
Computer Science and Artificial Intelligence Laboratory

File Synchronization with Vector Time Pairs
Russ Cox, William Josephson

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

February 28, 2005MIT-CSAIL-TR-2005-014
MIT-LCS-TM-650

File Synchronization with Vector Time Pairs

Russ Cox, MIT CSAIL
William Josephson, Princeton CS
rsc@mit.edu, wkj@cs.princeton.edu

Abstract
Vector time pairs are a new method for tracking syn-
chronization metadata. A vector time pair consists of two
vector times: one tracking file modification history and one
tracking file synchronization history. Because the vector
times are maintained separately and used for different
purposes, different algorithms and optimizations can be
applied to each. As a result, vector time pairs impose no
restriction on synchronization patterns, never falsely detect
conflicts, require no space to store deletion notices, require
network bandwidth proportional only to the number of files
changed, and support partial synchronizations. No other
current synchronization method has all these properties.
Results from an implementation of vector time pairs in
a new user-level file synchronizer called Tra confirm the
benefits of vector time pairs.

KEYWORDS: vector time pairs, file synchronization, version
vectors, logical clocks, distributed systems

1 Introduction
Anyone who uses more than one computer is aware of the
data management problem posed by doing so: having multi-
ple copies of files requires synchronization of files to bring
all copies up to date after some copies have changed.

The simplest and perhaps most widespread method is
manual synchronization, in which users remember which
files they have changed on which computers and manually
copy those files to the other computers. Since users must
manually keep track of which files are up-to-date and which
are out-of-date, this method is highly error-prone.

Most people augment manual synchronization, shifting
some of the bookkeeping burden onto computers. For exam-
ple, to avoid writing old files over new ones, the user could
refer to the modification times on the files, or use a program
such as Rsync [19] with appropriate options to automate this
process.

This approach still depends on users to be careful. The
user must remember to synchronize the computers whenever
he switches from one to another. If he does not, he might end
up with different “new” versions of the same file on different
computers. For example, he makes one change to one com-

puter’s copy of a file and then, without any synchronizations,
makes a different change to the other computer’s copy. Now
neither copy is really newer than the other; using modifica-
tion times to declare one copy “newer” will lose one change
or the other.

A better method is to use a file synchronizer, such as Uni-
son [1] or Rumor [6]. File synchronizers track changes to
files and propagate those changes from computer to com-
puter. Unlike file copy programs such as tar or Rsync, file
synchronizers also keep track of enough information about
a file’s history in order to determine whether it is safe to re-
place one version of a file with another. When it is not safe
to replace either version with the other, as in the example
above, a file synchronizer reports a conflict, to be resolved
by some external method, usually by asking the user.

An ideal file synchronizer would meet all of the following
goals:

1. Impose no restrictions or requirements on the synchro-
nization patterns between computers. (For example, if
there are three computers A, B, and C, any pair should
be allowed to synchronize at any time, and one com-
puter should not be necessary for the other two to syn-
chronize.)

2. Detect all conflicts without any false positives. (False
positives increase the amount of manual work required
from the user and reduce the user’s confidence in the
synchronizer’s judgments.)

3. Propagate file deletions without wasting space remem-
bering files that once existed.

4. Identify the set of files differing between two comput-
ers using network bandwidth proportional to the size of
the set.

5. Support partial synchronizations restricted to subtrees
of the file system. (A user might, for example, want
to synchronize his home directory frequently but only
synchronize system software occasionally.)

As discussed in section 5, current file synchronization
methods do not meet all of the goals. This paper introduces

1

a new file synchronization method, called vector time pairs,
which does meet all of the goals.

Section 2 defines the problem of synchronization and ex-
plains the above goals in detail. Section 3 presents vector
time pairs, their algorithms, and their time and space require-
ments. Section 4 evaluates an implementation of vector time
pairs in a user-level file synchronizer called Tra, empirically
demonstrating the theoretical claims. We end with a discus-
sion of related work and conclusion (sections 5 and 6).

2 Problem Statement: Synchronization
Before discussing synchronization algorithms, we must
define what a correct synchronization must accomplish.
A strictly formal definition of correctness is an ongo-
ing research topic (see, for example, Balasubramanian and
Pierce [1], Ramsey and Csirmaz [16], and Pierce and Voil-
loun [15]), so we will make do with a less formal but still
precise definition. We believe our characterization is reason-
able because it is similar to the characterization given by
Parker et al. in the original paper on version vectors [9] and
because, when restricted to a pair of replicas, it is equivalent
to the definition of synchronization used by Unison [1].

We consider a network of replicas storing a common file
tree. Changes are propagated through the network by pair-
wise unidirectional synchronizations between replicas. In a
unidirectional synchronization, changes from one replica are
propagated to a second, but changes on the second do not
propagate back to the first. Bidirectional synchronization is
easily built from two unidirectional synchronizations.

We will call a unidirectional synchronization that propa-
gates changes from A to B, leaving A unchanged, a “sync
from A to B.”

This section presents the task of synchronization from two
points of view. We first consider the synchronization of a
single file and then consider the synchronization of an entire
file hierarchy.

2.1 Synchronizing Files
To decide how to synchronize individual files, file synchro-
nizers follow the “no lost updates” rule. We present the rule
and then consider a sequence of examples to build intuition
for how the rule guides synchronization.

2.1.1 No Lost Updates

Correct synchronization provides a “no lost updates” guar-
antee. Specifically, suppose each file is represented by a his-
tory of modifications made over the course of its lifetime,
beginning with its initial creation. If two replicas have dif-
ferent copies of a file (call the copies X and Y), it is safe to
replace X with Y only if X’s history is a prefix of Y’s.

If X’s history is a prefix of Y’s history, then all of the up-
dates present in X are also present in Y: replacing X with
Y will not lose updates. In this case we will say that Y is
derived from X.

If neither history is a prefix of the other, then replacing
either copy with the other will lose updates. In this situation,
the synchronizer reports a conflict, to be resolved by external

FA and FB denote the version of the file on A and B.
HA and HB denote their histories.

sync(A→ B, file) ≡
if HA = HB

// The histories are identical,
// so the files must be identical.
do nothing

else if HA is a prefix of HB

// FB is derived from FA.
// (A bidirectional sync would copy FB to A.)
do nothing

else if HB is a prefix of HA

// FA is derived from FB.
copy FA to B

else
// Neither history is a prefix of the other.
// Neither file is derived from the other.
report a conflict

Figure 1: An algorithmic specification of single-file synchroniza-
tion in terms of file histories.

means.
During a sync, the “no lost updates” rule completely de-

termines the outcome. Figure 1 shows the resulting algo-
rithm.

2.1.2 Synchronizing Modifications

Figure 2 shows a set of examples illustrating the “no lost up-
dates” rule. Each picture plots the state of one file on multi-
ple replicas over time. Different shapes denote different ver-
sions of the file. We consider two versions different if they
have different modification histories. Two files with identical
versions have identical histories and therefore identical con-
tents, but two files with identical contents do not necessarily
have identical versions.

A wavy arrow between the two replicas’ timelines denotes
a unidirectional synchronization that might change the state
of the file on the destination replica. We call a sync whose
arrowhead points at time t a “sync at time t.” It uses the file
versions on the source and destination replicas at time t −
1 as inputs, deciding the version that will be stored on the
destination replica at time t.

The text below uses modification histories (written like
〈 , 〉) as shorthand for “the file version with modification
history 〈 , 〉.”

The three scenarios begin the same way. At time 1, A cre-
ates a new file. At time 2, a sync from A to B copies the new
file to B, so that the file now exists on B. (We have not yet
explained why the synchronizer chose to copy the file from
A to B. We will examine file creation shortly.)

At time 3, one or both replicas change the file. At time 4,
a sync from B to A has varying results.

(a) A changes its copy of the file at time 3. The sync at time
4 chooses A’s 〈 , 〉 over B’s 〈 〉, so it does nothing

2

1 2 3 4

A

B

1 2 3 4

A

B

1 2 3 4

A ?

B

All three cases begin the same way. At time 1, A creates .
At time 2, the sync from A to B copies to B.

At time 3, A modifies , pro-
ducing . At time 4, the sync
from B to A does nothing,
since is derived from .

At time 3, B modifies , pro-
ducing . At time 4, the sync
from B to A copies to A,
since is derived from .

At time 3, both A and B
change the file. At time 4, the
sync reports a conflict, since
neither nor is derived
from the other.

(a) (b) (c)

Figure 2: The possible outcomes of a sync involving two different versions of a file: do nothing, copy the
file, or report a conflict.

to A. (A sync in the opposite direction would copy to
B.)

(b) B changes its copy of the file at time 3. The sync at time
4 chooses B’s 〈 , 〉 over A’s 〈 〉, so it copies to A.

(c) Both A and B change their copies of the file at time 3.
The sync at time 4 cannot choose between 〈 , 〉 and
〈 , 〉, since neither history is a prefix of the other.
Instead, it reports a conflict, to be resolved by external
means, either automatic or manual.

These three examples illustrate a synchronizer’s choice
when presented with different versions of a file: do nothing,
copy the file, or report a conflict.

It is important to note that although we have shown a
global clock marking time on all replicas, the replicas need
not share a common clock. Synchronization decisions de-
pend only on the past modification history, not on the ex-
act times of synchronization. Two changes are considered
independent if neither appears in the modification history
of the other. When a synchronization discovers independent
changes, it reports a conflict between the two.

2.1.3 Recording Conflict Resolutions

Once conflicts have been detected and resolved, a file syn-
chronizer should record the resolutions so that if the same
situation reoccurs (because the files involved have also prop-
agated to other replicas), the user needn’t be bothered again.

Figure 3 illustrates such a situation. The conflict identified
between and at time 4 in (a) might be resolved (manu-
ally or by an automated resolver) in favor of (as in (b)), in
favor of (as in (c)) or by creating a composite version
(as in (d)). No matter what the decision, the syncs at times 5
and 6 should be no-ops: there’s nothing new from A or from
C. If the conflict at time 4 is resolved in favor of , then ac-
cording to the no lost updates rule, the sync at time 7 should
choose over . On the other hand, if the conflict at time
4 is resolved in favor of or , the sync at time 7 should

report a conflict: the history of is incompatible with both
the history of and the history of .

We will see later that existing synchronization techniques
have no way to recording conflict resolutions, while vector
time pairs do.

2.1.4 Synchronizing Creations and Deletions

A file synchronizer must also be able to synchronize both
newly created and deleted files. Figure 4 shows a third set of
examples, illustrating possible outcomes when the file exists
on only one of the two replicas. Gray shapes denote deleted
files.

The scenarios begin as in Figure 2. At time 1, A creates a
new file. At time 2, a sync from A to B copies the new file
to B, so that the file now exists on B. At time 3, one of the
replicas deletes the file, and the other may change it. At time
4, a sync from B to A has varying results.

(a) A deletes its copy while B does nothing. The second
sync chooses A’s 〈 , 〉 over B’s 〈 〉, so it does noth-
ing to A. (A sync in the opposite direction would delete

from B.)

(b) B deletes its copy while A does nothing. The second
sync chooses B’s 〈 , 〉 over A’s 〈 〉, so it deletes
from A.

(c) A deletes the file while B changes the file. The sync
cannot choose between 〈 , 〉 and 〈 , 〉, since nei-
ther history is a prefix of the other. Instead, it reports a
conflict.

(d) A deletes the file while B changes the file. The sync
cannot choose between 〈 , 〉 and 〈 , 〉, since nei-
ther history is a prefix of the other. Instead, it reports a
conflict.

When a file exists on one replica but not on another, the
sync has one more choice: it can create the file on the replica

3

1 2 3 4 5 6 7

A

B ?

C

1 2 3 4 5 6 7

A

B

C

(a) (b)

1 2 3 4 5 6 7

A

B ?

C

1 2 3 4 5 6 7

A

B ?

C

(c) (d)

Figure 3: Conflict resolutions should “stick” in a synchronizer.

After the sync in (a) at time 4, the sync at time 5 (involving) should be a no-op — it should not make any
changes and it should not report any conflicts. The sync at time 6 (involving) is sending ancient data, so it too
should be a no-op. Whether there is a conflict in the sync at time 7 (involving) depends on how the conflict
at time 4 was resolved. The three possibilities are shown in (b), (c), and (d).

that doesn’t have it. The sync from A to B at time 2 makes
this choice in all the examples: the sync chooses A’s 〈 〉
over B’s 〈〉, creating on B.

Note the parallels between Figure 2 and Figure 4. In these
examples, deletion is treated as just another simple change
in the file’s modification history. However, always treating
deletions like changes can result in unnecessary conflicts, as
depicted in Figure 5. The outcome of the deletion scenario
(a) is the same as the outcome of the modification analogue
(b), but in cases such as (c) and (e), it makes sense to treat
deletions as different from changes.

The intuition behind Figure 5 is that a deleted file should
not conflict with an independently created file. Even though
the two operations happened independently, an order can be
imposed that does not lose updates. The life of the deleted
file version is treated as happening before the other version
was created.

According to this observation, the outcome of (c) is to
choose the new file, while the outcome of the modification
analogue (d) is a conflict. Similarly, the outcome of (e) is a
deletion notice representing both deleted files, while if we
treated the deletions in (e) as simple changes, we would re-
port a conflict as in (f). Reporting a conflict between two
deleted files is unnecessary — no matter what, the result is
going to be a deleted file.

When a file is deleted, we’ve assumed that the metadata
remains available for use in future synchronizations. In a
system where many files are short-lived, the cost of stor-
ing metadata for deleted files might be significant. We will
examine the storage costs in detail later; using vector time
pairs, it is possible to avoid storing any per-deleted-file meta-
data but still be able to make correct synchronization deci-

sions.

2.2 Synchronizing File Trees

Although synchronizing a single file is certainly subtle, it
is not the whole picture. File synchronizers operate on file
trees, not just individual files. We want synchronization to
require time and effort not worse than manual copying of
files. This has two important implications. First, the amount
of network bandwidth consumed should be proportional to
the amount of changed data, not the entire file tree. Second,
the synchronizer should support synchronizations of sub-
trees and individual files.

2.2.1 Network Bandwidth

One approach to synchronizing a file tree is to run the per-
file synchronization described above for every directory and
file in the tree. To do this, metadata must be exchanged for
each file in the tree, a waste of bandwidth for the files that
have not changed.

In manual synchronization, users select the files to copy,
spending network bandwidth only on the files that have
changed. An ideal file synchronizer would match this band-
width goal.

We will see later that syncs using vector time pairs need
only exchange metadata for directories and files that have
changed, achieving the goal.

2.2.2 Partial Synchronizations

A user may wish to sync subtrees or single files. For exam-
ple, maybe the user is not currently interested in certain sub-
trees. Or maybe the user only wants to copy a single changed
file. An ideal file synchronizer would support such cases. In

4

1 2 3 4

A

B

1 2 3 4

A

B

1 2 3 4

A ?

B

1 2 3 4

A ?

B

All four cases begin the same way. At time 1, A creates .
At time 2, the sync from A to B copies to B.

At time 3, A deletes , pro-
ducing . At time 4, the sync
from B to A does nothing,
since A’s is derived from
B’s .

At time 3, B deletes , pro-
ducing . At time 4, the sync
from B to A deletes from
A, since B’s is derived from
A’s .

At time 3, A deletes while
B modifies it. At time 4, the
sync reports a conflict, since
neither version is derived from
the other.

At time 3, A modifies the file,
while B deletes it. At time
4, the sync reports a conflict,
since neither version is de-
rived from the other.

(a) (b) (c) (d)

Figure 4: Three possible outcomes of a sync in which the file exists only on one computer: do nothing,
delete the file, or report a conflict. Note the similarity to Figure 2. As far as synchronization is concerned,
deletion is just another kind of change. The fourth possible outcome, create the file, is illustrated by the
sync at time 2 in all the examples.

the case of an explicit list of files, it could be used in the
same way that rcp or scp is used today.

This goal interacts in unexpected ways with the goal of us-
ing a minimal amount of network bandwidth. Some current
synchronizers use heuristics to reduce the network band-
width costs, but the heuristics fail to accommodate partial
synchronizations.

2.3 Goals Revisited
This section has expanded on the goals for an ideal file syn-
chronizer set forth in the introduction.

1. Impose no restrictions or requirements on the synchro-
nization patterns between computers.
We have implicitly assumed that the communication
pattern between replicas is unrestricted. As discussed
in section 5, some systems must restrict the communi-
cation pattern in order to achieve the next goal.

2. Detect all conflicts without any false positives.
Detecting conflicts is useful only if there are few false
positives. False positives decrease the user’s confidence
in the reported conflicts, making him more likely to ig-
nore a real conflict and lose data. An ideal synchronizer
must record conflict resolutions in order to avoid false
positives.

3. Propagate file deletions without wasting space remem-
bering files that once existed.
A synchronizer must be able to decide whether a file
version on one replica has been deleted from or never
existed on another replica. For some usage patterns,
keeping information about every file that has ever ex-
isted on a replica is impractical. An ideal synchronizer
must be able to make these decisions but also limit the
metadata storage devoted to deleted files.

4. Identify the set of files differing between two computers
using network bandwidth proportional to the size of the
set.
A naive synchronizer could run a synchronization for
every file on the two computers, but this would require
bandwidth proportional to the size of the entire file sys-
tem. An ideal synchronizer would quickly determine
the set of files that differ between the two computers,
using network bandwidth proportional to the size of
that set rather than the entire file system.

5. Support partial synchronizations restricted to subtrees
of the file system.
A naive synchronizer can easily do this: it would run a
synchronization for every file in the specified subtree.
As synchronizers work to achieve the previous goal,
they sometimes lose the ability to support this one.

This is not an exhaustive list of good synchronizer fea-
tures, but it does cover the important basics. Other desirable
features might include the ability to support read-only repli-
cas or partial replicas.

3 Vector Time Pair Algorithm
Existing synchronizers cannot deliver all of the goals we
have laid out. We present a new synchronization method,
vector time pairs, which can. In this section we introduce
vector time pairs as a refinement of the current de facto syn-
chronization method, version vectors, and then examine the
synchronization algorithms using them.

3.1 Version Vectors
The main problem a file synchronizer must address is how
to keep enough information about file modification histories
in order to compare two histories and apply the “no lost up-
dates” decision rule.

5

1 2 3 4 5

A

B

1 2 3 4 5

A

B

1 2 3

A

B

(a) (c) (e)

1 2 3 4 5

A

B

1 2 3 4 5

A ?

B

1 2 3

A ?

B

(b) (d) (f)

Figure 5: Corner cases when it makes sense to treat deletion differently from changes. Usually deletions (as in (a)) can be treated as changes
(as in (b)). When the two file versions were created independently and one or both of them is deleted, the synchronization can be carried out
without reporting a conflict and without losing updates. Memory of the deleted versions lives on in the local replica’s per-file metadata. The
result is successful synchronization in cases (such as (c) or (e)) where treating deletion as changes would have reported conflicts (such as (d)
and (f)). The wisdom of the new rule is most clear in case (e). Treating deletions as changes would report a conflict as in (f), but there is little
sense to reporting a conflict between two deleted files: for most purposes, one deleted file is the same as another. Instead, the synchronization
remembers both versions in the replica’s metadata for that file.

1 2 3 4 5

A

B

1 2 3 4 5

A A1 A1 A1 B3 A5

B A1 B3 B3 B3

(a) (b)

Figure 6: Naming of file versions using the place and time they they were created. (a) shows the scenario
in the usual notation; (b) shows the naming. Since any version at time t on a given computer necessar-
ily includes knowledge of versions at previous times on that same computer, the modification history
〈A1, B3, A5〉 can be summarized by the version vector {A �→ 5, B �→ 3}.

FA and FB denote the version of the file on A and B.
mA and mB denote their version vectors (vector modification
times).

sync(A→ B, file) ≡
if mA ≤ mB

// FB is the same as or derived from FA.
do nothing

else if mB ≤ mA

// FA is derived from FB.
copy FA to B

else
// Neither file is derived from the other.
report a conflict

Figure 7: Single-file synchronization using version vectors.

Version vectors [9] are one solution to this problem. Sup-
pose we name a version by when and where it was created.
For example, in Figure 6(a), has version A5, and the mod-
ification history of is 〈A1, B3, A5〉. We can simplify the
history by noting that if An is present in the history, then
all distinct versions of the form Am for m < n must also be
present in the history. In this example, the presence of A5

in the history implies the presence of A1. (It would also im-
ply the presence of A2, A3, or A4 if a new version had been
created at one of those times.) We can then summarize the
history as a vector with one entry for each replica; the entry
contains the local time (local event counter) of the last mod-
ification made on that replica. Rather than define that (say)
A’s version is the first entry in the vector and B’s version is
the second, it is convenient to write version vectors as maps
from replicas to their entries. For example, 〈A1, B3, A5〉 is
summarized as {A �→5, B �→3}. To compare histories repre-
sented by version vectors u and v:

1. If the vectors are identical, so are the histories.

2. If all elements in u are less than or equal to the corre-

6

1 2 3 4 5

A

B

C

Figure 8: Graphical depiction of the vector modification time
(dark gray) and the vector synchronization time (dark and light
gray) of the file version on replica C at time 5. The modification
time (dark gray area) is the minimal vector time containing C5’s
modification history. The synchronization time (dark and light gray
area combined) is the set of times and places in the system such
that if a modification had occurred then and there, that modifica-
tion would be present in C5’s modification history. The modifica-
tion time is always contained in the synchronization time. Their
difference (the light gray area) is known to be modification-free:
the file was stored at those times on those replicas on its way toC5,
but it was passed along without modification.

FA and FB denote the version of the file on A and B.
mA and mB denote their vector modification times.
sA and sB denote their vector synchronization times.

sync(A→ B, file) ≡
if mA ≤ sB
// FB is the same as or derived from FA.
do nothing

else if mB ≤ sA
// FA is derived from FB.
copy FA to B

else
// Neither file is derived from the other.
report a conflict

Figure 9: Single-file synchronization using vector time pairs.

sponding elements in v, then the history represented by
u is a prefix of the history represented by v.

3. If all elements in v are less than or equal to the corre-
sponding elements in u, then the history represented by
v is a prefix of the history represented by u.

4. Otherwise, neither history is a prefix of the other.

Inserting the version vector comparisons into the prototype
sync algorithm (Figure 1) yields the algorithm in Figure 7.

A version vector is a vector time [3, 11, 12, 18] tracking
the file’s modification history, a vector modification time.

3.2 Vector Time Pairs
A vector time pair augments the vector modification time
with a vector synchronization time. Just as the vector modi-
fication time summarizes the modification events in the life
of a file, the vector synchronization time summarizes the
synchronization events in the life of a file. Informally, the

modification time tracks “which version we have,” while the
synchronization time tracks “how much we know” about
the file. For example, in the scenario depicted in Fig-
ure 8, the version stored on replica C at time 5 has mod-
ification time {A �→ 1, B �→ 4} and synchronization time
{A �→2, B �→4,C �→5}. From the two times, we can deduce
that there was no change to the file at B3, or anywhere else
in the light gray area in the figure.

Because we know that nothing happened to a file be-
tween its modification time and the synchronization time,
mA ≤ mB if and only if mA ≤ sB. (One direction follows
from the fact that mB ≤ sB. The other direction follows from
the fact that all modification events in sB are contained in
mB, as discussed in the previous section.) Because the two
comparisons are equivalent, we can replace mA ≤ mB in
the version vector algorithm with the mA ≤ sB, yielding
the algorithm shown in Figure 9. Intuitively, the compari-
son mA ≤ mB asks “does B’s version have all the changes
present in A’s version?”; the comparison mA ≤ sB asks “is
B aware of all the changes present in A’s version?” or more
simply “is B up-to-date with respect to A?”.

Comparing the synchronization time from one replica
against the modification time from a second checks whether
the first replica knows about the modification events present
on the second. This reasoning process — comparing what
one replica would know against what another replica has —
is the important operation enabled by keeping both vectors.
This operation is sufficient for determining synchronization
outcomes and is the reason that vector time pairs can achieve
the synchronization goals that version vectors alone cannot.

We will see later in this section that keeping the extra vec-
tor time enables storage optimizations that make the meta-
data storage cost for vector time pairs less than the cost for
version vectors.

3.3 Single File Synchronization
We presented the basic single file synchronization algorithm
for vector time pairs above. We must still consider how the
algorithm records conflict resolutions and handles deletions
and file creations.

3.3.1 Recording Conflict Resolutions

Figure 3 showed three cases in which the choice of conflict
resolution determines the result of future synchronizations.
Vector time pairs make it easy to get each of the results:

• To choose , use ’s modification time {A �→ 3}
({A �→3, B �→1}, compressed).

• To choose , use ’s modification time {B �→3}.
• To create a new version derived from both, set the

modification time to {B �→ 4} ({A �→ 1, B �→ 4}, com-
pressed).

In all three cases, set the sync time of the new version to be
the element-wise maximum of the sync times of the versions
involved in the sync: {A �→3, B �→4}. The syncs at time 5 and

7

FA denotes the version of the file on A.
The corresponding file FB does not exist on B.
mA denotes the vector modification time of FA.
cA denotes the (scalar) creation time of FA.
sA and sB denote the vector synchronization times of FA and FB.

sync(A→ B, file) ≡
if mA ≤ sB
// The deleted FB was derived from FA.
// (sync(B→ A, file) would delete FA.)
do nothing

else if cA � sB
// FB and FA were created independently.
// (sync(B→ A, file) would do nothing.)
copy FA to B

else
// FB and FA were derived from the same
// initial file, but they diverged.
report a conflict

Figure 10: Synchronization of deleted files using vector time
pairs. The synchronization does not report conflicts between inde-
pendently created files when at least one of them has already been
deleted.

time 6 will be no-ops because both and have modifica-
tion times ({A �→3} and {B �→1}) less than this sync time. The
sync at time 7 will proceed without conflict only if the sync
at time 4 chooses : ’s modification time ({A �→3}) is less
than or equal to the sync time of at A6 ({A �→6, B �→1}), but

’s and ’s modification times ({B �→3} and {A �→3, B �→4})
are not.

Setting the sync time this way records that replica B is
aware of the updates present in the conflicting versions, even
if the conflict resolution has explicitly chosen to discard
some of them (as in (a) and (b)). A single version vector
per file is not enough state to provide this property.

3.3.2 Synchronizing Deletions

Recall from section 2.1.4 that deletions are treated as simi-
lar but not identical to modifications. It is easy to change the
single-file sync algorithm to accommodate the differences.
We track each existing file’s creation time in addition to
its vector time pair. (The creation time is the first element
in the file’s modification history.) Figure 10 shows the de-
tails. Having the creation time cA lets the algorithm decide
whether B has ever had a file related to FA. If not, the two
are independent, and following the new rule, the situation is
treated like FA being derived from B’s deleted version.

As an added benefit, the only metadata about the deleted
file that the new algorithm uses is its synchronization time.
When the synchronizer notices that a file has been deleted
on the local replica, it creates a deletion notice with the file’s
current synchronization time, butwithout the file’s modifica-
tion or creation times (these are only used for existing files).

After discussing synchronization times for directories and

The sync is considering a single directory that exists on A and B.
mA and mB denote their vector modification times.
sA and sB denote their vector synchronization times.

sync(A→ B, dir) ≡
if mA ≤ sB
// B already has all the changes present in A’s tree.
do nothing

else
// Recurse into the tree.
for each child in dir

sync(A→ B, child)

Figure 11: Directory synchronization using vector time pairs.

optimizations for storing synchronization times below, we
will see that storing these deletion notices has no cost at all
— the deletion notice is effectively absorbed into the parent
directory’s metadata.

3.4 Synchronizing File Trees
We noted earlier that a synchronizer could handle file trees
by running the single-file algorithm for every file and direc-
tory in the tree. Vector time pairs enable important optimiza-
tions over this naive implementation.

3.4.1 Network Bandwidth

As discussed in section 2.2.1, we would like synchroniza-
tions to require network bandwidth proportional to the set of
changed files rather than the entire file system. We can do
this with vector time pairs by assigning a synchronization
and modification time to directories as well as files. The vec-
tor synchronization time of a directory is the element-wise
minimum of the synchronization times of its children. The
modification time of a directory is the element-wise max-
imum of the modification times of its children. Figure 11
shows the sync algorithm for directories. When a directory’s
modification time on A is less than or equal to its synchro-
nization time on B, all the changes present in the tree on
A must also be present in the tree on B, so the tree can be
skipped.

3.4.2 Partial Synchronizations

Vector time pairs can accommodate partial synchronizations
by simply running the synchronization algorithm on the
roots of the subtrees to be synchronized rather than on the
main file system root. Figure 12 demonstrates why this ap-
proach can coexist with the network bandwidth savings dis-
cussed above. A partially synchronized directory has a mod-
ification time that, for some elements, is greater than the syn-
chronization time. This reflects the fact that while there are
some modifications from particular times present in the sub-
tree, modifications made at the same time to other files in the
subtree may not be present.

3.5 Metadata Storage Costs
We now consider the storage cost associated with vector
time pairs. It is an important implementation detail, and the

8

file d/x file d/y directory d

view from B3

1 2 3 4

A

B

C

1 2 3 4

A

B

C

1 2 3 4

A

B

C

view from C3

1 2 3 4

A

B

C

1 2 3 4

A

B

C

1 2 3 4

A

B

C

Figure 12: The effect of partial synchronizations on the vector time pair for a directory. A creates two different files x and y in the directory
d at time A1. A partial sync copies x to replica B, and another partial sync copies y to replica C. The vector synchronization time for d is
defined as the elementwise minimum of the vector synchronization times of d’s children; in this case, {}. The vector modification time for d
is defined as the elementwise maximum of the vector modification times of d’s children; in this case, {A �→1}. The fact that the modification
time for d is not less than the synchronization time for d indicates that d is only partially synchronized. In contrast, version vectors cannot
express this situation, so they cannot be used to determine quickly which subtrees are up-to-date and need not be examined further.

optimizations here directly affect the storage required for
metadata about deleted files.

In a system with D directories and F files shared across
R replicas, the base cost of storing vector time pairs for a
single replica is O(R · (D+F)). Two optimizations effectively
eliminate the need to store vectors for the files in system,
bringing the cost down to O(RD+F), where D is the number
of directories in the tree. One optimization applies specifi-
cally to synchronization times; the other applies specifically
to modification times.

We assume that the underlying vector representation
omits zero entries, as we have done in this paper. That is,
we assume that it is cheaper to store {A �→ 3} (implicitly
{A �→3, B �→0}) than to store {A �→3, B �→1}.
3.5.1 Encoding Synchronization Times

The first optimization comes from the observation that, by
definition, vector synchronization times are monotonically
increasing along each path in the file system. For a given
file or directory, we need to store only the vector difference
between the file’s or directory’s vector synchronization time
and its parent directory’s vector synchronization time.

For most synchronization patterns, these differences will
be zero vectors. To see why, suppose that syncs always suc-
cessfully synchronize the entire file system. The synchro-
nization histories (and thus the synchronization times) for
all files and directories in the system will be identical. Now
suppose that the synchronization times have diverged, and
there are many different synchronization times on a particu-
lar replica. Once that replica has synchronized its entire file
system with each of the other replicas, directly or indirectly,
all files and directories on the replica will be equally up-to-
date and thus have identical synchronization times. Regular

partial synchronizations of entire subtrees will have the same
unifying effect on those subtrees, so even if full synchroniza-
tions are rare, partial synchronizations might focus on large
trees like /usr/local, /home/you, or C:\My Documents,
having a similar effect: there will only be a small number of
unique synchronization times on the replica, one for each
separately synchronized subtree. Thus the differences are
zero vectors, requiring almost no storage.

This same argument explains why deletion notices (de-
scribed earlier) require no storage. After the synchronizer
has scanned a directory containing a recently deleted file,
the directory and the deleted file will have the same syn-
chronization time. Since the synchronization time is the only
metadata associated with a deletion notice, the deletion no-
tice (including the deleted file’s name!) can be thrown away.
If information about an unknown file is ever needed, the
deletion notice can be reconstructed using the parent direc-
tory’s current synchronization time.

If there are S unique synchronization times throughout
the tree, the optimization reduces the total storage cost of the
synchronization times fromO(R ·(D+F)) toO(RS+(D+F)).
(The extra D+F is a constant amount of space to store the
zero for each file.)

3.5.2 Encoding Modification Times

The second optimization comes from the observation that
modification times can often be reduced to scalars without
changing the result of comparisons.

In the synchronization algorithms (see Figures 9 and 11),
vector modification times only appear in expressions of the
form m ≤ s. The last element in the file’s modification his-
tory sequence determines the result of the comparison. For
example, if the change A5 is made to a file version with his-

9

Time (s)
copy nop change1 change* remove

100 Mb/s
Tra 88.20 2.59 2.32 70.20 9.61
Rsync 34.73 2.45 2.34 41.98 0.81
Unison 67.86 2.05 2.67 140.60 9.61

1000 Mb/s
Tra 61.14 1.69 4.67 49.86 6.45
Rsync 28.65 1.81 1.97 38.50 0.94
Unison 41.47 1.82 1.52 108.92 8.88

Figure 13: Raw performance comparison between Tra, Rsync, and
Unison. Tra performs competitively with Rsync and Unison, except
for copy, where Tra does not pipeline enough RPCs.

tory 〈A1, B3〉, there will never be a replica that knows about
A5 but not about A1 and B3. That is, a synchronization his-
tory for any version of this file either will not include A5

or will include all of A1, B3, and A5. Therefore, using a
modification time of {A �→ 5} will have the same effect in
future synchronizations as using the true modification time
{A �→5, B �→3}.

This optimization does not apply to directories. Because a
directory’s modification time is the element-wise maximum
of the modification times of its children, we cannot identify
a “last change,” the presence of which implies the presence
of all the other changes. Put another way, the optimization
depends on the fact that changes in the history of a file are
necessarily sequenced while changes to a directory are not.

The optimization therefore reduces the total storage cost
of the modification times from O(R(D+F)) to O(RD+F).

3.5.3 Storage Summary

With these two simple optimizations, the storage cost of vec-
tor time pairs reduces from O(R(D+F)) to O(RD+RS+F),
where S is the number of different subtrees that have only
been partially synchronized. Since we expect S to be (much)
smaller than the total number of directories, this is just
O(RD+F). In contrast, version vectors requireO(R·F) space
unless global coordination algorithms are used.

In most situations, the number of files will be much larger
than the number of directories. We inspected some arbitrar-
ily chosen large file trees — a Linux kernel tree, a TeX dis-
tribution, our own home directories, and two Windows in-
stallations — and found that the ratio of files to directories
ranged between 10x and 30x.

4 Tra: Experience with Vector Time Pairs
We have implemented vector time pairs in a file synchro-
nizer called Tra. In this section we describe the implemen-
tation of Tra and then evaluate the implementation against
other file synchronizers and theoretical predictions from the
analysis in the previous sections.

4.1 Implementation
A complete description of Tra or any file synchronizer is
outside the scope of this paper [8]. There are many impor-

tant details that must be considered carefully in order to en-
sure consistency between the vector time pair database and
the local file system. There are also interesting user inter-
face questions, such as how to present and resolve conflicts,
how to specify partial synchronizations, and how to report
the synchronization status. In this section we describe only
enough about Tra to understand the performance results in
the next section.

Tra is implemented as three programs communicating via
RPC. The main program, tra, coordinates the sync. Using
ssh, it starts a trasrv slave programs on the two repli-
cas involved in the sync and then uses RPCs to inspect the
two replicas and run sync operations. In order to have many
RPCs in flight and thus use the network well, tra is struc-
tured as a large number of worker threads each directing the
synchronization of a single file or directory.

Each trasrv scans the local file system for changes at
startup, using system-dependentfile generation numbers and
modification times to decide when a file has changed. (For
systems on which this is unreliable, trasrv can be config-
ured to compare the cryptographic checksums of each file
with its last known checksum in order to detect changes.)

The vector time pairs for local files are stored in a cus-
tom hierarchical database. The database uses write-ahead
logging to ensure consistency even in the face of crashes.
The database access code compresses vector time pairs (as
described in section 3.5) and removes deletion notices (as
described in section 3.3.2) when storing them, but provides
uncompressed vector time pairs to and recreates deletion no-
tices for the rest of the system. Because these operations re-
quire only local knowledge, the main code and the protocol
are not complicated by the details of vector time pair com-
pression or deletion notice reclamation.

When copying files, Tra uses an algorithm similar to
Rsync’s to avoid needlessly transferring common file seg-
ments. Tra runs the algorithm over RPCs. Rsync is a bulk
copy program rather than a file synchronizer, so it can avoid
using RPCs, instead treating the network connection as two
unidirectional bulk data transfers [19].

4.2 Evaluation

We evaluate Tra in two ways. First, we compare its
raw speed against that of Rsync and Unison, as a san-
ity check that the implementation is reasonably efficient.
Because Rsync doesn’t suffer from RPC round-trip times
and also doesn’t have to maintain any metadata about the
files, Rsync’s performance represents an unachievable lower
bound for Tra and Unison.

Second, we run Tra on workloads designed to demon-
strate the asymptotic behaviors promised in section 3.1

1Ideally, we would like to run Rumor on the same workloads, but Ru-
mor has not been maintained for a number of years and is written in a
pre-standard dialect of C++. Even after we fixed the compilation errors
due to changes in the C++ language, Rumor failed to run except on trivial
test cases, presumably due to changes in the semantics of the various C++
libraries.

10

64 128 256 512 1024

tree size (MB)

500

1000

1500

2000

ti
m

e
(s

)

full tree changed
one directory changed

64 128

tree size (MB)

0

10000

20000

30000

40000

R
P

C
 c

ou
nt

full tree changed
one directory changed

Figure 14: Elapsed time and RPC counts for syncing an N-megabyte file tree in full and also for syncing the tree when only 256 files in one
directory have changed. The times for both cases are linear due to the time required to scan the file system for changes, but the RPC counts
for the single changed directory case grow with the depth of the directory, logN in this case.

4.2.1 Comparison: Rsync, Unison, and Tra

To check the efficiency of the implementation, we compare
Tra against Rsync and Unison for a few demonstrative work-
loads:

copy Copy a large newly created tree (Linux 2.6.5 kernel
source) from one replica to another. The tree comprises
932 directories and 15,193 text files, a total of 217
megabytes of data.

nop After executing copy, sync again. Since the two repli-
cas are identical, the sync is a no-op.

change1 After executing copy, change a single file on one
replica and then sync, causing the change to be propa-
gated.

change* After executing copy, append a newline to to ev-
ery file in the source tree and then sync, causing the
changes to be propagated.

remove After executing copy, remove the tree from one
replica and then sync, causing removal on the other
replica.

We run each workload on two different machine pairs, one
connected by 100Mb/s ethernet and one connected by 1Gb/s
ethernet. We report the elapsed time for each workload.

All three programs are configured to use ssh to com-
municate between replicas. We patched ssh to set the
TCP NODELAY option to disable Nagle’s algorithm (by
default, ssh does this only for sessions using pseudo-
terminals). Figure 13 shows the results.

In contrast to Tra and Unison, Rsync uses a natural
pipelining by avoiding the use of RPCs, resulting in higher
throughput when large data transfers are involved as in copy
and change*. Tra and Unison take longer to run remove be-
cause they must update all their database entries. Tra takes
longer to run the change1 test because walking down the
tree to a leaf node requires syncing all the siblings of the
path as well. The Linux tree is short and fat, not such a good
case for Tra.

4.2.2 Asymptotic behavior of Tra

To check that the asymptotic behaviors of the implementa-
tion match the behaviors promised in section 3, we run Tra
on a series of workloads designed to demonstrate these be-
haviors. We use the same machine and network setup as in
the previous section. Since we will be varying the size of the
file tree, we use an automatically-generated file set. Specif-
ically, when we want an N-megabyte file tree we use a bal-
anced binary tree of height �log2 N	 with N leaf directories,
each containing 256 four-kilobyte files with random binary
contents.

Time

Section 2.2.1 argued that syncs using vector time pairs only
need to use network bandwidth to discuss directories along
the path to changed files. To test this, we measure the elapsed
time and number of RPCs required to copy an N-megabyte
file tree from one replica to another, as well as the elapsed
time and number of RPCs required to synchronize the same
tree after changing all 256 files in one leaf directory. The
tests were run between two computers connected via 1Gb/s
ethernet.

Figure 14 shows the results. The time required to synchro-
nize the tree when all files need copying is linear in the size
of the tree, as is the RPC count.

The time required to synchronize the tree when only one
directory’s files need copying is still linear in the size of the
tree, because the tree must still be scanned in full by the local
trasrv to determine which files have changed since the last
scan. The RPC count grows with the depth of the changed
leaf directory, logN. The sync requires 6 RPCs to handle
each directory along the path to the changed leaf directory.
(The other approximately 3000 RPCs copy the megabyte of
data.) This matches the analysis in section 2.2.1 — the sync
does not recurse into unchanged subtrees.

The overall performance of a sync could be made sublin-
ear by concentrating on the local trasrv scan; for example,
file system support for quickly determining files and direc-
tories changed since a given local time would suffice. Even

11

2 4 8 16 32

of replicas

0

5

10

15

20

of
 d

is
ti

nc
t

sy
nc

 t
im

es
 in

 o
ne

 d
at

ab
as

e
after partial syncs
after full syncs

Figure 15: The number of distinct sync times in a file tree af-
ter partial synchronization of N randomly chosen leaf directories
among N different replicas. Each chosen leaf directory ends up
with its own sync time, and the unchosen part of the tree keeps
its initial sync time, for a maximum possible N + 1 distinct sync
times. The directories are chosen randomly with replacement, so
there may be fewer than N unique chosen directories, resulting in
a smaller sync time count.

2 4 8 16 32 64

of replicas

0

5000

10000

15000

of

 v
ec

to
r

el
em

en
ts

 in
 o

ne
 d

at
ab

as
e

Figure 16: The number of vector elements in a database after N
full synchronizations of a file tree with N leaf directories contain-
ing N files each. Each replica modifies every file in the tree be-
fore syncing with the next replica. For this case, vector time pairs
use O(RD + F) = O(N2) storage while version vectors would use
O(RD + RF) = O(N3) storage.

without file system support, when synchronizing over a slow
network, network communication would be the bottleneck,
so the linearity of the local file system scan would not be
noticed.

Space

Section 3.5 argued that the number of distinct sync times
in a file tree depended only on the synchronization pattern,
and that full synchronizations would bring the sync times
completely in line. To test this, we replicated a 32-megabyte
file tree to each of N replicas in turn (sync from replica 1

to 2, from 2 to 3, and so on). Then a second round synced
a randomly chosen leaf directory from 1 to 2, synced that
same leaf directory and another (possibly the same) ran-
domly chosen leaf directory from 2 to 3, synced those two
leaf directories and another from 3 to 4, and so on, ending
with N leaf directory syncs from N to 1. Finally, we ran a
third round of N full syncs from 1 to 2, 2 to 3, and so on,
ending with a full sync from N to 1.

Figure 15 shows the number of distinct sync times present
in the tree on replica 1 after the second round and after the
third round. The number of distinct sync times after the sec-
ond round cannot exceed N + 1, because there are N distinct
sync times induced by the partial syncs of the N chosen leaf
directories, plus one sync time for all the directories and files
not involved in any partial sync. Sometimes there are fewer
than N + 1 distinct sync times, because the same leaf direc-
tory was chosen at random multiple times. The number of
distinct sync times after the third round is always exactly
one; as predicted, the full syncs have restored uniformity to
the sync times.

Section 3.5 also argued that the storage cost of the meta-
data database was O(RD + F) rather than the O(RD + RF)
cost of version vectors. To test this, we created a set of file
trees as follows. Each tree has N leaf directories containing
N files each, a total of N2 files. We then replicated the tree to
each of N replicas, modifying every file in the tree on each
replica along the way. Since D = 2N − 1 (there are N − 1
internal directories in addition to the N leaf directories), but
F = N2, the predicted O(RD + F) storage cost should cause
a O(N2) database, but if there is an RF term in the storage
cost, it will cause the database size to grow as N3.

Figure 16 shows the total number of vector elements in
the metadata database on replica 1 after the N syncs. The
size is quadratic, not cubic, in N, confirming section 3.5.

The total number of vector elements is 4N2 + 2N − 1.
Each of the N2 files has 1-element modification time and 1-
element creation time. Each of the 2N−1 directories has an
N-element modification time and a 1-element creation time.
The sync time on the root is an N-element vector. The sync
times on the rest of the tree are identical to the sync time on
the root, so the stored differences require no vector elements.
The total is exactly the count observed in practice.

5 Related Work
Synchronization of replicated data is a well-studied prob-
lem. Vector time pairs are a refinement of our communica-
tion timestamps system [2]. We view vector time pairs as an-
other step in the development of version vectors. The main
alternative to version vectors is logging.

5.1 Version Vectors
A large number of distributed systems have used version
vectors. The main problems with version vectors are that
they cannot record conflict resolutions (causing occasional
false conflicts), they require distributed consensus algo-
rithms to reclaim space occupied by deletion notices, and
they require bandwidth proportional to the number of files

12

in the system to identify the set of changed files during
a synchronization. Real-world version vector systems have
worked around one or more of these shortcomings in various
ways. Vector time pairs provide an elegant way to solve all
these shortcomings.

The most common examples of version vector-based sys-
tems are the Ficus [4] and Coda [10] distributed file sys-
tems. A more recent example is the Pangaea wide-area file
system [17]. We discuss each system in more detail and de-
scribe how they could benefit from vector time pairs.

Ficus (and its user-level successor, Rumor) is careful
about trying to reduce network bandwidth for distant repli-
cas [7], using “last-update times” that record the last time
two replicas directly communicated with each other and
completed a sync of the entire file system. This reduces
the bandwidth costs during synchronization (achieving goal
4) but only for full synchronizations (effectively giving up
goal 5). The last-update times can be viewed as a primi-
tive version of vector synchronization times. In contrast to
last-update times, vector time pair algorithms record vec-
tor synchronization times for every directory and file in the
tree and propagate them via indirect communication as well
as direct communication. Ficus also introduced distributed
consensus algorithms to reclaim space occupied by deletion
notices and by the version vectors themselves [5]. These al-
gorithms are global operations, requiring knowledge of the
entire system. In contrast, vector time pair systems can re-
claim space occupied by deletion notices and significantly
compress the metadata for extant files using local operations
that only require knowledge of the local replica.

Coda also uses version vectors. To make them scale bet-
ter, it distinguishes between servers, which are connected to
each other via high-speed links, and clients, which may only
be intermittently connected. It uses version vectors to track
changes made by servers, but treats clients as second-class
citizens. Changes made by a client must be shepherded by
a server. This two-level split keeps the version vectors small
and avoids the need to track client membership in the sys-
tem. Using vector time pairs would remove the need for this
separation. Coda does not bother to implement Ficus’s dis-
tributed garbage collection algorithms. Instead, it assumes
that the central servers are connected well enough to coordi-
nate in a simultaneous conversation.

Pangaea is a wide-area file system with dynamic member-
ship. Because it uses version vectors, it must track this mem-
bership precisely. If a replica has not been seen for 30 days,
the replica is ejected by agreement among the remaining
replicas. Such a complicated protocol would not be neces-
sary if Pangaea used the vector time pair algorithms, which
are not sensitive to whether particular replicas are currently
active in the system.

5.2 Logging

Bayou [14] and Ivy [13] are distributed systems designed to
enable collaboration among many participants. The details
of data distribution are quite different, but the synchroniza-
tion structure is very similar. Replicas make changes in a

1 2 3 4 5 6

A

B

C ?

Figure 17: A synchronization pattern that Unison’s “change lists”
approach cannot handle.
In the sync from B to C at time 6, B’s version and C’s version have
both changed since the no-op sync from B toC at time 2, so Unison
will report a conflict. The versions are not actually in conflict —
is derived from .

private log, which is then shared with the rest of the sys-
tem. Each replica keeps a single version vector tracking how
much of each other replica’s log it has received. Because the
log structure imposes a linear ordering on events at a given
replica, the version vector is really being used as a synchro-
nization time, yielding many of the benefits and clarity of
vector time pairs. The log structure imposes a restriction
too: the synchronization must be totally ordered. It is not
possible for a replica to pick up another replica’s change 5
without changes 1 through 4. If these changes involve differ-
ent objects, selective application of the changes might well
be desirable. Using vector time pairs directly would allow
Bayou and Ivy to synchronize individual objects indepen-
dently. This is more of a benefit in Ivy, which implements a
distributed file system, than in Bayou, which is intended as
a more general framework and might not have a concept of
individual objects, depending on the application.

5.3 Unison
Unison is a file synchronizer similar to Rumor and Tra. Its
design and implementation is simplified by only handling
the case where a pair of computer synchronizes. When two
computer synchronize, each creates a list of files changed
since the last time they synchronized. Files on only one com-
puter’s list are copied to the other computer. If a file is on
both lists, Unison reports a conflict.

Sending “changed lists” allows Unison to use a minimal
amount of network bandwidth to identify the set of changed
files, while also easily supporting partial synchronizations.
Unison can also reclaim deletion notices easily — once a
deletion on one computer has propagated to the other com-
puter, all trace of the deleted file can be removed.

Unfortunately, Unison either imposes restrictions on syn-
chronization patterns or suffers from false conflicts. Using
Unison’s “synchronize a pair of computers” primitive, it is
possible to synchronize a network of computers, but only if
the synchronization pattern has no cycles. For example, if
we want to synchronize computers A, B, and C, we could
use Unison by deciding that A and B will synchronize, and
B and C will synchronize, but A and C will never synchro-
nize. If a cycle is ever completed, Unison will not be able
to distinguish changes made on one computer from changes

13

made on another, as shown in Figure 17.

6 Conclusion
We have presented vector time pairs, a new way to track
optimistically replicated data. Our main insight is that syn-
chronization history should be maintained separately from
modification history. This separation yields algorithms sig-
nificantly simpler than those used with traditional version
vectors, with significant improvements in functionality. We
hope that the use of vector time pairs will make the opti-
mistically replicated systems of the future easier to build, to
manage, and to use.

7 Acknowledgments
We thank Ken Birman, Frans Kaashoek, Max Krohn, Robert
Morris, Norman Ramsey, Margo Seltzer, and Michael Wal-
fish for useful feedback and helpful discussions during the
past four years. We thank Frans, Robert, and Margo a sec-
ond time for their encouragement. We are also grateful to a
large number of anonymous reviewers for feedback on drafts
of this paper.

Russ Cox is supported by a fellowship from the Fannie
and John Hertz Foundation.

William Josephson is supported by a National Science
Foundation Graduate Research Fellowship.

References
[1] S. Balasubramanian and Benjamin C. Pierce. What is a

file synchronizer? In Proceedings of the Fourth Annual
ACM/IEEE International Conference on Mobile Computing
and Networking (MobiCom ’98), October 1998.

[2] Russ Cox and William Josephson. Communication times-
tamps for file system synchronization. Technical Report TR-
01-01, Computer Science Group, Harvard University, 2001.

[3] C. Fidge. Logical time in distributed computing systems.
IEEE Computer, 24(8):28–33, August 1991.

[4] Richard Guy. Ficus: A Very Large Scale Reliable Distributed
File System. PhD thesis, University of California at Los An-
geles, 1991.

[5] Richard Guy, Gerald Popek, and Thomas W. Page Jr. Con-
sistency algorithms for optimistic replication. In Proceedings
of the First International Conference on Network Protocols.
IEEE, October 1993.

[6] Richard Guy, Peter Reiher, David Ratner, Michial Gunter,
Wilkie Ma, and Gerald Popek. Rumor: Mobile data access
through optimistic peer-to-peer replication. In Proceedings
of the 17th International Conference on Conceptual Model-
ing: Workshop on Mobile Data Access, Singapore, 1998.

[7] John S. Heidemann, Thomas W. Page Jr., Richard C. Guy, and
Gerald J. Popek. Primarily disconnected operation: Experi-
ences with Ficus. In Proceedings of the Second Workshop on
Management of Replicated Data, pages 2–5, November 1992.

[8] Trevor Jim, Benjamin C. Pierce, and Jérôme Vouillon. How to
build a file synchronizer. Manuscript; available from http:/
/www.cis.upenn.edu/˜bcpierce/papers, 2004.

[9] D. Stott Parker Jr., Gerald J. Popek, Gerard Rudisin, Allen
Soughton, Bruce J. Walker, Evelyn Walton, Johanna M.

Chow, David Edwards, Steven Kiser, and Charles Kline. De-
tection of mutual inconsistency in distributed systems. IEEE
Transactions on Software Engineering, 9(3):240–247, May
1983.

[10] James J. Kistler and M. Satyanarayanan. Disconnected oper-
ating in the coda file system. ACM Transactions on Comput-
ing Systems, 6(1):1–25, February 1992.

[11] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, 21(7):558–
565, July 1978.

[12] Friedemann Mattern. Virtual time and global states of dis-
tributed systems. In Proceedings of the International Work-
shop on Parallel and Distributed Algorithms, pages 215–226.
Elsevier Science Publishes B. V., 1989.

[13] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and
Benjie Chen. Ivy: A read/write peer-to-peer file system. In
Proceedings of the Fifth Symposium on Operating Systems
Design and Implementation (OSDI), Boston, MA, December
2002.

[14] Karin Peterson, Mike J. Spreitzer, Douglas B. Terry, Mar-
vin M. Theimer, and Alan J. Demers. Flexible update propa-
gation for weakly consistent replication. In Proceedings of
the 16th Annual Symposium on Operating Systems Princi-
ples (SOSP 16), pages 288–301, Saint Malo, France, October
1997.

[15] Benjamin C. Pierce and Jérôme Vouillon. What’s in Unison?
A formal specification and reference implementation of a file
synchronizer. Technical Report MS-CIS-03-36, Dept. of CIS,
University of Pennsylvania, 2004.

[16] Norman Ramsey and Elod Csirmaz. An algebraic approach
to file synchronization. Foundations of Software Engineering,
pages 175–185, September 2001.

[17] Yasushi Saito, Christos Karamanolis, Magnus Karlsson, and
Mallik Mahalingam. Taming agressive replication in the pan-
gaea wide-area file system. In Proceedings of the Fifth Sym-
posium on Operating Systems Design and Implementation
(OSDI), Boston, MA, December 2002.

[18] Reinhard Schwarz and Fridedmann Mattern. Detecting causal
relationships in distributed computations: In search of the
holy grail. Distributed Computing, 7(3):149–174, 1994.

[19] Andrew Tridgell. Efficient Algorithms for Sorting and Syn-
chronization. PhD thesis, Australian National University,
April 2000.

14

