smallest angle, it contains the nearest-neighbors
graph, and the minimal spanning tree. Thus Delaunay triangulation is very useful for computer
graphics and mesh generation in two dimensions. Moreover, discrete maximum principles will only
exist for Delaunay triangulations. Chew [16] and Ruppert [79] have developed Delaunay re�nement
algorithms that generate provably good meshes for 2D domains.

Notice that an internal diagonal belongs to the Delaunay triangulation of four points if the sum
of the two opposing angles is less than �.

A 2D Delaunay Triangulation can be found by the following simple algorithm: FLIP algorithm

� Find any triangulation (can be done in O(n lgn) time using divide and conquer.)

� For each edge pq, let the two faces the edge is in be prq and psq. Then pq is not an local
Delaunay edge if the interior the circumscribed circle of prq contains s. Interestingly, this

170 Math 18.337, Spring 1996

condition also mean that the interior of the circumscribed circle of psq contains r and the
sum of the angles prq and psq is greater than �. We call the condition that the sum of the
angles of prq and psq is no more than � the angle condition. Then, if pq does not satisfy the
angle property, we just
ip it: remove edge pq from T, and put in edge rs. Repeat this until
all edges satisfy the angle property.

It is not too hard to show that if FLIP terminates, it will output a Delaunay Triangulation.
A little addition geometric e�ort can show that the FLIP procedure above, fortunately, always
terminate after at most O(n2)
ips.

The following is an interesting observation of Guibas, Knuth and Sharir. If we choose a random
ordering � of from f1; :::; ng to f1; :::; ng and permute the points based on �: p�(1) : : :p�(n). We
then incrementally insert the points into the the current triangulation and perform
ip if needed.
Notice that the initial triangulation is a triangle formed by the �rst three points. It can be shown
that the expected number of
ips of the about algorithm is O(n logn). This gives a randomized
O(n logn) time DT algorithm.

18.3.3 Delaunay Re�nement

Even though the Delaunay triangulation maximize the smallest angles. The Delaunay triangulation
of most point sets are bad in the sense that one of the triangles is too 'skinny'. In this case, Chew
and Ruppert observed that we can re�ne the Delaunay triangulation to improve its quality. This
idea is �rst proposed by Paul Chew. In 1992, Jim Ruppert gave a quality guaranteed procedure.

� Put a point at the circumcenter of the skinny triangle

� if the circum-center encroaches upon an edge of an input segment, split an edge adding its
middle point; otherwise add the circumcenter.

� Update the Delaunay triangulation by FLIPPING.

A point encroaches on an edge if the point is contained in the interior of the circle of which the
edge is a diameter. We can now de�ne two operations, Split-Triangle and Split-Segment

Split-Triangle(T)

� Add circumcenter C of Triangle T

� Update the Delaunay Triangulation (P [C)

Split-Segment(S)

� Add midpoint m

� Update the Delaunay Triangulation (P [M)

The Delaunay Re�nement algorithm then becomes

� Initialize

Chapter 18 Mesh Generation 171

{ Perform a Delaunay Triangulation on P

{ IF some segment, l, is not in the Delaunay Triangle of P , THEN Split-Segment (l)

� Repeat the following until � > 25�

{ IF T is a skinny triangle, try to Split(T)

{ IF C of T is 'close' to segment S then Split-Seg(S)

{ ELSE Split Triangle (T)

The following theory was then stated, without proof. The proof is �rst given by Jim Ruppert in
his Ph.D thesis from UC. Berkeley.

Theorem 18.3.1 Not only does the Delaunay Re�nement produce all triangles so that MIN � >

25�, the size of the mesh it produces is no more than C �Optimal(size).

172 Math 18.337, Spring 1996

VI Selected Topics

Chapter 19

The Pentium Bug

19.1 About These Notes on The Pentium Bug

The purpose of these notes is to summarize the 18.337 class on ~ February 14, 1995 ~. It includes
a brief history on the discovery of the Pentium bug in x2 followed by the details of the Pentium
bug
aw in x3. The material appearing in x3 is intended to be a simpli�cation of the proof which
appeared in the Coe/Tang paper \It Takes Six Ones to Reach a Flaw."

19.2 The Discovery of The Bug

The �rst posting about the Pentium bug was by Professor Nicely at the Lynchburg College of
Virginia. It seems that Dr. Nicely was working with twin primes { numbers such as f 11, 13 g, f
29, 31 g, or f 107, 109 g. Speci�cally, he was going after the sum:

S =
1

5
+
1

7
+

1

11
+

1

13
+

1

17
+

1

19
+ � � �

This sum is mathematically known to be �nite. Dr. Nicely had been running his program to
compute this sum on several di�erent computers. But when he ran the program on a Pentium
machine, he got a di�erent answer than he expected { even though he was using double precision,
he was getting worse results than would be expected from single precision numbers. Eventually, Dr.
Nicely narrowed the the source of the error to a part of his code that computed the terms in the
sum. (i.e. 1

p) He knew that his code was correct, so on October 10, 1994 he posted his conclusion
that the Pentium chip contained a division
aw.

This posting caught the attention of Dr. Timothy Coe at Vitesse, who decided that this was
a good opportunity to discover how the chip works. He asked for people to send him examples of
the bug, and successfully put together a model of what Intel was doing.

19.3 The Pentium Bug

What Dr. Coe discovered was that Intel was doing division using the Radix-4 version of the
Sweeney, Robertson, and Tocher (SRT) algorithm. In order to get an idea of the magnitude of the
bug that we will be discussing, consider the following example: The fraction 4195835

3145727 should evaluate
to 1.33382, but a
awed Pentium chip returns 1.33374. This is a relative error of 6.1E-5 or about
61 ppm { roughly twice the concentration of carbon monoxide allowed in ambient air by national

173

174 Math 18.337, Spring 1996

ambient air quality standards 1. It is interesting that some software developers have come up with
ways to deal with this annoying bug. For example, there is a patch available for MATLAB which
detects at-risk denominators, multiplies the numerator and denominator by 15

16 , and then performs
the division. The remainder of this section is devoted to a description of the details of the Radix-4
SRT algorithm and the Pentium Bug.

19.4 Introduction

This is text from an old version of my paper. Better to grap a later version o� of my web page,
and also see recent work by Kahan.{ Alan

Quite properly, the risk to users emerged as the most popular issue in the discussion of the
Intel Pentium
aw. Unfortunately, evaluating this risk is probably infeasible. Other popular issues
include Intel's public relations policy, the story of how Nicely found the bug, how Coe succeeded
in reverse engineering the algorithm based on \bad" numerators and denominators, and those
ubiquitous Pentium jokes [14]. here we cover the one issue that is not very well understood, the
bug itself. The contribution of this paper is to supply a simpli�ed explanation of the Coe, Tang
[21] result that the at risk divisors have six consecutive ones in positions 5 through 10. Also we
explain why the worst case absolute error for arguments in [1; 2) is on the order of 1e-5.

There have been a number of interesting related works including Kahan's [49] SRT division
tester. Kahan's tester chooses arguments more cleverly than random testing, increasing the like-
lihood of discovering whether an algorithm is somehow broken. His tester concentrates on the
fenceposts, which is always a good place to look for di�uculties. Randy Bryant [13] shows that
binary decision diagrams may be used as a check of the validity of a PD table. His algorithm
explicitly checks that partial remainders remain within the critical region. Vaughan Pratt [73],
holds the record for the most extensive computational experiments and classi�cations of the bug.

Sometimes a mistake is itself uninteresting other than that it causes trouble and that it needs
to be �xed. For example, a wrong turn while driving in a familiar neighborhood can waste time.
On occasion, a mistake is itself inherently interesting. Proceeding with our example, a wrong turn
in an unfamiliar neighborhood may lead to interesting discoveries. With all of the media coverage,
one message that hardly anyone has noticed is that the bug itself is mathematically interesting.

Suppose the Pentium chip had never built, but a mathematician had a complete speci�cation
of the algorithm including the
aw. Could this mathematician without the aid of a computer
readily discover
awed numerators and denominators? My opinion is that the world's leading
mathematicians might �nd them, but I am not so sure. They are di�cult to �nd using traditional
non-computer oriented mathematics.

This article is a self-contained mathematical discussion of the bug, and only the bug. Sections 2
through 4 contain a complete mathematical speci�cation of the algorithm which would be su�cient
for the reader to try to see if he can devise buggy numerators and denominators without ever
touching a Pentium chip.

We begin with a discussion of radix 4 SRT division, and its carry-save implementation. We
then give a simpli�ed proof of the Coe/Tang [21] result that it takes six ones to reach a
aw. The
�rst part of the proof begins with a simple analysis of the inequalities that either prevent you or
allow you access to an erroneous table entry. The second part of the proof is an arithmetic puzzle
not so very di�erent in spirit from the sort found in recreational mathematics, where one has to
replace letters with digits to make a correct sum as in this one from a collection by James Fixx [32]

1National Primary and Secondary Ambient-Air-Quality Standard, 1983

Chapter 19 The Pentium Bug 175

S E N D

+ M O R E

M O N E Y

We conclude with an explanation of why the Pentium is always guaranteed to have an absolute
error that is bounded by 5e-5. when the inputs are in the standard interval [1; 2).

19.5 SRT Division

We now present the radix 4 version of the Sweeney, Robertson, and Tocher (SRT) division algorithm.
This algorithm computes a radix 4 quotient where the digits are not the set f0; 1; 2; 3g as might be
expected from base 4, but rather f�2;�1; 0; 1; 2g. The extra digit introduces a very useful \slack"
into the computation, For multiplication, the digits 0, �1, and �2 are also computationally more
convenient than the digit 3 would be, say.

Letting p and d denote the numerator and the denominator, we may as well assume that
1 � p; d < 2. The SRT division algorithm may be expressed succinctly in conceptual pseudocode:

Radix 4 SRT Division

p0 := p
for k = 0; 1; : : :
\Lookup" a digit qk 2 f�2;�1; 0; 1; 2g in such a way that

pk+1 := 4(pk � qkd)
satis�es jpk+1j � 8

3d
end
p=d =

P1
i=0 qi=4

i:

The details of the lookup table are intricate and are postponed to Section 19.7. On the Pentium
chip, by an accident in the table lookup, it is possible to obtain a qk which fails to produce a pk+1

with absolute value � 8
3d.

We note that if we replace the set f�2;�1; 0; 1; 2g with f0; : : : ; 9g, and the 4 with a 10, and
�nally the inequality jpk+1j � 8

3d with pk+1 2 [0; 10d), then we recover ordinary base 10 long
division.

19.6 Understanding why SRT works

It is easy to see that if jpkj � 8
3d then at least one of the �ve values of pk � qkd has absolute value

� 2
3d. The �gure below (with unit length d) shows this clearly. The indicated qk value translates

each interval to the qk 0 interval. Overlap between upper and lower intervals indicates that
an arbitrary choice may be made. The qk 0 interval, when scaled up by a factor of 4, remains
within the interval jpj � 8

3d.

176 Math 18.337, Spring 1996

s s s s s s s s s s s s s s s s s

s s ss s s

s ss s

�8
3 �4

3 �2
3

�5
3 �1

3

2
3

4
3

8
3

1
3

5
3

qk �2 qk 0 qk +2

qk �1 qk +1

We therefore may run the algorithm ad in�nitum, i.e. we can �nd a qk for which

pk+1 = 4(pk � qkd) (19.1)

has absolute value � 8
3d.

Since equation (19.1) is equivalent to

pk
d
4�k =

qk
4k

+
pk+1

d
4�(k+1);

we may prove by induction that

p

d
=

�
q0 +

q1
4
+ � � �+ qk�1

4k�1

�
+
pk
d
4�k: (19.2)

Letting k ! 1 in Equation (19.2) proves that the SRT algorithm computes the correct quotient.

There is a popular misconception that the SRT algorithm is capable of correcting for \mistakes"
by using the redundant set of digits. Though the overlapping in the regions may allow for two choices
of digits, if an invalid digit is chosen, the algorithm can never recover.

A consequence of Equation (19.2) is that

pk = d
1X
i=k

qi=4
i�k = d(qk +

qk+1

4
+
qk+2

42
+ : : :):

Summing the geometric progression with the extreme choices of all qi = +2 or all qi = �2 shows that
the requirement jpkj � 8

3d, is not an arbitrary choice, but a necessary ingredient in the algorithm.
On the Pentium, for certain values of d and for certain values of pk just a little smaller than

8
3d, the

chip supplies the value 0 for qk rather than 2. The value of pk+1 would then be nearly 10d which is
way outside of the range representable by our geometric progression. A consequence is that when
the Pentium looks up 0 instead of 2, there is no way to recover.

A small observation that we will use later is

Lemma 19.6.1 If qk = 2, then pk+1 � pk.

Proof This is a simple consequence of the bound pk � 8
3d.

19.7 Quotient digit selection on the Pentium

The Pentium uses a lookup table to obtain qk . Rather than using pk and d directly in the lookup
table, it uses approximations Pk and D to pk and d respectively. Pk is a binary number of the
form xxxx.yyy, i.e. an integer multiple of 1=8, while D is a binary number of the form x.yyyy,
i.e. an integer multiple of 1=16. The number Pk is obtained from the carry-save representation to
be explained momentarily. We shall see that we can guarantee that

Pk � pk < Pk +
1

4
and D � d < D+ � D +

1

16
: (19.3)

Chapter 19 The Pentium Bug 177

Notice that D and D+ are de�ned by the second inequality, but two possible values of Pk are
possible given pk.

The lookup table [21, 85] that computes qk as a function of Pk and D appears in Figure 19.7
below. The �ve marked boxes indicate table entries that must be 2 but erroneously return 0 on

awed Pentium chips.

The �ve bad entries occur for those divisors d for which D has any of the �ve values 17/16,
20/16, 23/16, 26/16, 29/16. For the other D values, there is no algorithm pathology, so there is no
independent way to be sure which digits are selected in the overlap regions. Hence the empty area
in the lookup table.

For the remainder of this paper, we are only concerned with the �ve bad columns in the lookup
table. In particular, 2

3D+ is an integer multiple of 1=8. Following Coe and Tang [21], a
awed entry
exists at the value PBad =

8
3D+ � 1

8 . The lookup table is expressed succinctly with thresholds by
identifying which of �ve intervals Pk falls in:

PMin

q � Pk � PMax

q : (19.4)

The thresholds are

q PMin

q PMax

q

-2 �8
3D+ �1

4 � 4
3D+

-1 �1
8 � 4

3D+ b�1
4 � 1

3D+c
0 b�1

8 � 1
3D+c d�1

8 +
1
3D+e

1 d13D+e �1
8 +

4
3D+

2 4
3D+ �1

8 +
8
3D+

It is easy to check that the q chosen in this manner satis�es the constraints of the algorithm
speci�ed in Section 2.

The computation of Pk: Carry-Save addition

Imagine adding 100 numbers on a calculator. On many calculators after typing x1 + x2 the sum
would be displayed, then folding in x3 the new sum is obtained, etc. On computers it is convenient
to avoid the carry propagation by leaving the result in so-called \carry-save" format (See [23,
pp.668{669]. In this format x1 + x2 is represented as s2 + c2. When we add in x3 the result is
represented as s3 + c3, etc. The si and ci are known as the sum and carry word. The basic idea is
that when computing the sum of s2 + c2+ x3 in binary, every column can add up to 0; 1; 2; or 3 so
the modulo 2 sum of the result (0 or 1) is stored in the sum word, and the carry bit is stored in
the carry word.

Here is an example:

x1 0 1 0 1 1

x2 0 1 1 0 1

s2 0 0 1 1 0

c2 1 0 0 1 0

x3 0 1 1 1 0

s3 1 1 0 1 0

c3 0 1 1 0 0

Generally speaking sum(a,b,c) is a + b = c mod 2 in mathematical language, and a � b � c
in a more computer science style language. carry(a,b,c) may be expressed as a + b + c � 2 in
a matlab sort of language, or as (a ^ b) _ (a ^ c) _ (b ^ c). The numbers ck and sk constitute the
carry-save representation of

Pk
i=1 xk.

1
78

M
a
th

1
8
.3
3
7
,
S
p
rin

g
1
9
9
6

0000.000

0001.000

0010.000

0011.000

0100.000

0101.000

1111.000

1110.000

1101.000

1100.000

1011.000

D
iviso

r

Shifted Partial Remainder

1.0000
1.0001
1.0010
1.0011
1.0100
1.0101
1.0110
1.0111
1.1000
1.1001
1.1010
1.1011
1.1100
1.1101
1.1110
1.1111

F
igu

re
19.1

:
T
h
e
q
u
otien

t
d
igit

q
k 2
f�

2
;�

1
;0
;1
;2g

is
a
fu
n
ction

of
P
k
an
d
D
.

Chapter 19 The Pentium Bug 179

On the Pentium, pk is represented in the carry-save form ck + sk so that the expression pk+1 =
pk � qkd is computed using a carry-save adder. If qk is positive �qkd is represented using a ones
complement notation. In general pk � qkd is obtained from d by a combination of shifting and/or
ones complementing or zeroing. Since these are fast operations on a computer, this explains why
the digit set f�2;�1; 0; 1; 2g is so useful. To perform addition correctly, if a one's complement
number is used, a 1 is added in to the least signi�cant carry bit before shifting.

Given that pk = ck + sk , it is natural to de�ne PK = Ck + Sk, where Ck and Sk represent ck
and sk respectively rounded down to the nearest bit. Since

Ck � ck < Ck +
1

8
and Sk � sk < Sk +

1

8
;

we can conclude that Pk � pk +
1
4 .

The following example illustrates the division of 1.875 by 1.000 using fewer bits than is actually
used in the Pentium. Of course, dividing by 1 is trivial, but the important features of the algorithm
are illustrated below.

1.875= 0001.111 00000000000

0000.000 00000000000

-2x1= 1101.111 11111111111

0000.011 11111111100

1111.000 00000000100

-(-1)x1= 0001.000 00000000000

1001.111 11111100000

1000.000 00000100000

-2x1 = 1101.111 11111111111

0000.000 00011111100

1111.111 11100000100

-0x1= 0000.000 00000000000

1111.111 11111100000

0000.000 00000100000

0000.000 00000000000

1111.111 11100000000

0000.000 00100000000

19.8 Analyzing the bug

19.8.1 It is not easy to reach the buggy entry

We proceed to prove a lemma which states that the buggy entry PBad can only be reached from
the entry below This is a subtle phenomenon that may not have been readily guessed from general
properties of SRT division. We will also show that the next lower entry, PBad � 1

8 , it itself di�cult
to reach.

In terms of the binary expansion of d = 1:d1d2d3d4d5 : : :, we have the following identities for
qkD+:

2D+ = 001d1:d2 d3d4 0 +1
8

D+ = 000 1: d1 d2d3d4 + 1
16

0D+ = 000 0: 0 0 0 0
�D+ = 111 0: �d1 �d2 �d3 �d4
�2D+ = 110 �d1: �d2 �d3 �d4 0

; (19.5)

180 Math 18.337, Spring 1996

where the negatives numbers are expressed in two's complement notation.2 The chopping is a round
down process, but D+ is akin to a round up, hence the existence of the 1

8 and 1
16 terms.

Therefore in terms of Pk and D+, we have the approximate version of Equation (19.1):

Pk+1 = 4(Pk � qkD+) +Rk; (19.6)

where Rk is determined by a few higher order bits. To be precise,

Rk = 0:0s4s5+0:0c4c5+

8>>>>><
>>>>>:

0:0 d5 d6
0:0 0 d5
0
0:0 0 �d5
0:0 �d5 �d6

9>>>>>=
>>>>>;
+
1

8
�carry-over(s6; c6;

8>>>>><
>>>>>:

d7
d6
0
�d6
�d7

9>>>>>=
>>>>>;
)+

8>>>>><
>>>>>:

�1=2
�1=4
0
0
0

9>>>>>=
>>>>>;
; if

8>>>>><
>>>>>:

q = �2
q = �1
q = 0
q = 1
q = 2

where the si, ci, and di are the appropriate bits in the sum, carry, and divisor respectively. The
function carry-over(b1; b2; b3) is 1 if at least two of its arguments are 1. The last correction term of
�1=2 and �1=4 is a direct consequence of Equation (19.5).

Taking the maximum value of the parameters we see that

Rk � RMax

k �

8>>>>><
>>>>>:

3=4
3=4
7=8
1
5=4

9>>>>>=
>>>>>;
; if

8>>>>><
>>>>>:

q = �2
q = �1
q = 0
q = 1
q = 2

: (19.7)

We assume that D+ is a multiple of 3=16 i.e., it corresponds to one of the �ve
awed table
entries. For each value of qk , we may tabulate the largest possible Pk+1 that may be reach as a
function of the extreme Pk by using equations (19.6) and (19.7). This is our �rst glimpse at just
how di�cult it is to reach PBad.

qk Pk PMax

k+1 = 4(Pk � qkD+) + RMax

k

�2 PMax�2 = �4
3D+ � 1

4
8
3D+ � 1

4 = PBad � 1
8

�1 PMax�1 � �1
3D+ � 1

4
8
3D+ � 1

4 � PBad � 1
8

0 PMax

0 � 1
3D+

4
3D+ + 7

8 < PBad � 1
8

1 PMax

1 = 4
3D+ � 1

8
4
3D+ + 1

2 < PBad � 1
8

2 PBad � 1
8 =

8
3D+ � 1

4
8
3D+ + 1

4 > PBad

2 PBad � 1
4 =

8
3D+ � 3

8
8
3D+ � 1

4 = PBad � 1
8

(19.8)

The two \less than" inequalities in the table above are a simple consequence of D+ > 1.

Lemma 19.8.1 The sequence of P 's and corresponding q's that lead to the bad entry are given
below:

P: PMax�2 =P
Max�1 �����!

n
PBad � 1

8

o
m�1

�����! PBad

q : �2=� 1 �����! f2gm�1 �����! (bad entry)
R = Rmax

R = Rmax
�

3

8

: (19.9)

Here the subscript m in the middle column denotes a repetition of the entry m � 1 times, and the
�rst column indicates that either a PMax�2 or PMax�1 may start the path to the bug corresponding to
either q = �2 or q = �1 respectively.

2Two's complement represents integers by reducing modulo a power of 2. Add D+ and �D+ or add 2D+ and
�2D+ (and multiply by 16 to remove the binary point) to see that the sum is a power of 2.

Chapter 19 The Pentium Bug 181

Proof Our proof goes from right to left. The table in (19.8) shows that we can only reach PBad

from PBad � 1
8 . The table also shows that for q = �2 or q = �1, we can just barely reach PBad � 1

8 ,
but only when Pk = PMax

k and Rk = RMax

k . PBad � 1
8 may also be reached from PBad � 1

4 , but if
Pk = PBad � 1

4 then PBad � 1
4 � pk < PBad, and Lemma 19.6.1 guarantees that while the sequence

produces 2's all future pk will also satisfy pk < PBad which precludes reaching the
awed entry, i.e.,
reaching k with Pk = PBad.

19.9 The \Send More Money" Puzzle for the Pentium

Theorem 19.9.1 (Coe,Tang) A
awed table entry can only be reached if the divisor d = d1d2d3 : : :
has the property that the six consecutive bits from d5 to d10 are all ones. (Of course 1:d1d2d3d4
must be one of the �ve bad values.)

Proof

First assume that m = 1. (We later show in Lemma 19.9.1 that this is the only possibility.)
The table below illustrates the carry-sum addition that leads to the buggy entry. The Greek letter
subscripts indicate the alphabetical order in which the entries are �lled in. The reasoning behind the
entries appears immediately below. Asterisks (�) indicate entries whose values are not of interest.
Also of no interest are values to the left of the binary point.

sj�2 :� � � 1� 1� 1� 1 1 sj�2 :� � � 1� 1� 1� 1 1

q = �2 cj�2 :� � � 1� 1� 1� 1 1 cj�2 :� � � 1� 1� 1� 1 1 q = �1
2d :d2 d3 d4 1� 1� 1� 1 1 d :d1 d2 d3 d4 1� 1� 1 1

sj�1 :� 1� 1� 1� 1� 1 sj�1 :� 1� 1� 1� 1� 1

q = 2 cj�1 :1� 1� 1
 1� 1� 1 cj�1 :1� 1� 1
 1� 1� 1

�2d : �d2 �d3 �d4 0� 0� 0� �2d : �d2 �d3 �d4 0� 0� 0

sj :� 0� 0� 0 sj :� 0� 0� 0

bug cj :1� 1� 1� � cj :1� 1�

� Since R (Lemma 19.8.1 must equal Rmax we must have c4; c5; s4; s5; d5; d6 = 1. (Only up to d5 when q =
� Arithmetic from above.

 8(PBad � 1

8) is even. (It can be 22, 26, 30, 34, or 38.)
� Complement the 1� since now q = +2.
� R = Rmax � 3

8 (Lemma 19.8.1). Given the 0�, if either 1� were 0, R would be smaller.
� Arithmetic from below.
� Arithmetic from above.
� 8PBad 2 f23; 27; 31; 35; 39g is 3 (mod 4).
� The 1� requires a carry from above.
� Complement the d bit 1�.
� 0� is the result of arithmetic from above. 1� since 8PBad is 3 (mod 4).

The remaining entries follow easily.
The conclusion that we have so far is that if we begin with q = �2, we must then have that

d5; d6; d7; d8; d9 are all 1. If we begin with q = �1, then we conclude that d5; d6; d7; d8 are all 1.
We are almost, but not quite �nished. Having all those ones at the q = �2 or q = �1 step

allows us to go back yet another step. A quick analysis shows that the line above sj�2 can only be
d or 2d and that it too has many ones. We can then guarantee that d9 and d10 are also 1.

Lemma 19.9.1 The value for m in Lemma 19.8.1 must be one.

182 Math 18.337, Spring 1996

Proof The results from � to � are readily seen to be correct, even if qj�2 = 2. However, checking
a few more steps readily yields a contradiction.

19.10 At least nine steps to failure

Naively, one might have thought that the bad table entries would be hit uniformly at random. If
this had been the case, the bug surely have been noticed earlier and would have had the potential
to cause more signi�cant damage every instance it went unnoticed.

Even in the worst case of the error, the absolute error in the quotient is roughly 0:00005 = 5e�5
when dividing two numbers in the interval 1 � x < 2. This is the worst case, the actual errors can
be far smaller. Vaughan Pratt [72] has exhaustively computed all the single precision errors and
has found that the quotient 14909255/11009918 has an absolute error that is roughly 5e� 5. (In
fact it is 4:65e� 5.) The highest relative error that he reported is roughly 6e� 5.

The reason the error is bounded is that, no matter what, the Pentium is guaranteed to compute
q0 through q7 correctly. This is what we will now prove. The result is a straightforward consquence
of the results in the previous section.

In particular, if the bug occurs at step 8, then we saw in Section 6 that step 6 must have the
form shown in the diagram below which shows the sum, carry, and qkd bits respectively starting
with bit number 4. Taking into account that all the carry bits are 0 at step 1, it is fairly easy to
show that the bit patterns must fall as in the diagram below. However, since q1 is positive, it must
follows that all of q2,. . . ,q6 are positive by observing the overlap in the qkd row from one step to
the next. However, we known that q6 < 0 so we have a contradiction. Therefore the pattern shown
below as Step 6, which must occur to trigger the bug, can not appear before the seventh step, and
hence the bug appears no earlier than the ninth step.

� � � � � � � � � � � � � � � 1 1 1 1 1
Step 1: 0

� � � � � � � � � � � � � � � 1 1 1 1 1
� � � � � � � � � � � � 1 0 0 0 0 0 � �

Step 2: � � � � � � � � � � � � 1 1 1 1 1 � � �
� � � � � � � � � � � � 1 1 1 1 1 � � �
� � � � � � � � � 1 1 0 0 0 0 � � � � �

Step 3: � � � � � � � � � 1 1 1 1 1 � � � � � �
� � � � � � � � � 1 1 1 1 1 � � � � � �
� � � � � � 1 1 1 0 0 0 � � � � � � � �

Step 4: � � � � � � 1 1 1 1 1 � � � � � � � � �
� � � � � � 1 1 1 1 1 � � � � � � � � �
� � � 1 1 1 1 0 0 � � � � � � � � � � �

Step 5: � � � 1 1 1 1 1 � � � � � � � � � � � �
� � � 1 1 1 1 1 � � � � � � � � � � � �
1 1 1 1 1 � � � � � � � � � � � � � � �

Step 6: 1 1 1 1 1 � � � � � � � � � � � � � � �
� 1 1 1 1 � � � � � � � � � � � � � � �
"

Bit #4

Chapter 19 The Pentium Bug 183

19.11 Acknowledgement

I owe a great deal to Tim Coe for explaining carefully and patiently the reasoning behind his
reverse engineering of the Pentium chip. This paper began life as an extended referee's report for
the original version of the Coe, Tang paper [21]. Without this paper, this work would have been
impossible. I also thank Velvel Kahan for many interesting discussions during January of 1995,
while I was visiting Berkeley, and Vaughan Pratt for reviewing early drafts of this note which had
more bugs than the Pentium. Finally, I thank Teddy Slottow for creating the beautiful color �gure.

19.12 Conclusions

We have provided a simpli�ed proof the Coe, Tang result that the only divisors at risk are those
divisors which six consecutive ones in the �fth through tenth positions. We also explain why the
abosolute error is bounded by 5e-5, when dividing two numbers in the standard interval [1; 2): An
interesting unexplored question would be: for arbitrary radix SRT division algorithms is it possible
to show that every plausible table entry can in fact be reached?

184 Math 18.337, Spring 1996

Chapter 20

Network Topologies

185

186 Math 18.337, Spring 1996

Chapter 21

Topology Based Parallel Algorithms

21.1 Overview

� The Gray Code and Other Embeddings of the Hypercube

� Going Beyond Embedded Cycles

� Hypercube theory: Unique Edge-Disjoint Hamiltonian Cycles in a Hypercube

� An Application: Matrix Multiplication on a Grid

� The Direct N-Body problem on a Hypercube

� The Hamming Sum

� Extending Gray Code-directed Body Movement to Multiple Sets of Bodies

� Matrix Multiplication using all Hypercube Wires

� Matrix Multiplication using the Cartesian Product

21.2 Interprocessor Communication and the Hypercube Graph

All parallel supercomputers allow message passing between nodes as a means of communica-
tion. This programming model di�ers from programming in a data-parallel language such as
CM-FORTRAN or C*, which has been done previously in this course. The CM-5 was designed
primarily for data parallel programming, but may also be used for message passing. In the past,
message passing did not give users access to the vector units which make the CM-5 so fast. The
latest nodal model allows message passing to take advantage of the vector units.

As research in parallel computation has come to the forefront of computer science in recent
years, parallel algorithm designers have had to struggle with the complications imposed by a large
network of processors working to solve a single problem. As the number of processors increases,
experimental evidence indicates that communication bandwidth (throughput), rather than latency,
becomes the bottleneck limiting the scalability of parallel algorithms. Thus, choosing the correct
communication sub substrate for one's parallel computer is of paramount importance to its perfor-
mance. Because of the versatility of an interconnection graph known as the hypercube, it looked
very attractive to machine designers in the recent past, and was used in the CM-2, Cosmic Cube,

187

188 Math 18.337, Spring 1996

010

000

001

011

100

110

111

101

Figure 21.1: The Hypercube for d = 3

and N-Cube (one is located here at MIT, in the Earth Resources Laboratory).

A Hypercube graph consists of:

1. d Dimensions

2. 2d Vertices

3. (b0:::bd�1) and (b
0

0:::b
0

d�1) are connected by an edge if and only if they di�er in exactly one
bit.

There are d2d�1 edges in a hypercube of dimension d.

A picture of the three-dimensional hypercube may not be as helpful as it would seem, but is included
as Figure 21.1.

On a sad note, the hypercube design for the most part has been abandoned. Network routing
today is often randomized, taking away the users' control over network communication. Fat trees,
consisting of interconnection trees in which the processors are nodes and the links near the root
have a proportionately higher bandwidth, are now enjoying acclaim. They have a lower edge count
than hypercubes (not counting bandwidth per edge) and win under randomized communication
schemes.

21.2.1 The Gray Code and Other Embeddings of the Hypercube

A hypercube is an amazingly versatile medium on top of which familiar and useful topologies can
be easily created. Perhaps the most basic such embedding is the Hamiltonian Path1, a topology
in which the nodes appear to be in a ring, so that each node has two neighbors and a message
traveling along the ring encounters each node exactly once. Finding such a path in a d-dimensional

1A Hamiltonian Path is one which touches each node of a graph exactly once. Contrast with an Eulerian Path.

Chapter 21 Topology Based Parallel Algorithms 189

hypercube is easy because of the existence of a d-bit Gray code.

The Gray Code is named after Frank Gray, who formalized it in the 1940's while working
on radar-related engineering problems. Given a rapidly changing binary output from a physical
measuring device, sampling accuracy can be improved by using the Gray Code to encode adja-
cent numbers rather than conventional binary. The code was originally invented by Emile Baudet
(1845-1903) for telegraph communication optimization|proper equipment can send several tele-
graph signals down the same wire to maximize bandwidth under �xed physical constraints.

The Gray Code for d = 3 embeds a Hamiltonian path in the three-dimensional hypercube shown
above:

GRAY CODE TRANSITION SEQUENCE
0 0 0
0 0 1 0
0 1 1 1
0 1 0 0
1 1 0 2
1 1 1 0
1 0 1 1
1 0 0 0

Each time we advance from one element of the Gray Code to the next, we move along a single
dimension. The transition sequence is merely the sequence of such change directions mapped out
as the Gray Code sweeps along its Hamiltonian path. (As a single bit must change at every step,
only the dimension of the changed bit, 0, 1, or 2, in this case, must be described.)

To build a Gray Code for d dimensions, one need only take the Gray Code for d�1 dimensions,
re
ect it top to bottom across a horizontal line just below the last element, and add a leading one
to each new element below the line of re
ection. Given that, you can see how the Gray Code above
was derived easily from the Gray Code for d = 2:

GRAY CODE
(LOCATION OF VERTEX)

0 0
0 1
1 1
1 0

21.2.2 Going Beyond Embedded Cycles

We are not limited to cycles; now that the Hamiltonian cycle has been described, we can use it to
embed a grid inside a hypercube. For example, suppose we have a d = 5 hypercube. We can group
the bits together like d4d3jd2d1d0, where the left group is given two bits, and the right group three.
By using two independent Gray Codes for the two sets of bits, we can index into the total set of
nodes using two numbers. Each number determines a sequential position in one of the Gray Codes
(or, equivalently, along one of the Hamiltonian cycles mapped out by them), so that together they
completely specify a unique node. By sweeping through the Gray Code mapped to the top two
bits, the position moves up and down a \column," and by sweeping through the code mapped to

190 Math 18.337, Spring 1996

Figure 21.2: Embedding a Two-dimensional Grid in a Hypercube by bit-�eld partitioning.

Two Distinct Embedded Hamiltonian Paths

Figure 21.3: Two edge-disjoint Hamiltonian paths spanning a set of nodes.

the lower three, the position moves back and forth in a \row". The result is a grid like that shown
in Figure 21.2. Three dimensional (or even higher dimensional) grids could be generated using this
bit-partitioning technique|we are not limited only to two dimensions.

Finally, note that in a hypercube of high dimensionality, several distinct Hamiltonian paths
(spanning the entire set of nodes) can exist which have no (directed) edges in common. A set of
nodes can thus be spanned by two completely separate loops around which information can be
passed without worrying about collisions. An example of this is shown in Figure 21.3.

21.2.3 Hypercube theory: Unique Edge-Disjoint Hamiltonian Cycles in a Hy-
percube

Consider in more detail the question of how many edge-disjoint Hamiltonian cycles exist for a
hypercube in d dimensions. (If two Hamiltonian cycles traverse an edge in opposite directions, they
will be considered edge-disjoint for our purposes.)

For hypercubes of even dimension, there are exactly d edge-disjoint Hamiltonian paths. This is
not surprising, since from above we know that a hypercube of dimension d has exactly d2d�1 edges.
Doubling this number to account for both directions of an edge and dividing it by the number of

Chapter 21 Topology Based Parallel Algorithms 191

edges in a Hamiltonian path (2d, since that's the total number of nodes) also yields d. The match
tells us that all edges can be part of the set of edge-disjoint Hamiltonian paths in a hypercube of
even dimensionality.

Strangely, for hypercubes of odd dimension, there are only d � 1 edge-disjoint Hamiltonian
paths.2 Since the same edge-use analysis applies as did in the case of hypercubes of even dimension,
we conclude some edges must not be used.

We can prove the assertion in the case of d = 3. Let's consider a single Hamiltonian cycle
embedded in the hypercube of dimension three, as depicted in
attened form in Figure 21.4(a). It
should be clear that in three dimensions, any Hamiltonian path can be rotated onto the one shown,
so that there is no loss of generality in assuming the presence of the particular path shown. To see
this, simply note that each two-dimensional slice of the d = 3 cycle must be a cycle in two dimensions
(lacking one edge). The cycle in two dimensions is unique except for direction. Furthermore, it can
be combined with another such cycle only in one way to form the three-dimensional Hamiltonian
cycle. Given this pre-existing cycle in a hypercube of dimension 3, we assume that two additional
edge-disjoint Hamiltonian cycles exist in the same hypercube, and produce a contradiction.

The proof is quite simple. Consider in turn the lower-left and upper-left corners of Fig-
ure 21.4(a). In the lower-left corner, there are two possibilities for edges entering the corner,
and two possibilities for edges leaving. These can be combined to form segments of two paths in a
unique way3, so we have determined the behavior at that point of the two additional edge-disjoint
Hamiltonian cycles which we assumed existed. See Figure 21.4(b). A similar analysis can be made
for the upper-left corner; we again are led to a unique pair of path segments which must belong to
the two new edge-disjoint Hamiltonian cycles, as shown in Figure 21.4(c). The only logical way to
connect the segments found in Figures 21.4(b) and 21.4(c) is shown in Figure 21.4(d).

We are almost done. Look at the point marked X on Figure 21.4(d). When the path we have
just connected gets to this point, it cannot go to the right, for that edge has already been used for
rightward travel by the original Hamiltonian cycle. It certainly can't go back out the way it came in.
Thus, it must go down, to the point marked Y. However, this would form a closed loop consisting
of four nodes! Such a loop might be part of larger loop, but then it wouldn't be Hamiltonian, since
it would pass through two nodes twice.

Since we have reached a contradiction, we conclude there are not two additional edge-disjoint
Hamiltonian paths in the three dimensional hypercube, and in fact only one additional such path.
Just reverse the direction of the original Hamiltonian path to �nd it.

21.2.4 An Application: Matrix Multiplication on a Grid

The �rst algorithm for matrix multiplication on a grid is Canon's. This algorithm is designed for
two dimensional grids. It still can run very fast on the CM-5 using CSHIFTS, which will be shown
later.

The goal is to �nd C where C = A �B and A; B and C are all matrices. Canon's algorithm
involves two steps: a skewing step and a Systolic step. In the skewing step, the rows of A are slid
to the left (with wraparound), such that each row is slid to the left a number of slots equal to its
row number, with the �rst row not moving at all. The columns of B are, analogously, each slid
upwards a number of slots equal to their column number, with the �rst column not moving at all.
These movements are an e�ort to achieve a special con�guration of the data which will be used by

2I am reminded of the famous vector-�eld theorem which states that a vector �eld can exist on the surface of a
ball in n dimensions without a singular point i� n is even. Could these two results be related?

3A Hamiltonian cycle in no case immediately backtraces an edge it has just traversed; this provides the uniqueness.

192 Math 18.337, Spring 1996

(a) A single Hamiltonian cycle in the d = 3 hypercube

(b) The set of legal incoming and
 outgoing directed edges at the lower
 left corner for new Hamiltonian paths

A

B
The set of legal
Hamiltonian cycle
segments at the
upper-left corner

(c)

A

B

B

pt. X

pt. Y

(d) Path segment A cannot go right at pt. X because of the
 original Ham. cycle. But if it goes down it forms a closed
 loop of 4 nodes!

Figure 21.4: Proof that for the d = 3 hypercube there are only 2, not 3, edge-disjoint Hamiltonian
cycles.

Chapter 21 Topology Based Parallel Algorithms 193

Skew Step

A B

Systolic Step (iterated k times)

(moved as unit) (moved as unit)

A B

Figure 21.5: Geometry of Canon's Algorithm

the following Systolic step. In the systolic step, we perform k iterations, moving A horizontally
one slot (as a whole) and B vertically one slot (also as a whole) in each iteration. As the iterations
go by, the products of the elements of A and B that pass by a location are accumulated into that
location, and at the end the product C has been computed in each row and column position.

1. Skewing Step
Ai;j Ai;i+j (modulo n)

Bi;j Bi+j;j (modulo n)

2. Systolic Step

C(i;j) =
n�1X
k=0

Ai;j+kBi+k;j

This algorithm is depicted symbolically in Figure 21.5.

Another method for matrix multiplication involves broadcasts on a grid. Thinking about this al-
gorithm on a grid of n2 processors reduces a matrix multiply to O(n) time (Ref. Bertsekas 77).

194 Math 18.337, Spring 1996

Figure 21.6: Multiple Row Sends

Figure 21.7: Multiple Column Sends

Imagine a n � n processor machine with a block of matrix A and matrix B on each node (you can
imagine one element on each node, just don't tell Prof. Edelman).

1. Each processor sends ai;j to all the other processors in the ith row. (aij is the (row i, column
j) element of matrix A). On a graph this operation looks like Figure 21.6.

2. Each processor sends bij to the processors in the jth column. This operation is shown in
Figure 21.7.

3. The matrix C is formed on each node by

nX
1

ai;jbi;j

This algorithm can also be implemented using C-SHIFTS. This can be easily pictured in Figure 21.6
and Figure 21.7.

Another way of improving Canon's algorithm (systolic step) can be easily pictured. In the original
implementation, each element of a block in A was sent to the left (to its western neighbor), and

Chapter 21 Topology Based Parallel Algorithms 195

A

 B

Figure 21.8: Two Direction Matrix Multiply

Figure 21.9: Two Direction Ring

each element of a block in B was sent up (to its northern neighbor). Thus, in each dimension,
the ring of connections was only used unidirectionally. The improvement consists in allowing each
ring to be used bidirectionally. Each block of the A matrix can be divided into left and right
halves while each block of the B matrix can be divided into top and bottom halves. Matrix A can
simultaneously send information east and west while B can simultaneously send information north
and south. In such an operation, the elements of a block in A in the block's right half are sent east,
and the elements of a block in A in the block's left half are sent west. Similarly, the elements of a
block in B in the block's top half are sent north, while the elements of a block in B in the block's
bottom half are sent south. This does not change the geometry of the information storage in each
matrix, and thus the multiplication occurs after much less the communication time. Figure 21.8
describes this operation pictorially.

This method can be best thought of as a ring going in two directions, as is shown in Figure 21.9.

21.2.5 The Direct N-Body problem on a Hypercube

The simplest way to solve the direct N-body problem on a hypercube is two create two copies of
the set of bodies, one stationary and one moving, allocated to the nodes spanned by a single large

196 Math 18.337, Spring 1996

Hamiltonian cycle. In each step, the moving bodies advance along the �xed Hamiltonian path one
unit, and interaction computations occur in parallel at each node adding the e�ects of the current
pair of bodies to the accumulated sum. To increase e�ciency, two edge-disjoint Hamiltonian cycles
spanning the nodes of a hypercube can be used instead of a single cycle, as was shown in Figure 21.3.
The advantage of this approach is that two sets of moving bodies can be present (each set moving
along one of the Hamiltonian cycles) so that the e�ects of two pairs of bodies are accounted for per
systolic step.

A faster method for a direct N-Body solution can take advantage of the hypercube graph and
the transition sequence (of a Gray Code) described earlier. A dynamic and static copy of each body
can be made at every node. The dynamic body will move around the hypercube changing along
the dimension dictated by the transition sequence of a �xed Gray Code. Every body will follow
the transition sequence, but not necessarily the Hamiltonian Cycle. The body at (0,0,0) will follow
the Hamiltonian cycle exactly, while others will follow in a similar sequence, but not right behind
on the same path. Each body will be on a di�erent path, but no body will cross another or \step
on another body" at the same moment in time.

In order to de�ne how the bodies other than the one at the zeroth node move, we must introduce
the concept of the Hamming sum. (The zeroth node moves exactly in a Hamiltonian path, using
the transition sequence derived from that path.)

21.2.6 The Hamming Sum

The Hamming sum will help create an optimal matrix multiply algorithm for the hypercube.

The Hamming Sum is de�ned as

bd�1:::b0
L

b
0

d�1:::b
0

1b
0

0 = bd�1
L

b
0

d�1; :::; b1
L

b
0

1; b0
L

b
0

0

where
L

is an exclusive or operation. It is essentially just a bitwise exclusive-or operation. (We
can now de�ne the transition sequence conveniently as the bit position for which gi

L
gi+1 is

1|the dimension along which the Gray Code changes in that step.)

Let's pick a �xed Gray Code G0. Then the direct N-Body algorithm puts the body that starts at
vertex v into the vertex v

L
gk at the kth step, where gk is the kth element of G0.

21.2.7 Extending Gray Code-directed Body Movement to Multiple Sets of Bod-
ies

Heretofore, we have been discussing a single set of moving bodies. The one at the zeroth node moves
in a Hamiltonian cycle, and the others move in similar paths derived from the original Hamiltonian
cycle using the node's position and the Hamming sum. Now, however, we consider multiple sets of
moving objects. For the sake of argument, let's assume we have a three-dimensional hypercube and
three sets of moving objects{a red set, a blue set, and a green set. We want to move each colored
set according to the rules just de�ned for a single set. Obviously, we can't assign G0 to be the Gray
Code for each of the three colors, since that would cause the objects on the zeroth node to travel
the exact same Hamiltonian path at the same time and collide. (Assume only a single object can
be sent along a wire at one time.) What can be done to use \all of the wires all of the time"?

Chapter 21 Topology Based Parallel Algorithms 197

Red
Blue
Green
...

Red
Blue
Green
...

Red
Blue
Green
...

Red
Blue
Green
...

Red
Blue
Green
...

Red
Blue
Green
...

Red
Blue
Green
...

Red
Blue
Green
...

Figure 21.10: N-Body Breakup on a Hypercube

The solution is to note that there are many Gray Codes for a given bit vector length. New
Gray Codes can be created from existing ones by shifting the columns of bits one or more positions
to the left, wrapping around when columns move o� the left side. For example, using our previous
table, we could make the transformation:

OLD GRAY CODE OLD TRAN. SEQ. NEW GRAY CODE NEW TRAN. SEQ.

LOC. OF VERTEX LOC. OF VERTEX
0 0 0 0 0 0
0 0 1 0 0 1 0 1
0 1 1 1 1 1 0 2
0 1 0 0 1 0 0 1
1 1 0 2 1 0 1 0
1 1 1 0 1 1 1 1
1 0 1 1 0 1 1 2
1 0 0 0 0 0 1 1

Note that the transition sequences of these two Gray Codes are related in a special way. The
second can be produced from the �rst by adding a 1 (modulo 3) to each element of the �rst's
transition sequence. In fact, there is a third unique Gray Code, which can be produced from the
�rst by adding a 2 (modulo 3) to each element of the �rst's transition sequence. In general, given
a hypercube in d = k dimensions, there are k unique Gray Codes. (Gray codes which represent the
same path but traversed in an opposite direction are not counted as unique.)

Thus, if in three dimensions we call these di�erent Gray Codes G0, G1, and G2, we know by how
their transition sequences can be derived that, at any given node of the hypercube, the transition
sequence elements of G0, G1, G2 are all di�erent. Because of this, if we allow one set of dynamic
bodies to be controlled by Gray code G0, another by Gray Code G1, and the last by Gray Code
G2, we may safely conclude that at any instant in time the red, blue, and green objects that were
at the zeroth node at time t = 0 follow the Hamiltonian paths implied by G0, G1, and G2 without
colliding.

You may be asking, \You proved earlier that you can't have 3 edge-disjoint Hamiltonian paths
on a hypercube in three dimensions!? What's going on?" The question is good one to ask, but is

198 Math 18.337, Spring 1996

not di�cult to answer. Before, we were talking about edge-disjoint cycles|paths which never pass
down the same edge going the same direction. Here, we're talking about time-edge-disjoint cycles.
We don't care whether the red, green, and blue objects that were at the zeroth node at t = 0 ever
travel down the same wire in the same direction, we only care whether they might do so at the
same time. As the transition sequences are related by modulo arithmetic in our scheme, a collision
is impossible.

Thus, by taking di�erent colored sets of bodies, assigning Gray Codes related by column shifts
to those sets, and moving each set around using its assigned Gray Code and the Hamming sum
as described above, we can use all the wires all the time. In fact, this set up can be used to
extend the grid multiplication routine (with the skew and systolic phases) presented earlier so that
instead of using only a two-dimensional grid embedded in the hypercube, it uses the hypercube's
full connectivity.

21.2.8 Matrix Multiplication using all Hypercube Wires

We can use every connection of the hypercube on every iteration by using the Hamming sum in the
calculation of the matrix product. To do so, we require only that the matrices to be multiplied are
square, and that the hypercube we are given is of an even dimension. We �rst split the complete
bit-�eld specifying location in the hypercube into a left and right half, each of which is subsequently
addressed as a bit-�eld of length d/2. Using a Gray Code in d/2 dimensions, gk, and the hamming
sum on d/2-length bit �elds, we can perform a matrix multiply in two phases:

1. Skewing Step

Aij Ai;i
L

j

Bij Bi
L

j;j

2. Systolic Step

C =
X
k

Ai;j
L

gk
Bi
L

gk;j

In each case, when a variable is subscripted by two expressions separated by a comma, the left
one refers to the left d/2-bit �eld, and the right one refers to the right d/2-bit �eld.

21.2.9 Matrix Multiplication using the Cartesian Product

If A is any graph with the Cartesian product that allows k time-wise edge-disjoint cycles, then the
Cartesian product of the graph with itself can be used for matrix multiplication. This is essentially
a generalization of the idea we used above when we split the original d-bit �eld of the hypercube
given to us into two d/2-bit �elds, and formed a Cartesian product of those �elds in order to carry
out the matrix multiplication in matrix equations immediately above.

21.3 References

[1] Bertsekas, Dimitri, et al. Parallel and Distributed Computation. Prentice hall, New Jersey.
1989.

Chapter 21 Topology Based Parallel Algorithms 199

[2] Leighton, F. Thomson. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes. Morgan Kaufmann, San Mateo, California, 1992.

Parts of these notes were taken from last year's notes written by Scott Wallace.

200 Math 18.337, Spring 1996

Chapter 22

Scalable Algorithms

22.1 Scalability, Communication Cost, and Matrix-Vector Prod-
uct

Parallel computation of the product y = Ax of a matrix A = [aij] and a vector x turns out to
be really important. It is the "inner loop" computation in all iterative methods for solving the
linear system Ax = b. It occurs in the inner loop of all explicit methods for time-dependent PDEs
(and in explicit integrators for the linear system of ODEs y0(t) = Ay(t) + b(t)). Moreover, from
the parallel implementation viewpoint, it is identical to the computation at the heart of a lot of
important parallel graph algorithms. For now, we'll restrict our attention to square matrices with
symmetric zero structure. Recall that the graph of A, G = (V;E), has a vertex for every row, and
an undirected edge from vertex i to vertex j if aij and aji are nonzero. Now, since

yi = (Ax)i =
X
j

aijxj =
X

(i;j)2E
aijxj ;

we can view the matrix vector product as a \graph" operation" as follows. Associate xi and yi
with vertex i of G, and aij as a weight on edge (i; j). To compute yi, communicate the value of
x from each neighboring vertex to vertex i, multiply it by the weight of the connecting edge, and
add these together with aiixi.

The parallelism aspects are clear. Each element of Ax can be computed independently of all
others. Each of these tasks requires a row of A and an element of y, and some subset of the
elements of x, those corresponding to the nonzero elements of the given row of A. If even more
parallelism is required, one could use several processors per element of Ax, each owning a subset
of the corresponding row of A, with a sum-reduction after they compute independently. Such
techniques are useful on the Maspar, with its 16; 384 processors, but not on mainstream machines
with a few hundred processors.

Quite surprising and complex algorithmic ideas are required to produce good e�ciency for this
computation on distributed memory machines, as we shall see. The issue is communication cost.
Matrix-vector is a hard problem because there is not a whole lot of arithmetic to be done: only
one
op per element of the matrix. So, unlike the situation with matrix multiplication, we cannot
expect to do a lot of
ops per datum, unless we map the work to the processors and the data to
the processors so that the data needed to do the work are already on the processor doing the work,
most of the time.

Let's recall the de�nitions of speedup and e�ciency. If we solve a problem like matrix-vector
product, there is a parameter n that describes the size of the problem. Suppose we solve it on one

201

202 Math 18.337, Spring 1996

processor in time T (n; 1) and on p processors in time T (n; p). Then the speedup is

S(n; p) =
T (n; 1)

T (n; p)

and the e�ciency is

E(n; p) = S(n; p)=p:

The goal of parallel algorithm research is algorithms that minimize T (n; p). We've found it useful
to consider what happens when we let p get large. In essentially all cases, if we �x the problem
size n we �nd that the e�ciency starts to drop, and goes to zero as p grows. So, to deal with the
scalability of an algorithm, one has to allow n to grow with p. How fast? Well, it should grow fast
enough so that the e�ciency does not drop o� to zeros. In other words, we will ask, for a given
parallel algorithm, how fast does the problem have to grow as p grows in order to obtain the bound:

E(n(p); p)� E0 > 0 asp!1

(We're essentially deriving a formula for the contours of the function E in the (n; p) plane | what
one wag once called the \isogoodbars".)

Well, for most algorithms, one can �nd such a growth rate n(p) that saves the e�ciency. So are
these algorithms all scalable? What would it mean if n grows so fast that each processor quickly
runs out of memory? It would not be too useful. For that reason, I like the de�nition of scalability
that requires that the growth in n required to bound E away from zero be such that the memory
required per processor be O(1) (for strict scalability) or not more that O(log� p) (for a weaker but
useful notion of scalability.)

Back to matrix-vector product. One complication is this. We have to map the vectors x and y
the same way. That's because they later will participate in operations like the DAXPY, y �x+y,
or the dotproduct xT y, which require this alignment of x and y. So we might as well align them
right from the beginning.

Here is the solution. For dense matrices A, the right thing to do is to map blocks of the matrix
to a

p
p�pp processor grid. For sparse matrices A with a random structure, such as the one used

in the NAS parallel conjugate gradient benchmark, the same style of mapping is best. But for
sparse matrices coming from PDE applications, it's best to consider the graph of the matrix, map
its vertices to the processors using a locality preserving mapping, and them map either the rows or
the columns of A using the given mapping.

With dense or random sparse matrices, mapping the matrix rows doesn't lead to a scalable
algorithm. Let's analyze the dense n � n case. Each processor gets n=p rows. WLOG they can
be contiguous. The processor that gets a row also gets the corresponding elements of x and y. To
compute its part of y it needs all of x. Thus, the �rst step is to communicate x, which begins as a
distributed and ends up as a replicated vector. In message passing parlance this is called a collect
operation, in MPI it is implemented by MPI Allgatherv, and if we were writing it in HPF, we
could express it as a realignment from the original alignment to a replicated alignment:

REAL XDIS(N), XREP(N)

!HPF$ TEMPLATE, DISTRIBUTE(BLOCK) :: T(N)

!HPF$ DISTRIBUTE XDIS(BLOCK)

!HPF$ ALIGN XREP(I) WITH T(*) ! Replicated alignment

...

XREP = XDIS ! Uses MPI_Allgatherv ?

Chapter 22 Scalable Algorithms 203

Matrix vector product on the SP-2, n = 2048
p M
ops (2D Map) M
ops M
ops

(1D Map: p� 1) (1D Map: 1� p)

1 60. 60. 60.
2 179. 180. 125.
4 305. 422. 255.
8 665. 805. 432.
16 1120. 1153. 659.
32 2082. 959. 827.

We'll now introduce a very important technique for the analysis and understanding of a dis-
tributed memory computation. We can get very useful lower bounds on running time by consider
the volume of communication. What does the collect cost? We don't care, for analysis of scala-
bility, about constant factors. By considering the bandwidth with which a processor can send and
receive data, we see that it takes O(n) time, regardless of p, to receive all of x. That's because
every processor has to accept n(p� 1)=p elements of x | the ones it doesn't own | and can only
accept data at some �xed rate. Thus, we have a lower bound on communication time that is O(n),
independent of p. So, since there is O(n2) work to do, we can't remain e�cient with more than
O(n) processors. In other words, as the problem grows is size, we can increase p only as the square
root of the required total memory. Thus, each processor will have to store a constant number of
columns or rows, and its memory requirement will grow linearly with the machine size! This is not
a scalable algorithm.

On the other hand, if we do a two-dimensional mapping of the data:

!HPF$ DISTRIBUTE A(BLOCK, BLOCK)

onto a r � s virtual grid of processors, then each processor only needs n=s elements of x and
produces part of n=r elements of y. The required collects of x occur within processor columns.
(MPI Allgatherv again.) Then a summation of elements of y that each processor has computed
must be done within processor rows. The MPI routine MPI Reduce scatter does the trick. (In
MPI, we use collective communication routines with a communicator for each processor column
and another communicator for each processor row { see Lecture LLLL.) We choose r and s to be
O(
p
p). Thus, communication time is O(n=

p
p), much less than with the by-rows mapping. In fact,

we can now take p to be O(n2). If we do this, communication volume is not the limiting factor.
Both arithmetic cost and communication volume give O(1) lower bounds on the parallel execution
time. But the critical path (for summing the elements in rows) is O(logn) long, so it dominates.
(If we take p = O(n2= logn) then we can maintain constant e�ciency, with polylog memory growth
| yielding a scalable, if not strictly scalable, algorithm.)

Lewis, Payne, and van de Geijn have described a very e�cient implementation of the NAS CG
benchmark using this idea, and paying careful attention to the mapping of x and y too. They use
a (CYCLIC, BLOCK) mapping of A. Element i of x and of y are mapped to the (one and only)
processor in the same row as row i of A, and the same column as column i of A. Then a collect of x
within processor columns and a distributed sum of y in processor rows produces y in the right place.
(Reference: J. G. Lewis, D. G. Payne, and R. A. van de Geijn, \Matrix-Vector Multiplication and
Conjugate Gradient Algorithms on Distributed Memory Computers," Scalable High Performance
Computing Conference 1994 .)

Here are some data from the SP-2. The code is in MPI Examples/matvec.c

204 Math 18.337, Spring 1996

Here you see the typical situation. The unscalable algorithm \hits a wall". On the other hand,
there is a region in the (n; p) plane in which the scalable algorithm is as much as 20% slower than
the \good" one-dimensional algorithm. Life is not always so simple. You might consider why the
(BLOCK, *) mapping is better than the (*, BLOCK) mapping of the matrix.

22.1.1 Sparse Matrices

One idea is to treat sparse matrices the same way as dense, and map the matrix blocks. If we think
in terms of the graph of the sparse matrix, then we are mapping subsets of the edges rather than
the vertices to the processors.

If this is naively done, there may be processors that get no nonzero elements. We'll have lousy
load balance. To correct this, we would �rst permute the rows and the columns independently to
equalize the load. One could use a random permutation (this idea was pushed in A. T. Ogielski
and W. Aiello, Sparse matrix computations on parallel processor arrays, SIAM J. Scient. and Stat.
Comput. 14 (1993), pp. 519{530) which balances the load pretty well with good probability. Or
one can choose the permutation by some heuristic load balancing technique. We'll discuss these in
Lecture XXXXX.

The sparse matrices that arise in applications of PDE's have a property that neither full nor
random sparse matrices share. It's that their graphs have small, balanced separators. This means
that the graphs may be partitioned into two roughly equally large subgraphs in such a way that most
edges are internal to a subgraph, and only a few connect vertices in di�erent subgraphs. We may
recursively partition the subgraphs until we have as many vertex subsets as there are processors.
We then assign the subgraphs to the processors, together with the elements of x and y and the
rows of A that correspond to its vertices. (An alternative is to map the corresponding columns.)
The communication we require is this: each processor gets the elements of x that correspond to
vertices adjacent to its vertices but mapped to other processors.

Because of the small separators, this communication is tolerable. Consider a k � k grid graph.
It has n = k2 vertices and can be separated into two k � k=2 subgraphs with an edge separator
having k =

p
n edges. Map each half to one of two processors. If k is big enough, then the per-

processor computation time, which is O(k2) dominates the communication time, which is O(k).
Got 2q processors? No, problem, just recursively bisect the graph q times, to produce a binary
tree of subgraphs with the right number of \leaf" subgraphs. If we scale the machine up to more
processors, we need only scale the number of grid points proportionally to the number of processors
in order to maintain constant e�ciency. This is what we mean by a \scalable" algorithm.

What graphs have small separators? A famous theorem of Lipton and Tarjan asserts that any
planar graph has an O(

p
n) separator into balanced subgraphs. Lots of nonplanar graphs also have

O(ne) separators for e < 1; most notably, three dimensional �nite element graphs, for which e
should be around 2=3. Some recent theoretical work has characterized some sets of graphs that
provably have this property. The trick is to compute those small separators. That's the topic of
another lecture, by Shang-hua Teng.

22.1.2 Parallel iterative Solvers

One can write a book on solving linear systems Ax = b by iterative methods, and another on
parallel implementation of these. Here I want to hit on a couple of important points.

First, conjugate gradient methods have become the standard tool. In a CG method, you need
to be able to do matrix vector products and vector dot products fast. We've discussed the former,
and the latter are simple. So what's left to talk about?

Chapter 22 Scalable Algorithms 205

It turns out that the most important thing one can do to e�ciently solve Ax = b in practice is
the change the problem! You pick a matrix B, which has to be nonsingular, and you solve BAx = Bb

instead. B is called the preconditioner. The trick is to pick B so that fewer iterations are required
to get the desired accuracy, and BAx is not much more expensive to compute than Ax. (Some
prefer to solve ABy = b for y, and then recover x = By. This if \right" preconditioning, while
BAx = Bb is \left" preconditioning. BACy = Bb followed by x = Cy is also possible.)

Often, the preconditioner is not explicitly given. For example, B may be (LU)�1 where LU � A
is an approximate triangular factorization of A; such methods, based on \incomplete" factorization
in which the zero structure of L and U is predetermined and very sparse, became quite popular
in the 70s and are very e�ective in practice. Many other possibilities exist. One important one
is to use one or more iterations of some simpler iterative method, like SOR or multi-grid, as the
preconditioner. For parallel machines, polynomials in A can be used, too.

When B is implicilty given, parallelism may be lost. For example. if A is tridiagonal, and B
is given by and LU decomposition, we will have some trouble, even though we converge in one
iteration!

Consider SOR as a preconditioner. We need to consider the parallel complexity of the SOR
method. Consider the graph of A. In SOR, you visit the vertices in some order, solving for the
unknown at each vertex visited while holding �xed the unknowns at the neighboring vertices. For
a grid graph (a k � k mesh) we usually think about a row-by-row sweep over the graph. If we
implement this in parallel, we can visit the diagonals of the graph and relax them simultaneously!
This reordering of the vertices does not change the result at all. So we can perform the sweep in
O(k) parallel steps. On the other hand, suppose we visit �rst the points (i; j) for which i + j is
even, then the points for which i + j is odd. The even points have only odd ones as neighbors,
and vice versa. So we could relax all the even points in one parallel step and all the odd ones in
a second parallel step. This ordering makes SOR much more parallel. It is known as \red-black"
SOR (think of a checkerboard).

How about SOR on other sparse matrices? We need to color the graph of the matrix, assigning
colors to vertices so that no adjacent vertices have the same color. (Remember the four-color
map theorem?) Once that's done, All vertices of a given color can be relaxed in parallel, and the
number of parallel steps for an SOR sweep is the number of colors we used. (Minimizing this |
the minimum is the chromatic number of the graph | is too hard to do in practice. But there is
a simple, fast, greedy algorithm that does pretty well.)

What about LU preconditioners. Suppose we require that L+ U has the same zero structure
as A | i.e. we allow no �ll in the incomplete factorization. Then we can parallelize the triangular
solvers that implement B + (LU)�1 with the same technique of multicoloring. If we order the
gridpoints in such a way that all the points of a given color occur consecutively in the ordering,
then A, L, and U develop a very nice block structure. For each color, A has a diagonal block
that is itself diagonal. Since L and U inherit the structure of A, they have these diagonal diagonal
blocks as well. I never thought one could use \diagonal" twice in a row in a correct sentence. Now,
during the solution of, say, Ly = f , one can solve simultaneously for a chunk of the vector x that
corresponds to one of the diagonal blocks of L in a single parallel step. The number of steps is the
number of colors, again.

The idea of multicolored approximate LU is due to Schreiber and Tang. Plassman,
Jones, and Freitag have used these techniques in some very large parallel computations at
Argonne, and have produced a parallel solver based on them. The URL for their work is
http://www.mcs.anl.gov/Projects/blocksolve/index.html

The number of parallel steps can be further reduced by a factor of two. Consider a pair of
adjacent diagonal blocks of L, wlog let them be L11 and L12. Now consider the whole block two-

206 Math 18.337, Spring 1996

by-two submatrix consisting of (in Matlab notation) [L(1,1), 0; L(2,1), L(2,2)]. What is its
inverse? What is the structure of it? Could it be economically precomputed and used in solving
Ly = g?

Further ideas about e�cient parallel solution of spare triangular systems can be found in \Highly
parallel sparse triangular solution," by Alvarado, Pothen, and Schreiber, which appears in Graph
Theory and Sparse Matrix Computation, pp. 141{157. The IMA Volumes in Mathematics and Its
Applications, Volume 56, Springer-Verlag, 1993.

Chapter 23

Scheduling on Parallel Machines

207

208 Math 18.337, Spring 1996

Chapter 24

Shared Memory Computations

209

210 Math 18.337, Spring 1996

Chapter 25

Scienti�c Libraries

25.1 Scienti�c Libraries

We give an example of scienti�c library using Thinking Machine CMSSL.
Dense Matrix Computations:

� Basic Operations inner product, outer product, matrix vector and vector matrix multiplica-
tion, matrix matrix multiplication, various norms of a matrices.

� Dense Linear Systems: Gaussian elimination, QR decomposition, matrix inversion and Gauss-
Jordan solver.

Sparse Matrix Computations

� Regular Grid Sparse Operations: representation, gathering and scattering, permutation.

� Linear Solvers for Banded systems:

� General Sparse Operations: Sparse gather and scatter.

� Iterative Solvers: Krylov-based solvers.

� Eigenvalue problem: tridiagonal matrices and reduction to tridiagonal form, dense Hermitian
matrices, real symmetric matrices by Jobobi rotations, k-step Lanczos algorithm, etc.

Communication Primitives

� Polyshift

� All-to-All broadcast

� SParse communication: sparse gather and scatter

� Permutations

� Mesh partitioning

211

212 Math 18.337, Spring 1996

Bibliography

[1] N. Alon, P. Seymour, and R. Thomas. A separator theorem for non-planar graphs. In
Proceedings of the 22th Annual ACM Symposium on Theory of Computing, Maryland, May
1990. ACM.

[2] C. R. Anderson. An implementation of the fast multipole method without multipoles. SIAM
J. Sci. Stat. Comp., 13(4):932{947, July 1992.

[3] A. W. Appel. An e�cient program for many-body simulation. SIAM J. Sci. Stat. Comput.,
6(1):85{103, 1985.

[4] I. Babu�ska and A.K. Aziz. On the angle condition in the �nite element method. SIAM J.
Numer. Anal., 13(2):214{226, 1976.

[5] J. Barnes and P. Hut. A hierarchical O(n logn) force calculation algorithm Nature, 324
(1986) pp446-449.

[6] M. Bern, D. Eppstein, and J. R. Gilbert. Provably good mesh generation. J. Comp. Sys. Sci.
48 (1994) 384{409.

[7] M. Bern and D. Eppstein. Mesh generation and optimal triangulation. In Computing in
Euclidean Geometry, D.-Z. Du and F.K. Hwang, eds. World Scienti�c (1992) 23{90.

[8] M. Bern, D. Eppstein, and S.-H. Teng. Parallel construction of quadtrees and quality tri-
angulations. In Workshop on Algorithms and Data Structures, Springer LNCS 709, pages
188{199, 1993.

[9] G. Birkho� and A. George. Elimination by nested dissection. Complexity of Sequential and
Parallel Numerical Algorithms, J. F. Traub, Academic Press, 1973.

[10] P. E. Bj�rstad and O. B. Widlund. Iterative methods for the solution of elliptic problems on
regions partitioned into substructures. SIAM J. Numer. Anal., 23:1097-1120, 1986.

[11] G. E. Blelloch. Vector Models for Data-Parallel Computing. MIT-Press, Cambridge MA,
1990.

[12] J. A. Board, Z. S. Hakura, W. D. Elliott, and W. T. Ranklin. Saclable variants of multipole-
based algorithms for molecular dynamic applications. In Parallel Processing for Scienti�c
Computing, pages 295{300. SIAM, 1995.

[13] R. Bryant, Bit-level analysis of an SRT circuit, preprint, CMU (See
http://www.cs.cmu.edu:8001/afs/cs.cmu.edu/user/bryant/www/home.html)

[14] V. Carpenter, compiler, http://vinny.csd.my.edu/pentium.html.

213

214 Math 18.337, Spring 1996

[15] T. F. Chan and D. C. Resasco. A framework for the analysis and construction of domain
decomposition preconditioners. UCLA-CAM-87-09, 1987.

[16] L. P. Chew. Guaranteed-quality triangular meshes. TR-89-983, Cornell, 1989.

[17] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North{Holland, 1978.

[18] K. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant, and S.-H. Teng. Approximating center
points with and without linear programming. In Proceedings of 9th ACM Symposium on
Computational Geometry, pages 91{98, 1993.

[19] T. Coe, Inside the Pentium FDIV bug, Dr. Dobb's Journal 20 (April, 1995), pp 129{135.

[20] T. Coe, T. Mathisen, C. Moler, and V. Pratt, Computational aspects of the Pentium a�air,
IEEE Computational Science and Engineering 2 (Spring 1995), pp 18{31.

[21] T. Coe and P. T. P. Tang, It takes six ones to reach a
aw, preprint.

[22] J. Conroy, S. Kratzer, and R. Lucas, Data parallel sparse LU factorization, in Parallel
Processing for Scienti�c Computing, SIAM, Philadelphia, 1994.

[23] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1992.

[24] L. Danzer, J. Fonlupt, and V. Klee. Helly's theorem and its relatives. Proceedings of Symposia
in Pure Mathematics, American Mathematical Society, 7:101{180, 1963.

[25] J. Dongarra, R van de Geijn, and D. Walker, A look at scalable dense linear algebra libraries,
in Scalable High Performance Computer Conference, Williamsburg, VA, 1992.

[26] I. S. Du�, R. G. Grimes, and J. G. Lewis, Sparse matrix test problems, ACM TOMS, 15
(1989), pp. 1-14.

[27] A. L. Dulmage and N. S. Mendelsohn. Coverings of bipartite graphs. Canadian J. Math. 10,
pp 517-534, 1958.

[28] I. S. Du�. Parallel implementation of multifrontal schemes. Parallel Computing, 3, 193{204,
1986.

[29] H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs
on Theoretical CS. Springer-Verlag, 1987.

[30] D. Eppstein, G. L. Miller, and S.-H. Teng. A deterministic linear time algorithm for geometric
separators and its applications. In Proceedings of 9th ACM Symposium on Computational
Geometry, pages 99{108, 1993.

[31] C. Farhat and M. Lesoinne. Automatic partitioning of unstructured meshes for the parallel
solution of problems in computational mechanics. Int. J. Num. Meth. Eng. 36:745-764 (1993).

[32] J. Fixx, Games for the Superintelligent.

[33] I. Fried. Condition of �nite element matrices generated from nonuniform meshes. AIAA J.
10, pp 219{221, 1972.

Bibliography 215

[34] M. Garey and M. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness , Prentice-Hall, Englewood Cli�s, NJ, 1982.

[35] J. A. George. Nested dissection of a regular �nite element mesh. SIAM J. Numerical Analysis,
10: 345{363, 1973.

[36] J. A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive De�nite Systems.
Prentice-Hall, 1981.

[37] A. George, J. W. H. Liu, and E. Ng, Communication results for parallel sparse Cholesky
factorization on a hypercube, Parallel Comput. 10 (1989), pp. 287{298.

[38] A. George, M. T. Heath, J. Liu, E. Ng. Sparse Cholesky factorization on a local-memory
multiprocessor. SIAM J. on Scienti�c and Statistical Computing, 9, 327{340, 1988

[39] J. R. Gilbert, G. L. Miller, and S.-H. Teng. Geometric mesh partitioning: Implementation
and experiments. In SIAM J. Sci. Comp., to appear 1995.

[40] G. H. Golub and C. F. Van Loan. Matrix Computations, 2nd Edition. Johns Hopkins
University Press, 1989.

[41] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comp. Phys. 73
(1987) pp325-348.

[42] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay
and Voronoi diagrams. Algorithmica, 7:381{413, 1992.

[43] R. W. Hackney and J. W. Eastwood. Computer Simulation Using Particles. McGraw Hill,
1981.

[44] G. Hardy, J. E. Littlewood and G. P�olya. Inequalities. Second edition, Cambridge University
Press, 1952.

[45] D. Haussler and E. Welzl. �-net and simplex range queries. Discrete and Computational
Geometry, 2: 127{151, 1987.

[46] N.J. Higham, The Accuracy of Floating Point Summation SIAM J. Scient. Comput. ,
14:783{799, 1993.

[47] Y. Hu and S. L. Johnsson. A data parallel implementation of hierarchical N-body methods.
Technical Report TR-26-94, Harvard University, 1994.

[48] M. T. Jones and P. E. Plassman. Parallel algorithms for the adaptive re�nement and par-
titioning of unstructured meshes. Proc. Scalable High-Performance Computing Conf. (1994)
478{485.

[49] W. Kahan, A Test for SRT Division, preprint.

[50] F. T. Leighton. Complexity Issues in VLSI. Foundations of Computing. MIT Press, Cam-
bridge, MA, 1983.

[51] F. T. Leighton and S. Rao. An approximate max-
ow min-cut theorem for uniform multi-
commodity
ow problems with applications to approximation algorithms. In 29th Annual
Symposium on Foundations of Computer Science, pp 422-431, 1988.

216 Math 18.337, Spring 1996

[52] C. E. Leiserson. Area E�cient VLSI Computation. Foundations of Computing. MIT Press,
Cambridge, MA, 1983.

[53] C. E. Leiserson and J. G. Lewis. Orderings for parallel sparse symmetric factorization. in 3rd
SIAM Conference on Parallel Processing for Scienti�c Computing, 1987.

[54] G. Y. Li and T. F. Coleman, A parallel triangular solver for a distributed memory multiproces
SOR, SIAM J. Scient. Stat. Comput. 9 (1988), pp. 485{502.

[55] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM J. on
Numerical Analysis, 16:346{358, 1979.

[56] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J. of Appl.
Math., 36:177{189, April 1979.

[57] J. W. H. Liu. The solution of mesh equations on a parallel computer. in 2nd Langley
Conference on Scienti�c Computing, 1974.

[58] P.-F. Liu. The parallel implementation of N-body algorithms. PhD thesis, Yale University,
1994.

[59] R. Lohner, J. Camberos, and M. Merriam. Parallel unstructured grid generation. Computer
Methods in Applied Mechanics and Engineering 95 (1992) 343{357.

[60] J. Makino and M. Taiji, T. Ebisuzaki, and D. Sugimoto. Grape-4: a special-purpose computer
for gravitational N-body problems. In Parallel Processing for Scienti�c Computing, pages
355{360. SIAM, 1995.

[61] J. Matou�sek. Approximations and optimal geometric divide-and-conquer. In 23rd ACM
Symp. Theory of Computing, pages 512{522. ACM, 1991.

[62] G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs. Journal
of Computer and System Sciences, 32(3):265{279, June 1986.

[63] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Automatic mesh partitioning.
In A. George, J. Gilbert, and J. Liu, editors, Sparse Matrix Computations: Graph Theory
Issues and Algorithms, IMA Volumes in Mathematics and its Applications. Springer-Verlag,
pp57{84, 1993.

[64] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Finite element meshes and geometric
separators. SIAM J. Scienti�c Computing, to appear, 1995.

[65] G. L. Miller, D. Talmor, S.-H. Teng, and N. Walkington. A Delaunay Based Numerical
Method for Three Dimensions: generation, formulation, partition. In the proceedings of the
twenty-sixth annual ACM symposium on the theory of computing, to appear, 1995.

[66] S. A. Mitchell and S. A. Vavasis. Quality mesh generation in three dimensions. Proc. 8th
ACM Symp. Comput. Geom. (1992) 212{221.

[67] K. Nabors and J. White. A multipole accelerated 3-D capacitance extraction program. IEEE
Trans. Comp. Des. 10 (1991) v11.

[68] D. P. O'Leary and G. W. Stewart, Data-
ow algorithms for parallel matrix computations,
CACM, 28 (1985), pp. 840{853.

Bibliography 217

[69] L.S. Ostrouchov, M.T. Heath, and C.H. Romine, Modeling speedup in parallel sparse matrix
factorization, Tech Report ORNL/TM-11786, Mathematical Sciences Section, Oak Ridge
National Lab., December, 1990.

[70] V. Pan and J. Reif. E�cient parallel solution of linear systems. In Proceedings of the 17th
Annual ACM Symposium on Theory of Computing, pages 143{152, Providence, RI, May 1985.
ACM.

[71] A. Pothen, H. D. Simon, K.-P. Liou. Partitioning sparse matrices with eigenvectors of graphs.
SIAM J. Matrix Anal. Appl. 11 (3), pp 430{452, July, 1990.

[72] Vaughan Pratt, personal communication, June, 1995.

[73] V. Pratt, Anatomy of the Pentium Bug, TAPSOFT'95, LNCS 915, Springer-Verlag, Aarhus,
Denmark, (1995), 97{107. ftp://boole.stanford.edu/pub/FDIV/anapent.ps.gz.

[74] F. P. Preparata and M. I. Shamos. Computational Geometry An Introduction. Texts and
Monographs in Computer Science. Springer-Verlag, 1985.

[75] A. A. G. Requicha. Representations of rigid solids: theory, methods, and systems. In ACM
Computing Survey, 12, 437{464, 1980.

[76] E. Rothberg and A. Gupta, The performance impact of data reuse in parallel dense Cholesky
factorization, Stanford Comp. Sci. Dept. Report STAN-CS-92-1401.

[77] E. Rothberg and A. Gupta, An e�cient block-oriented approach to parallel sparse Cholesky
factorization, Supercomputing '93, pp. 503-512, November, 1993.

[78] E. Rothberg and R. Schreiber, Improved load distribution in parallel sparse Cholesky factor-
ization, Supercomputing '94, November, 1994.

[79] J. Ruppert. A new and simple algorithm for quality 2-dimensional mesh generation. Proc.
4th ACM-SIAM Symp. Discrete Algorithms (1993) 83{92.

[80] Y. Saad and M.H. Schultz, Data communication in parallel architectures, Parallel Comput.
11 (1989), pp. 131{150.

[81] J. K. Salmon. Parallel Hierarchical N-body Methods. PhD thesis, California Institute of
Technology, 1990. CRPR-90-14.

[82] J. K. Salmon, M. S. Warren, and G. S. Winckelmans. Fast parallel tree codes fro gravitational
and
uid dynamical N-body problems. Int. J. Supercomputer Applications, 8(2):129{142,
1994.

[83] H. Samet. The quadtree and related hierarchical data structures. ACM Computing Surveys,
pages 188{260, 1984.

[84] K. E. Schmidt and M. A. Lee. Implementing the fast multipole method in three dimensions.
J. Stat. Phy., page 63, 1991.

[85] H.P. Sharangpani and M.L. Barton, Statistical analysis of
oating point
aw in the Pentium
TM Processor (1994). http://www.intel.com/product/pentium/white11.ps

218 Math 18.337, Spring 1996

[86] H. D. Simon. Partitioning of unstructured problems for parallel processing. Computing
Systems in Engineering 2:(2/3), pp135-148.

[87] H. D. Simon and S.-H. Teng. How good is recursive bisection? SIAM J. Scienti�c Computing,
to appear, 1995.

[88] J. P. Singh, C. Holt, T. Ttsuka, A. Gupta, and J. L. Hennessey. Load balancing and data
locality in hierarchical N-body methods. Technical Report CSL-TR-92-505, Stanford, 1992.

[89] G. Strang and G. J. Fix. An Analysis of the Finite Element Method. Prentice-Hall, Englewood
Cli�s, New Jersey, 1973.

[90] S.-H. Teng. Points, Spheres, and Separators: a uni�ed geometric approach to graph parti-
tioning. PhD thesis, Carnegie-Mellon University, School of Computer Science, 1991. CMU-
CS-91-184.

[91] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. Theory Probab. Appl., 16: 264-280, 1971.

[92] R. D. Williams. Performance of dynamic load balancing algorithms for unstructured mesh
calculations. Concurrency, 3 (1991) 457

[93] F. Zhao. An O(n) algorithm for three-dimensional n-body simulation. Technical Report TR
AI Memo 995, MIT, AI Lab., October 1987.

[94] F. Zhao and S. L. Johnsson. The parallel multipole method on the Connection Machines.
SIAM J. Stat. Sci. Comp., 12:1420{1437, 1991.

