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Abstract 
 

Localized operators, like Gabor wavelets and difference-of-Gaussian filters, are considered to be useful 
tools for image representation. This is due to their ability to form a ‘sparse code’ that can serve as a 
basis set for high-fidelity reconstruction of natural images. However, for many visual tasks, the more 
appropriate criterion of representational efficacy is ‘recognition’, rather than ‘reconstruction’. It is 
unclear whether simple local features provide the stability necessary to subserve robust recognition of 
complex objects. In this paper, we search the space of two-lobed differential operators for those that 
constitute a good representational code under recognition/discrimination criteria. We find that a novel 
operator, which we call the ‘dissociated dipole’ displays useful properties in this regard. We describe 
simple computational experiments to assess the merits of such dipoles relative to the more traditional 
local operators. The results suggest that non-local operators constitute a vocabulary that is stable across 
a range of image transformations. 
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Introduction 
Information theory has become a valuable tool for understanding the functional significance of neural 
response properties. In particular, the idea that a goal of early sensory processing may be to efficiently 
encode natural stimuli has generated a large body of work describing the function of the human visual 
system in terms of redundancy reduction and ‘maximum-entropy’ responses (Attneave 1954; Barlow 
1961; Atick 1992; Field 1994).   

In the compound eye of the fly, for example, the contrast response function of a particular 
class of interneuron approximates the distribution of contrast levels found in natural scenes (Laughlin 
1981). This is the most efficient encoding of contrast fluctuations, meaning that, from the point of view 
of information theory, these cells are optimally tuned to the statistics of their environment. In the 
context of the primate visual system, it has been proposed that the receptive fields of various cells may 
have the form they do for similar reasons. Olshausen and Field (Olshausen and Field 1996; Olshausen 
and Field 1997) and Bell and Sejnowski (Bell and Sejnowski 1997) have demonstrated that the 
oriented “edge-finding” receptive fields that are found in early visual cortex (Hubel and Wiesel 1959) 
may exist because they provide an encoding of natural scenes that maximizes information. Olshausen 
and Field were able to produce such filters through enforcing “sparseness” constraints on their 
encoding while ensuring that the representation allowed for high-fidelity reconstruction of the original 
scene. Bell and Sejnowski enforced the statistical independence of the filters rather than working with 
an explicit sparseness criterion. These two approaches are actually equivalent, as demonstrated by 
Olshausen and Field. An aspect of Bell & Sejnowski’s work that sets it apart, however, is their 
progression through constraints of different strength, such as PCA (orthogonal basis), ZCA (zero-phase 
whitening filters) and finally ICA (statistical independence). These different constraints lead to 
qualitatively different filters, such as checkerboard-like structures and center-surround functions, 
resembling the preferred stimuli of cells found in some parts of the visual pathway (V4 and the LGN, 
respectively).  

The search for efficient codes has helped direct the efforts of researchers interested in 
explaining neural response properties in the visual system, and fostered the study of ecological 
constraints in natural scenes (Simoncelli and Olshausen 2001). However, there are many other tasks 
that the visual system must accomplish, for which the goal may be quite different from high-fidelity 
input reconstruction. The task of recognizing of complex objects is an important case in point. A priori, 
we cannot assume that the same computations which result in sparse coding would also support robust 
recognition. Indeed, the resilience of human recognition performance to image degradations suggests 
that image measurements underlying recognition can survive significant reductions in reconstruction 
quality. Extracting measurements that are stable against ecologically relevant transformations of an 
object (lighting, pose, etc.) is a constraint that might result in qualitatively different receptive field 
structures from the ones that support high-fidelity reconstruction. 

In this paper, we examine the nature of receptive fields that emerge under a recognition, rather 
than reconstruction, based criterion. We develop and illustrate our ideas primarily in the context of 
human faces, although we expect that similar analyses can be conducted with other object classes as 
well. In this analysis, we note the emergence of a novel receptive field structure that we call the 
‘dissociated dipole.’ These dipoles (or ‘sticks’) perform simple non-local luminance comparisons, 
allowing for a region-based representation of image structure. 

We also compare the stability characteristics of various kinds of filters. These include model 
neurons with receptive field structures like those found by ‘sparse coding’ constraints and ‘sticks’ 
operators. Our goal is to eventually gain an understanding of how object representations that are useful 
for recognition might be constructed from simple image measurements. 
 
Experiment 1 – Searching for Simple Features in the domain of Faces 
We begin by investigating what kinds of simple features can be used to discriminate between frontally 
viewed faces. The choice of a specific example class is primarily for ease of exposition. The ideas we 
develop are intended to be more generally applicable. (We substantiate this claim in Experiment 2 
when we describe computational experiments with arbitrary object classes.)  

Computationally, there are many methods for performing the face discrimination task with 
relatively high accuracy, especially if the faces are already well-normalized for position, pose, and 
scale. Using nothing more than the Euclidean distance between faces to do nearest-neighbor 
classification in pixel space, one can obtain reasonably good results (~65% with a 40-person 
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classification task using the ORL database, compiled by AT&T Laboratories, Cambridge, UK). Using 
‘eigenfaces,’ one can improve this score somewhat by removing the contribution of higher-order 
eigenvectors, effectively ‘de-noising’ the face space.  Further adjustments can be made as well, 
including the explicit modeling of intra- and inter-personal differences (Moghaddam, Jebara et al. 
2000) and the use of more complex classifiers. On the other side of the spectrum from these global 
techniques, there are also methods for rating facial similarity that rely on Gabor jets placed at fiducial 
points on a face (Wiskott, Fellous et al. 1997). These techniques use information at multiple spatial 
scales to produce a representation built up from local analyses, and are also quite successful.  

The overall performance of these systems depends both on the choice of representation and 
the back-end classification strategy. Since we focus exclusively on the former, our goal is not to 
produce a system for recognition that is superior to these approaches, but rather to explore the space of 
front end feature choices. In other words, we look within a specific set of image measurements – bi-
lobed differential operators, to see what spatial analyses lead to the best invariance across images of 
the same person. For our purposes, a “bi-lobed differential operator” is a feature type in which 
weighted luminance is first calculated over two image regions and the final output of the operator is 
the signed difference between those two average values. In general, these two image regions need not 
be connected.Some examples of these filters are shown in Figure 1. 

 

    
Figure 1 - Some examples of bi-lobed differential operators of the sort we employ in Experiment 1.  

 
Conceptually, the design of our experiment is as follows: We exhaustively consider all 

possible bi-lobed differential operators (with the individual lobes modeled as rectangles for simplicity). 
We evaluate the discrimination performance of the corresponding measurements over a face database 
(discriminability refers to maximizing separation between individuals and minimizing distances within 
instances of the same person). By sorting the large space of all operators using the criterion of 
discriminability, we can determine which are likely to constitute a good vocabulary for recognition. 

We note that this approach differs substantially from efforts to find reliable features for face 
and object detection in cluttered backgrounds. For example, Ullman’s work on features of 
“intermediate complexity” (Ullman, Vidal-Naquet et al. 2002) demonstrates a method for learning 
class-diagnostic image fragments using mutual information. These IC features are both very likely to 
be present in an image when the object is present and unlikely to appear in the image background by 
chance. Other feature learning studies have concentrated on developing generative models for object 
recognition (Fei-Fei, Fergus et al. 2003; Fergus, Perona et al. 2003; Fei-Fei, Fergus et al. 2004) in 
which various appearance densities are estimated for diagnostic image fragments. This allows for 
recognition of an object in a cluttered scene to proceed in a Bayesian manner.  

These studies are unquestionably valuable to our understanding of object recognition. Our 
goals in the current study are slightly different, however. First of all, we are interested in discovering 
what features support invariance to a particular object rather than a particular object class. It is for this 
reason that we do not attempt to segment the objects under consideration from a cluttered background. 
We envision segmentation proceeding via parts-based representations such as those described above. 
While it may be possible to learn diagnostic features of an individual that could be used for 
segmentation purposes, we believe it may be more useful to consider segmentation as a process that 
proceeds prior to individuation. Second, rather than looking for complex object parts that support 
invariance we commence by considering very simple features. This means that we are not likely to find 
optimal features for individuation. Instead, we aim to determine what structural properties of 
potentially low-level RFs contribute to recognition. In a sense, we are trying to understand what 
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computations between the lowest and highest levels of visual processing lead to the impressive 
invariances for object transformations.   

Given that we are attempting to understand how recognition abilities are built up from low-
level features, one might ask why we do not explicitly assume pre-processing by center-surround or 
wavelet filters. Such an analysis could help us understand how the outputs of early visual areas (such 
as the LGN and V1) serve as the basis for further computations that might support recognition. That 
said, we have chosen not to adopt this strategy, so that we can remain completely agnostic as to what 
basic computations are necessary first steps towards solving high-level problems.  
 
Stimuli 
We use faces drawn from the ORL database (Samaria and Harter 1994) for this initial experiment. The 
images are all 112x92 pixels in size, and there are ten unique images of each of the 40 individuals 
included in the database. We chose to work with 21 randomly chosen individuals in the database, using 
the first 5 images of each person. The faces are imaged against uniform backdrops. Therefore, the task 
in our experiment is not to segregate faces from a cluttered background, but rather to individuate them.  
 
Preprocessing 
Block-averaging- Relaxing locality constraints results in a very large number of allowable square 
differential operators in a particular image. To reduce the size of our search space, we first down-
sample all of the images in our database to a much smaller size of 11x9 pixels. Much of the 
information necessary for successful classification is present at this small size, as evidenced by the fact 
that the recognition performance of a simple nearest-neighbor classifier actually increases slightly 
(from 65% correct at full-resolution to 70% using 8x8 pixel ‘blocks’) if we use these smaller images as 
input.  
 
Constructing Difference Vectors- Our next step involves changing our recognition problem from a 
21-class categorization task into a binary one. We do this by constructing difference vectors, which 
will comprise two classes of intra- and inter-personal variation (Moghaddam, Jebara et al. 2000). 
Briefly, we subtract one image from another, and if the two images used depicted the same individual, 
then that difference vector captures intra-personal variation. If, on the other hand, the two images were 
of different individuals, then that difference vector would be one that captured inter-personal variation. 
Given these two sets, we can now look for spatial features that can distinguish between these two types 
of variation in facial appearance, rather than attempting to find features that are always stable within 
each of 21 categories. To assemble the difference vectors used in this experiment, we took all unique 
pair-wise differences between images that depicted the same person (Intra-personal set) and used the 
first image of each individual to construct a set of pair-wise differences that matched our first set in 
size (Inter-personal set).  
 
Constructing ‘Integral Images’ – Finally, now that we have two sets of low-resolution difference 
vectors, we introduce one last pre-processing step designed to speed up the execution of our search. 
Since the differential operators we are analyzing have rectangular lobes, we construct ‘integral images’ 
(Viola and Jones 2001) from each of our difference vectors. Integral images allow for the fast 
computation of rectangular image features, reducing the process to a series of look-ups.  The value of 
each pixel in the integral image created from a given stimulus represents the sum of all pixels above 
and to the left of that pixel in the original picture.  
 
Feature Ranking 
In our 11x9 images, there are a total (n) of 2970 unique box features. Given that we are interested in all 
possible differential operators, there are approximately 4.5 million spatial features (n2/2) for us to 
consider. To decide which of these features were ‘best’ for recognition, we used A’ as our measure of 
discriminability (Green and Swets 1966). A’ is a non-parametric measure of discriminability calculated 
by finding the area underneath an observer’s ROC (receiver-operating-characteristic) curve. This curve 
is determined by plotting the number of “hits” and “false alarms” a given observer obtains when using 
a particular numerical threshold to judge the presence or absence of a signal.  

In this experiment, we treat each differential operator as one “observer.” The “signals” we 
wish to detect are the intra-personal difference vectors. The response of each operator (mean value of 
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pixels under the white rectangle minus mean value of pixels under the black rectangle) was calculated 
on each difference vector, and then the labels associated with those vectors (intra- v. inter-personal 
variation) were sorted according to that numerical output. With the distribution of labeled difference 
vectors in hand for a particular feature, we could proceed to calculate the value of A’. We determined 
how many hits and false-alarms there would be for a threshold placed at each possible location along 
the continuum of observed feature values. This allowed us to plot a discretized ROC curve for each 
feature. Calculating the area underneath this curve is straightforward, yielding the discriminability for 
that operator.  A’ scores range from 0.5 to 1. A perfect separation of intra- and inter-personal 
difference vectors would lead to an A’ score of 1, while a complete enmeshing of the two classes 
would lead to a score of 0.5.   

In one simulation, the absolute value of each feature was taken (rectified results), and in 
another the original responses were unaltered (unrectified results). In this way, we could establish how 
instances of each class were distributed with respect to each spatial feature, both with and without 
information concerning the direction of brightness differences. 

It is important to note at this stage that there is no reason to expect that any of the values we 
recover from our analysis of these spatial features will be particularly high. In “boosting” procedures, 
it is customary to use a cascade of relatively poor filters to construct a classifier capable of robust 
performance, meaning that even with a collection of ‘bad’ features, one can obtain worthwhile results. 
In this experiment, we are only interested in the relative ranking of features, though it is possible that 
the set of features we obtain could be useful for recognition despite their poor abilities in isolation. We 
shall explicitly consider the utility of the features discovered here in a recognition paradigm presented 
in Experiment 2.   
 
Results 
Differential Operators -The top-ranked differential operators recovered from our analysis of the 
space of possible two-lobed box filters are displayed in Figure 2. Both rectified and unrectified results 
are displayed. As we expected, the A’ measured for each individual feature is not particularly high, 
with the best operator in these two sets scoring approximately 0.71.  
 

 
Figure 2 -  The top 100 ranked features for discriminating between intra- and inter-personal difference 
vectors. Beneath each 10x10 array are representatives of the most common features found in the two 
arrays.  
 

There are four main classes of features that dominate the top 100 differential operators. First 
of all, features resembling center-surround structures appear in several top slots, both in the rectified 
and unrectified data. This is somewhat surprising, given that cells with this structure are most 
commonly associated with very early visual processing implicated in low-level tasks such as contrast 
enhancement, rather than higher-level tasks like recognition. Of course, the features we have recovered 
here are far larger in terms of their “receptive field” than typical center-surround filters used for early 
image processing, so perhaps these structures are useful for recognition if scaled up to larger sizes.  
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The second type of feature that is very prevalent in the results is what we will call a 
“dissociated dipole” or “stick” operator, and appears primarily in the unrectified results. These features 
have a spatially disjoint structure, meaning that they execute brightness comparisons across widely 
separate parts of an image. Admittedly, the connection between these operators and the known 
physiology of the primate visual system is weak. To date, there have been no cells with this sort of 
dissociated receptive-field structure found in the human visual pathway, although they may exist in the 
auditory and somatosensory processing streams (Young 1984; Chapin 1986). 

The final two features are elongated edge and line detectors, which dominate the results of the 
rectified operators. An elongated edge detector appears in the unrectified rankings as well, but other 
structurally similar features are found only in the next 100 ranked features. These structures resemble 
some of the receptive fields known to exist in striate cortex, as well as the wavelet-like operators that 
support sparse coding of natural scenes.   

We point out that multiple ‘copies’ of these features appear throughout our rankings, which is 
to be expected. Small structural changes to these filters only slightly alter their A’ score, meaning that 
many of the top features have very similar forms. We do not attribute any particular importance to the 
fact that the non-local operators that perform best appear to be comparing values on the right edge of 
the image to values in the center, nor to the tendency for elongated edge detectors to appear in the 
center of the image. It is only the generic structure of each operator that is important to us here. 
 
Single Rectangle Features – We chose to examine differential operators in our initial analysis for 
several reasons. First of all, cells with both excitatory and inhibitory regions are found throughout the 
visual system. Second, by taking the difference in luminance between one region or another, one is far 
less sensitive to uniform changes in illumination brought on by haze, bright lighting, etc. However, 
given that we are using a database of faces that is already relatively well controlled in terms of lighting 
and pose, it may be the case that even simpler features can support recognition. To examine this 
possibility, we conduct the same analysis described above for differential operators on the set of all 
single-rectangle box features in our images.  

We find that single-rectangle features are not as useful for discriminating between our two 
classes as are differential operators. The range of A’ values for the top 100 features from each category 
are plotted in Figure 3, where it is clear that both sets of differential operators provide better 
recognition performance than single box-filters. Even in circumstances where many of the reasons to 
employ differential operators have been removed through clever database construction (say, by 
disallowing fluctuations in ambient illumination), we find that they still out-perform simpler 
measurements. 
 

 
Figure 3 - Plots of Aprime scores across the best features from each family of operators (single v. 
double rectangle features, as well as rectified v. unrectified operator values). 
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Discussion 
In our analysis of the best differential operators for face recognition, we have observed a new type of 
operator (the dissociated dipole) that offers an alternative form of processing by which within-class 
stability might be achieved for images of faces. An important question to consider is how this operator 
fits within the framework of previous computational models of recognition, as well as whether or not it 
has any relevance to human vision. 

The dissociated dipole is an instance of a higher-order image statistic, namely a binary 
measurement. The notion that such statistics might be useful for pattern recognition is not new, indeed 
Julesz (Julesz 1975) suggested that ‘needle statistics’ could be useful for characterizing random-dot 
textures. In the computer vision community, non-local comparisons are employed in integral geometry 
to characterize shapes (Novikoff 1962). The possibility that non-local luminance comparisons may be 
useful for object and face recognition has not been thoroughly explored, however. Such an approach 
differs from traditional shape-based approaches to object recognition, in that it implicitly considers 
relationships between regions to be of paramount importance. Our recent results (Balas and Sinha 
2003) have demonstrated that such a non-local representation of faces provides for better recognition 
performance than a strictly local one. Furthermore, Kouh & Riesenhuber (Kouh and Riesenhuber 
2003) have found that to model the responses of V4 neurons to various gratings using the HMAX 
model of recognition (Riesenhuber and Poggio 1999) it is necessary to pool responses from spatially 
disjoint low-level neurons.  

Before proceeding, we wish to specify more precisely the relationship between local, non-
local, and global image analysis. We consider local analyses those in which a contiguous set of pixels 
(either 4 or 8-connected) are represented in terms of a single output value. A global analysis is similar 
to this, save for the amount of the image under consideration. In the limit, a global image analysis uses 
all pixels in the image to construct the output value. A local analysis might only use some small 
percentage of image area. This distinction is not truly categorical. Rather, there is a spectrum between 
local and global image analysis.  
 Likewise, a similar spectrum exists between local and non-local analysis. While a local 
analysis only considers a set of contiguous pixels, a non-local analysis breaks this condition of 
contiguity. In the extreme, one can imagine a highly non-local feature composed of two pixels located 
at opposite corners of an image. At the other extreme would be a highly local feature consisting of two 
neighboring pixels. Of course, there are many operators spanning these two possibilities that are 
neither purely local or non-local. Moreover, if one measures local features (like Gabor filter outputs) at 
several non-overlapping positions, is this a local or a non-local analysis? If one is merely concatenating 
the values of each local analysis into one feature vector, then this is not a truly non-local computation 
by our definition. If however the values of those local features are explicitly combined to produce one 
output value, then we would have arrived at a non-local analysis of the image. Non-local analysis of 
this type has traditionally received less attention than local or global strategies of image processing. 

The reason non-local representations of brightness have not been studied in great detail may 
be due to the sheer number of generic binary statistics. In general, the trouble with appeals to higher-
order statistics for recognition is that there is a vast space of possible measurements that are allowable 
with the introduction of new parameters (in our case, the distance between operator lobes). This 
combinatorial explosion makes it hard to determine which particular measurements are actually useful 
within the large range of possibilities. This is, of course, a serious problem in that the utility of any set 
of proposed measurements is dependent on the ability to separate helpful features from useless ones.  

We also note that there are several computational oddities associated with non-local operators. 
Suppose that we formulate a “dissociated dipole” as a difference-of-offset-Gaussians operator (a model 
we present in full in the next experiment), allowing the distance between the two Gaussians to be 
manipulated independently of either one’s spatial constant (Figure 4) In so doing, we lose the ability to 
create ‘steerable’ filters (Freeman and Adelson 1991), meaning that to obtain dipoles at a range of 
orientations we have no other option than to use a large number of operators. This is not impossible, 
but lacks the elegance and efficiency of more traditional approaches by which multi-scale 
representations can be created at any orientation through the use of a small number of basis functions.  
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Figure 4 - A dipole measurement is parameterized in terms of the space constant  σ of each lobe, the 
distance δ between the centers of each lobe, and the angle of orientation,θ. 

 
Another important difference between local and non-local computations is the distribution of 

operator outputs. Natural images are spatially redundant, meaning that the output of most local 
operators is near zero (Kersten 1987). The result is a highly kurtotic distribution of filter outputs, 
indicating that a sparse representation of the image using those filters is expected. In many cases, this 
is highly desirable, both from metabolic and computational viewpoints. As we increase the distance 
between the offset Gaussians we use to model dissociated dipoles, the kurtosis of the distribution 
decreases significantly. This means that using these operators yields a coarse (or “distributed”) 
encoding of the image under consideration. This may not be unreasonable, especially given that 
distributed representations of complex objects may help increase robustness to image degradation. 
However, it is important to note that non-local computations depart from some conventional ideas 
about image representation in significant ways.  

In our next experiment, we shall directly address the question of whether or not the structures 
we have discovered in this analysis are useful for face and object classification. In this next analysis, 
we remove many of the simplifications necessary for an exhaustive search to be tractable in 
Experiment 1. We also move beyond the domain of face recognition to include multiple object classes 
in our recognition task.  
 
Experiment 2 – Face and object recognition using local and non-local features 
In our first experiment, we noted the emergence of center-surround operators and non-local operators 
under a recognition criterion for frontally-viewed faces. However, in our first experiment many 
compromises were made in order to conduct an exhaustive search through the space of possible 
operators. First, our images were reduced to an extremely small size in order to limit the number of 
features we needed to consider. Though faces can be recognized at very low resolutions, it is also clear 
that there is interesting and useful structure at small spatial scales. Second, we chose to work with 
difference images rather than the original faces. This allowed us to transform a multi-category 
classification task into a binary task, yet makes the implicit assumption that a differencing operation 
occurs as part of the recognition process. Third, we point out that in any consideration of all possible 
bi-lobed features in an image the number of non-local features will far exceed the number of local 
features. Greater numbers need not imply better performance, yet it is still troubling to consider that 
the abundance of useful non-local operators may be a function of set size. Finally, we note that in only 
considering face images, it is unclear whether the features we discovered are useful for general 
recognition purposes or specific to face matching.  

In this second experiment, we attempt to address these concerns through a recognition task 
that eliminates many of these difficulties. We employ full-resolution images of both faces and various 
complex objects in a classification task designed to test the efficacy of center-surround, local-oriented, 
and non-local features in an unbiased fashion.  
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Stimuli 
For our face recognition experiment, we once again make use of the ORL database. In this case, all 40 
individuals were used, with one image of each person serving as a training image. The images were not 
pre-processed in any way, and remained at full resolution (112x92 pixels).  
 To help determine if our findings hold up across a range of object categories, we also conduct 
this recognition experiment with images taken from the COIL database (Nayar et al  1996; Nene et al  
1996). These images are 128x128 pixel images of 100 different objects, including toy cars, foods, 
pharmaceutical products, and many other diverse items. We selected these images for the wide range 
of surface and structural properties represented by the objects. Also, repeated exemplars of a few 
object categories (such as cars) make both across-class and within-class recognition necessary. Each 
object is depicted rotated in depth from its original position in increments of 5 degrees. We chose the 
0-degree images of each object as training images, and used the following 9 images as test images. The 
only pre-processing performed on these images was reducing them from full-color to grayscale.  

 
 

Figure 5 -Examples of stimuli used in Experiment 2. The top row contains training images of several 
individuals depicted in the ORL database. The bottom row contains training images of objects depicted 
in the COIL database. Note that the COIL database contains multiple exemplars of some object classes 
(such as the cars in this figure) making within-class discrimination a necessary part of performing 
recognition well using this database. 
 
Procedure 
To determine the relative performance of center-surround, local-oriented, and non-local features in an 
unbiased way, we model all of our features as generalized difference-of-gaussian operators. A generic 
bi-lobed operator in two-dimensional space can be modeled as follows: 
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For all of our remaining experiments, we shall only consider operators with diagonal covariance 
matrices Σ1 and Σ2. Further, the diagonal elements of each matrix Σ shall be equal, yielding isotropic 
Gaussian lobes. For this simplified case, the above equation can be expressed thusly: 
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We introduce also a parameter δ to represent the separation between two lobes. This is of course 
simply the Euclidean norm of the difference between the two means.  
 

12 µµδ −=  (3) 
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In order to build a center-surround operator, δ must be set to zero, and the spatial constants of the 
center and surround should be in a ratio of 1 to 1.6 to match the dimensions of RFs found in the human 
visual system (Marr 1982). To create a local-oriented operator, we shall set σ1 = σ2, and set the 
distance δ  to be equal to 3 times the value of the spatial constant. Finally, non-local operators can be 
created by allowing the distance δ to exceed the value 3σ (once again assuming equal spatial constants 
for the two lobes). Examples of all of these operators are displayed in Figure 6. 
 

 
 

Figure 6 - Representative operators drawn from the four operator families considered in experiment 2. 
Top-to-bottom, we display examples of center-surround features, local oriented features, and two kinds 
of non-local features (δ = 6σ, s = 9σ). 

 
Given this simple parameterization of our three feature types, we choose in this experiment to 

sample equal numbers of each kind of operator from the full set of possible features. In this way, we 
may represent each of our training images in terms of some small number of features drawn from a 
specific operator family and evaluate subsequent classification performance. 
 Four operator families were considered: Center-surround features (δ=0), local-oriented 
features (δ=3σ), and two kinds of non-local features (δ= 6σ and 9σ). For each operator family, we 
constructed 40 banks of 50 randomly positioned and oriented operators each. 20 of these feature banks 
contained operators with a spatial constant of 2 pixels, and the other 20 feature banks contained 
operators with a 4 pixel spatial constant. Each bank of operators was applied to the training images to 
generate a feature vector consisting of 50 values. The same operators were then applied to all test 
images, and the resulting feature vectors were classified using a nearest-neighbor metric (L2 norm). 
This procedure was carried out on both the ORL database and the COIL database.  
 
Results 
The number of images correctly identified for a given filter bank was calculated for each recognition 
trial, allowing us to compute an average level of classification performance from the 20 runs within 
each operator family and spatial scale. We find in this task that once again center-surround and non-
local features offer the best recognition performance. This result holds at both spatial scales used in 
this task, as well as for both face recognition and multi-class object recognition. We also note the small 
variability in recognition performance around each operator’s mean value. The random sampling of 
features to fill up our operator banks led to very consistent recognition performance. 
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Figure 7 - Recognition performance for both faces (left) and objects (right) as a function of both the 
distance between operator lobes and the spatial constant of the lobes. 
 

In both cases, we note that center-surround performance slightly exceeds that obtained using 
non-local operators. It is interesting to note however, that with a larger separation between the lobes of 
a non-local feature comes better recognition performance. This cannot continue indefinitely, of course, 
as longer and longer distances will lead to more limitations on where operators can be placed within 
the image. Increased accuracy with increased non-locality does suggest that larger distances between 
lobes are more useful, however, and that it is not enough to simply deviate from locality.  

We note that the distinct dip in performance for local-oriented features is both consistent and 
puzzling. Why should it be the case that un-oriented local features are good at recognition while 
oriented local features are poor? Center-surround operators analyze almost the same pixels as a local-
oriented operator placed at the same location, so why should they be so different in terms of their 
recognition performance? Moreover, how is it that radically different operators like the dissociated 
dipole and the center-surround operator should perform so similarly? In our third and final experiment, 
we attempt to address these questions by breaking down the recognition problem into distinct parts so 
we can learn how these operator families function in classification tasks.  
 
Experiment 3 
In Experiment 2, we determined that both center-surround and non-local operators outperform local 
oriented features at recognition of faces and objects. In many ways, this is quite surprising. Center-
surround features appear to share little with non-local operators as we have defined them, yet their 
recognition performance is quite similar. In this final Experiment, we break down the process of 
recognition into two distinct components to determine if these two receptive field structures succeed at 
recognition by possessing different properties. Along the way, we also hope to discover why local 
oriented features are so poor at recognition despite their strong resemblance to center-surround 
features.  

In this task we shall break down the recognition process into components of stability and 
variability. To perform well at recognition, a particular operator must first be able to respond in much 
the same way to many different images of the same face. This is how we define stability, and one can 
think of it in terms of various identity-preserving transformations. Whether a face is smiling or not, lit 
from the side or not, a useful operator for recognition must not vary its response too widely. If this 
proves true, we may say that that feature is invariant to the transformation being considered.   

We use this notion of stability to formulate an operational definition of stability in terms of a 
set of image measurements, and a particular face transformation. Let us first imagine that we possess a 
set of image measurements in a filter bank, just as we did in Experiment 2. This filter bank is applied 
to some initial image, which shall always depict a person in frontal view with a neutral expression. The 
value of each operator in our collection can be determined and stored in a one-dimensional vector, x. 
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This same set of operators is then applied to a second image, depicting the same person as the original 
image, but with some change of expression or pose. The values resulting from applying all operators to 
this new image are then stored in a second vector, y. The two vectors x and y may then be compared to 
see how drastic the changes in operator response were across the transformation from the first image to 
the second. If by some luck our operators are perfectly invariant to the current transformation, plotting 
x vs. y would produce a scatterplot in which all points would lie on the line y=x. Poor invariance would 
be reflected in a plot in which points are distributed in an isotropic cluster. For two vectors x and y 
(each of length n), we may use the value of the correlation coefficient (see Equation 4) between them 
as our quantitative measure of feature stability.  
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 The second component of recognition is variability. It is not enough to be stable to 
transformations, one must also be diagnostic of identity. Imagine for example, that one finds an image 
measurement that is perfectly stable across lighting, expression, and pose transformations. It may seem 
that this measurement is ideal for recognition, but let us also imagine that it turns out to be of the same 
value for every face which you consider! Clearly you have no means of distinguishing one face from 
another using this measurement, despite its remarkable invariance to transformations of a single face. 
What is needed then, is an ability to be stable within images of a single face, but vary broadly across 
images of many different faces. This last attribute we shall call variability, and we may quantify it for a 
particular measurement as the variance of its response across a population of faces.  

In this third experiment, we shall use these operational definitions of stability and variability 
to determine what properties center-surround and non-local operators possess that makes them useful 
for recognition. We shall return once again to the domain of faces, as they provide a rich set of 
transformations to consider, both rigid and non-rigid alterations of the face in varying degree. 
 
Stimuli 
We use 16 faces (8 men, 8 women) from the Stirling face database for this experiment. The faces are 
grayscale images of individuals in a neutral, frontal pose accompanied by pictures of the same models 
smiling and speaking while facing forward, and also in a three-quarter pose with neutral expression. 
We call these transformations the SMILE, SPEECH, and VIEW transforms respectively. The original 
images were 284x365 pixels, and the only pre-processing step applied was to crop out a 256x256 pixel 
region centered in the original image rectangle. 
 
Procedure 
All operators in these sets were built as difference-of-Gaussian features, exactly as described in 
Experiment 2. Also as before, center-surround, local oriented, and two kinds of non-local features were 
evaluated. Three ‘scales’ were employed for each kind of feature, corresponding to a space constant of 
4 pixels (fine scale), 8 pixels (medium scale), and 16 pixels (coarse scale). In the case of center-
surround features, the value of the space constant always refers to the size of the surround. For each 
pair of images to be analyzed, we construct a total of 120 collections of 50 operators each. These 
feature banks were split into 10 center-surround, 10 local, and 20 non-local banks (10 banks each for 
separations of 6 and 9 times the spatial constant of the lobes) at each of the 3 scales mentioned above.  

Once a set of operators was constructed, we applied it to each neutral, frontal image in our 
data set to assemble the feature value for the starting image. The same operators were then applied to 
each of the three transformed images so that a value for Pearson’s R could be calculated for that set of 
operators relative to each transformation. The average value of Pearson’s R could then be taken across 
all 16 faces in our set. This process was repeated for all families and scales of operator banks to assess 
stability. 

To assess variability, operator banks were once again applied to the neutral, frontal images 
once again. This time, the variance in each operator’s output was calculated across the population of 16 
faces. The results were combined and expressed in terms of the mean variance of response and its 
standard deviation.  
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Results 
Difference-of-Gaussian features 
Plots depicting the average values of the correlation coefficients (averaged again over all individuals) 
are presented below (Figure 8). We present the measured stability of each kind of operator across three 
ecologically relevant transformations: SMILE (2nd image of individuals smiling), SPEECH (2nd image 
of individuals speaking), and VIEW (2nd image of individuals in ¾ pose). 

These plots highlight several interesting characteristics of our operators. First, center-surround 
filters at each of our 3 scales appear to perform quite well compared to the other features once again. 
As soon as we move the two Gaussians apart to form oriented local operators, however, a sharp dip in 
stability occurs at the medium and fine scales. This indicates that the two-lobed oriented edge detectors 
used here provide for comparatively poor stability across all three of the transformations we have 
examined here. That said, as the distance between the lobes of our operators increases further, stability 
of response also increases. Non-locality seems to increase stability across all three transformations, 
nearly reaching the level of center-surround stability at both medium and coarse scales.  

 

 
Figure 8 - The stability of each feature type (x-axis) as a function of both the spatial scale of the 

Gaussian lobes, and various facial transformations. 
 
 Stability, however, is not the only attribute required to perform recognition tasks well. A 
feature that is stable across face transformations is only useful if it is not also stable across images of 
different individuals. That is, a universal feature is not of any use for recognition because it has no 
discriminative power. We present next the amount of variability in response for each family of 
operators (Table 1).  

 
Table 1 – Mean±S.E. of operator variance across individuals 

 
 σ = 4  σ = 8  σ = 16  
Center-Surround 122.5±3.7 206.6±6.2 311.3±8.5 
Local (s=3) 242.0±9.6 527.0±15.0 986.9±26.7 
Non-Local (s=6) 378.8±11.4 718.5±17.7 1204.1±29.9 
Non-Local (s=9) 430.2±11.0 795.4±19.7 1271.7±32.6 

 
Center-surround operators appear to be the least variable across images of different 

individuals, while non-local operators appear to vary most. All feature types but the center-surround 
filters increase in variability as their scale increases, which seems somewhat surprising as one might 
expect more dramatic differences in individual appearance to be expressed at a finer scale. 
Nonetheless, we can see from the combination of these results and the stability results that center-
surround and non-local operators achieve good recognition performance through different means. 
Center-surround operators are not so variable from person to person, but make up for it with an 
extremely stable response to individual faces despite significant transformations. In contrast, non-local 
operators lack the full stability of center-surround operators, but appear to make up for it by being 
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much more variable in response across the population of faces. Coming dead last of course are the 
local-oriented features, which appear to be neither stable nor variable in a useful fashion. 
 
Discussion 
The results of our stability analysis of differential operators reveal two main findings. First, the same 
features that were discovered to perform the best discrimination between intra- and inter-personal 
difference vectors in Experiment 1 (large center-surround filters and non-local operators) and to 
perform best in a simple recognition system for both faces and objects (Experiment 2) also display the 
greatest combination of stability and variability when confronted with ecologically relevant face 
transforms. However, the limited stability of local oriented operators suggests that they may not 
provide the most useful features for handling these image transforms. 
  
Conclusions 
We have noted the emergence of large center-surround and non-local operators as tools for performing 
object discrimination using simple features, and found that both of these operators provide for good 
stability of response across a range of different transforms. These structures differ from receptive field 
forms known to support sparse encoding of natural scenes, yet seem to provide a better means of 
discriminating between individual objects and providing stable responses to image transforms. We take 
this to mean that the constraints that govern information-theoretic approaches to image representation 
may not necessarily be useful for developing representations that can support the recognition of objects 
in images.  

In the specific context of faces, do large center-surround fields or non-local comparators 
present a viable alternative to performing efficient face recognition? At present, the answer to this 
question is no. Complex (and truly global) features such as eigenface (Turk and Pentland 1991) bases 
provide for higher levels of recognition performance than we expect to achieve using these far simpler 
features. We note however that the discovery of a useful vocabulary of low-level features may aid 
global recognition techniques like eigenface-based systems. One could easily compute PCA bases on 
non-local and center-surround measurements rather than pixels. The added stability of these operators 
may help increase recognition performance greatly.  

The larger question at stake, however, does not only concern face recognition, despite it being 
our domain of choice for the current study. Of greater interest than building a face recognition engine 
is leaerning how one might construct invariance to relevant image transforms given some set of simple 
measures. Little is known about how one moves from highly selective, small receptive fields in V1 to 
the large receptive fields in IT that demonstrate great invariance to stimulus manipulations within a 
particular class. We introduce a particular computation, the dissociated dipole, that represents one 
example of a very broad space of alternative computations by which limited amounts of invariance 
might be achieved. Our proposal of non-local operators draws support from several studies of human 
perception. The idea of non-local computation is not new, nor absent from studies of human 
perception. Indeed, past psychophysical studies of the long-range processing of pairs of lines suggest 
the existence of similarly structured “coincidence detectors” which enact non-local comparisons of 
simple stimuli (Morgan and Regan 1987; Kohly and Regan 2000). Further work exploring non-local 
processing of orientation and contrast has more recently given rise to the idea of a “cerebral bus” 
shuttling information between distant points (Danilova and Mollon 2003). These detectors could 
contribute to shape representation, as demonstrated by Brubeck’s idea of encoding shapes via medial 
“cores” built by integrating information across disparate “boundariness” detectors (Burbeck and Pizer 
1995).  

Our overarching goal in this work is to redirect the study of non-classical receptive field 
structures towards examining the possibility that object recognition may be governed by computations 
outside the realm of traditional multi-scale pyramids, and subject to different constraints than those 
that guide formulations of image representation based on information theory. The road from V1 to IT 
(and computationally speaking, from Gabors and Gaussian derivatives to eigenfaces) may contain 
many surprising image processing tools. 

Even within the realm of dissociated dipoles there are many parameters to explore. For 
example, the two lobes need not be isotropic, or be of equal size and orientation. The lobes could 
easily take the form of Gaussian derivatives rather than Gaussians. Given that there are many more 
parameters that could be introduced to the simple DOG framework, it is possible that even better 
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invariance could be achieved by introducing more degrees of structural freedom. The point is that 
expanding our consideration to non-local operators opens up a large space of possible filters, and 
systematic exploration of this space, while difficult, may be very rewarding. 
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