
Computer Science and Artificial Intelligence Laboratory

Simultaneous Localization and Tracking in
Wireless Ad-hoc Sensor Networks
Christopher J. Taylor

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

May 31, 2005MIT-CSAIL-TR-2005-037
AITR-2005-003

Simultaneous Localization and Tracking

in Wireless Ad-hoc Sensor Networks

by

Christopher J. Taylor

Submitted to the Department of Electrical Engineering and

Computer Science in partial fulfillment of the requirements

for the degrees of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Electrical Engineering and

Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2005

c© Massachusetts Institute of Technology 2005. All rights

reserved.

Certified by: Jonathan Bachrach

Research Scientist

Thesis Supervisor

Accepted by: Arthur C. Smith

Chairman, Department Committee on Graduate Students

Simultaneous Localization and Tracking

in Wireless Ad-hoc Sensor Networks

by

Christopher J. Taylor

Submitted to the Department of Electrical Engineering and Computer
Science on May 6, 2005, in partial fulfillment of the requirements for

the degrees of Bachelor of Science in Computer Science and
Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis we present LaSLAT, a sensor network algorithm that uses
range measurements between sensors and a moving target to simulta-
neously localize the sensors, calibrate sensing hardware, and recover
the target’s trajectory.

LaSLAT is based on a Bayesian filter that updates a probability
distribution over the parameters of interest as measurements arrive.
The algorithm is distributable and requires a fixed amount of storage
space with respect to the number of measurements it has incorporated.
LaSLAT is easy to adapt to new types of hardware and new physical
environments due to its use of intuitive probability distributions: one
adaptation demonstrated in this thesis uses a mixture measurement
model to detect and compensate for bad acoustic range measurements
due to echoes.

We present results from a centralized implementation of LaSLAT
using a network of Cricket sensors. In both 2D and 3D networks,
LaSLAT is able to localize sensors to within several centimeters of their
ground truth positions while recovering a range measurement bias for
each sensor and the complete trajectory of the mobile.

Thesis Supervisor: Jonathan Bachrach
Title: Research Scientist

2

Acknowledgments

First and foremost I would like to thank Ali Rahimi, who has been an
inexhaustible source of instruction and concrete good ideas throughout
the year. It is fair to say that I could not have done this without his
help.

I also want to thank my advisor, Jonathan Bachrach, who gave me
the chance to tackle a difficult problem and helped me stay focused
and on target. He also made sure I had resources when I needed them,
and did the legwork to acquire Cricket hardware for me, often on short
notice.

And of course, thanks to Jonathan and Vijay Singh, our DARPA
program manager, for formulating the simultaneous localization and
tracking problem. Without their inspiration I would never have stum-
bled upon this topic.

I also appreciate the efforts of two UROPs in my group, Tony Grue
and Tom Hsu, who, along with Jonathan, came in on nights and week-
ends to help me set up and conduct experiments when the lab was
empty. Measuring sensor positions with a tape measure is a labor-
intensive and unpleasant process – our struggles provide all the moti-
vation this thesis requires.

I am grateful to DARPA for funding this research.
Finally, thanks to my parents and fiancee Jennifer for their support,

understanding, and encouragement throughout the process. They suf-
fered my complaints when nothing was working and suffered my delu-
sions of grandeur when everything was.

3

Contents

1 Introduction 7

1.1 Localization . 7
1.2 Tracking . 8
1.3 Calibration . 8
1.4 Simultaneous Localization and Tracking 9
1.5 LaSLAT . 10

2 Related Work 12

2.1 Localization . 12
2.2 Tracking . 14
2.3 Calibration . 14
2.4 SLAT . 14
2.5 SLAM . 15

3 LaSLAT 16

3.1 Approximate Bayesian Filtering for SLAT 16
3.2 Measurement Model . 19
3.3 Incorporating Measurements 20
3.4 Dynamics Model . 22
3.5 Prior Information and Initialization 23

4 LaSLAT Extensions 25

4.1 Robust Measurement Outlier Rejection 25
4.1.1 E-step . 27
4.1.2 M-step . 28
4.1.3 Outlier rejection summary 29

4.2 Specifying Mobile Dynamics 29

5 Implementation 31

5.1 Definitions . 31
5.2 Graph Locality . 32

4

5.3 Distributability of the Prior 32
5.4 Performing Computations 32

5.4.1 Measurement incorporation 33
5.4.2 Event marginalization 33
5.4.3 Preservation of local connectivity 34
5.4.4 LaSLAT convergence 34

5.5 Centralized vs. Distributed Implementation 35

6 Results 37

6.1 ROOMBA Experiment 38
6.2 Two Dimensional Experiments 40

6.2.1 27 node experiment 40
6.2.2 49 node experiment 47

6.3 Three Dimensional Experiments 47
6.3.1 40 node experiment 47
6.3.2 55 node experiment 51

7 Future Work 54

7.1 Hallway Alignment . 54
7.2 Stationary Targets . 54
7.3 Multi-modal Posterior Approximation 55
7.4 Low Quality Hardware 55
7.5 Sensor Dynamics . 56
7.6 Acoustic-only LaSLAT 56
7.7 Distributed Implementation 57

8 Conclusion 58

A Initialization 60

A.1 Initialization Using Radio Connectivity 61
A.2 Initialization in 3D . 63

B Newton-Raphson 64

B.1 Finding a Mode . 64
B.2 Locality of Mode Finding 65

5

List of Figures

4.1 Example of outlying range measurements 26

6.1 A Cricket sensor node 37
6.2 ROOMBA experiment setup 38
6.3 ROOMBA experiment results 39
6.4 27 node 2D sensor layout and mobile trajectory 41
6.5 LaSLAT estimates and their unit standard deviation con-

tours . 42
6.6 27 node 2D localization results 43
6.7 Localization accuracy vs. batch size; EKF results 44
6.8 49 node 2D experiment sensor layout 45
6.9 49 node 2D localization results 46
6.10 Omnidirectional cricket used for 3D experiments 48
6.11 40 node 3D experiment sensor layout 48
6.12 40 node 3D localization results and recovered trajectory 49
6.13 Sample LaSLAT 3D tracking results 50
6.14 Impact of smooth dynamics and outlier rejection 52
6.15 55 node 3D experiment sensor layout 52
6.16 55 node 3D localization results and recovered trajectory 53

A.1 27 node 2D experiment initialization results 62

6

Chapter 1

Introduction

This thesis presents LaSLAT, an algorithm for localizing and calibrat-
ing a sensor network while simultaneously tracking a moving target.
LaSLAT performs these tasks using range measurements between the
sensors and the target. LaSLAT does not require sensor nodes with
known positions, ranging information between sensors, or constraints
on the path of the target.

1.1 Localization

Many sensor network applications require that the locations of the in-
dividual sensors be known, since sensor readings are in general of little
use without geographic context. However, the same attributes that
make sensor networks attractive make obtaining this information diffi-
cult. By placing a large number of relatively cheap sensors, it is possible
to obtain many accurate measurements from sensors close to phenom-
ena of interest; however, the sheer number of sensors and the need to
minimize costs precludes manually recording the sensors’ locations. It
also precludes brute force solutions such as equipping each sensor with
a GPS unit.

Consequently, we would like the sensors to determine their own po-
sitions after placement. This is known as localization, and is typically
achieved by having each sensor compute range measurements to its
neighboring sensors, then algorithmically embedding the graph formed
by these ranges into a coordinate system (see chapter 2). This coordi-
nate system is then used to perform location-dependent tasks such as
geographic packet routing or target tracking.

7

Localization is often complicated by the difficulty of obtaining enough
accurate pair-wise range measurements between sensors. Inter-sensor
ranges can be corrupted by noise or lost entirely due to occluded line-
of-sight. Thus, consistently accurate localization requires robustness in
the face of missing or low quality measurements.

Nevertheless, localization is rarely if ever the purpose of a network.
Sensor networks are typically deployed to observe active phenomena in
the environment, and require accurate localization as a means to that
end. As a result, there is pressure in localization research to achieve
accuracy and robustness using as little hardware as possible.

1.2 Tracking

Target tracking is one of the motivating localization-dependent appli-
cations of sensor networks. In tracking applications, sensors jointly
observe phenomena, which may be people or objects passing through
the network or physical effects such as bullet shock-waves or anoma-
lous sounds. Once a phenomenon is detected, the sensors collaborate
to determine its spatial location. This estimate is reported to a com-
puter or person monitoring the network. Target tracking networks can
provide indoor navigation services to hand-held users or mobile robots,
track friendlies and hostiles on a battlefield, or monitor movement of
inventory in a store or warehouse.

Tracking is a well-understood problem (see chapter 2). Given the lo-
cations of the sensors and accurate range information to the target, it is
straightforward to determine the target’s position. Consequently, tra-
ditional tracking applications tend to be split into two separate phases.
First, the network is localized using a specialized algorithm. After
localization completes, the network enters a target tracking phase in
which target positions are estimated based on the discovered sensor
positions.

1.3 Calibration

In an ideal world, sensors would arrive from the factory fully calibrated
to begin taking accurate measurements of their surroundings. However,
this ideal situation is rarely achieved. For instance, deployment con-
ditions such as temperature affect the accuracy of ranging algorithms
based on acoustic time-of-flight by altering the speed of sound. Fur-
thermore, as shown in [35], differences between sensors can also result

8

in mis-calibrations that are difficult to correct before deployment. Cali-
bration in the field can therefore offer meaningful improvement in both
localization and target tracking accuracy. As with localization, there is
considerable economic incentive to develop auto-calibration algorithms
that allow sensors to self-calibrate in the field without external inter-
vention.

1.4 Simultaneous Localization and Track-

ing

For sensor networks deployed to track moving targets, some authors
have suggested using a moving target (or mobile) to assist in localizing
the network [8, 12, 27]. This approach is attractive for several reasons:

• It requires no additional localization-specific hardware on the in-
dividual themselves, potentially reducing both their size and cost.

• Unlike sensors, a mobile can move freely in the network. This pro-
vides a larger number and a greater diversity of measurements for
use in localization, which helps reduce the effect of noisy measure-
ments and static environmental obstacles.

• Use of a mobile means that the sensors are no longer constrained
to have line of sight to each other. This enables a broader range
of network deployments: in particular, it allows sensors to be
placed to optimize tracking coverage rather than to facilitate lo-
calization. This is especially significant because many types of
ranging hardware are directional. Traditional localization algo-
rithms therefore introduce a deployment conflict: sensors must
be oriented so that they can range to several other sensors in ad-
dition to observing areas where targets are likely to appear. This
wastes sensing resources and limits deployment options. SLAT
eliminates this problem, since it works best when sensors use
their full field of view to sense targets.

• Localization using a mobile potentially allows localization esti-
mates to continuously improve, even after the network begins
tracking targets. In particular, sensors that are closest to high
traffic areas can be localized very precisely. In turn, this facili-
tates high precision target tracking in these areas.

Existing methods fail to realize the full potential of mobile-based
localization. In particular, most require that the position of the mobile

9

be known at all times. Consequently, the mobile must be constrained to
a well-known trajectory or equipped with a GPS-like system. Further-
more, existing methods ignore the sensor calibration problem entirely.

We consider a more general scenario, in which the mobile is allowed
to move arbitrarily on an unknown path. As it moves, the mobile pe-
riodically emits a signal that allows sensors in the network to compute
their range to the mobile. These ranges are expected to be corrupted
by noise. Using solely these noisy range measurements, the objective
is to localize the sensors in the network, calibrate the sensors’ ranging
hardware if necessary, and track the position of the mobile. Accord-
ingly, we label this problem Simultaneous Localization and Tracking
(SLAT).

1.5 LaSLAT

Our solution to the SLAT problem takes the form of a Bayesian filter.
The filter uses range measurements taken by the network to update
a joint probability distribution over the positions of the sensors, the
trajectory of the mobile, and the calibration parameters of the network.
To avoid some of the representational and computational complexity of
general Bayesian filtering, we use Laplace’s method to approximate our
state with a Gaussian after incorporating each batch of measurements.
As a result, we call our algorithm LaSLAT.

LaSLAT inherits many desirable properties from the Bayesian frame-
work. The probabilistic model used in LaSLAT insures that measure-
ment noise is averaged out as more measurements become available,
which improves localization and tracking accuracy in high-traffic areas.
The filtering framework incorporates measurements in small batches,
providing on-line estimates of all locations, calibration parameters, and
their uncertainties. This allows the mobile to be tracked in near real-
time. It also speeds up the convergence of the algorithm and reduces
impact on the network.

Since LaSLAT maintains estimate uncertainties, mobiles can be dis-
patched on-line if desired to improve localization estimates in regions
where localization uncertainty is high. As we required in the prob-
lem statement, mobiles may move arbitrarily through the environment,
with no constraint on their trajectory or velocity. Furthermore, multi-
ple mobiles may be used in conjunction to expedite initial localization.

If available, ancillary localization information such as position es-
timates from GPS, anchor nodes, or radio-based ranging can be eas-
ily incorporated into our framework. Our algorithm avoids expensive

10

matrix operations by operating on sparse inverse covariance matrices
rather than operating directly on dense covariance matrices. This helps
LaSLAT run quickly and facilitates performing the LaSLAT computa-
tions distributedly in the network.

The user deploying the network may specify a coordinate system
for LaSLAT to honor when localizing sensors. If no coordinate system
is specified, LaSLAT recovers locations in a coordinate system that is
correct up to a translation, rotation, and possible reflection.

We demonstrate these features by accurately localizing a dense net-
work of 27 sensors to within one or two centimeters. The sensor nodes
are wireless Crickets [1] capable of measuring their distance to a mov-
ing beacon using a combination of ultrasound and radio pulses. In a
larger and sparser network, we localize sensors to within about eight
centimeters. In both cases, a measurement bias parameter is accurately
calibrated for all nodes. Finally, we present results from two experi-
ments in three dimensions, in which nodes were localized to within
seven centimeters.

11

Chapter 2

Related Work

2.1 Localization

Localization is a well established problem in sensor networks, and many
approaches have been developed in the literature. The vast majority
of these techniques treat localization as a stand-alone procedure that
takes place in advance of or concurrently with other operations in the
network. In the traditional localization problem, sensors are capable of
determining the distance between themselves and other nearby sensors.
This may be done using relatively accurate methods such as acoustic
time-of-flight (TOF), or using imprecise but cheap methods such as
radio signal strength indicators (RSSI). In dense networks, radio hop
count (DV) may be used as a surrogate for distance.

Several authors [10,17,31] have used multidimensional scaling (MDS)
as a localization technique. MDS is very effective at recovering sensor
topologies when accurate distances are available between all pairs of
sensors. Its performance degrades substantially when some distances
are unavailable.

Many algorithms [4,5,20,23,25,30,32] also depend on the presence of
anchor nodes, which are sensors that know their true locations a priori
through out-of-band means such as pre-programming or GPS. These
algorithms localize non-anchor nodes by construction using distances
from each non-anchor node to several anchor nodes. However, anchor
nodes are expensive, and not always perfectly accurate (i.e. GPS).
Furthermore, many of these algorithms suffer from propagation of er-
rors: sensors several hops from a beacon often accumulate considerable
position error.

Priyantha et al. [29] suggest a two-phase approach that is similar

12

in some ways to the approach proposed in this thesis. An initialization
phase uses an imprecise technique based on radio connectivity between
nodes to embed the sensors in a plane. Once initialization is complete, a
second phase uses precise time of flight ranges between adjacent sensors
to make local position adjustments.

Ihler et al. [16] treat localization as an inference problem on a graph-
ical model. This allows them to use nonparametric belief propagation
(NBP) to produce an estimate of sensor positions. This offers several
advantages, many of which are also offered by our LaSLAT technique.
NBP allows the use of non-Gaussian measurement models. It also pro-
duces an uncertainty measure that provides a context for use of its
sensor position estimates.

A number of authors [7, 21, 22, 24, 31] have proposed algorithms
based on coordinate system stitching. These algorithms follow a three
step divide-and-conquer process. First, the network is split into small
overlapping subregions. Next, each subregion computes a local map,
which is simply an embedding of the subregion in a relative coordinate
system. Finally, adjacent subregions are registered into a common co-
ordinate system using the overlapping nodes between local maps. By
performing registration recursively, all the subregions are incorporated
into a single global coordinate system.

Moore et al. [22] suggest a particularly sophisticated approach to
subregion formation, in which the subregions are chosen based on their
likelihood of forming accurate local maps. This technique has the ad-
vantage of producing a more homogeneous accuracy level across the
network. However, it achieves this by refusing to localize sensors that
cannot be positioned using pair-wise ranges to nearby nodes.

This illustrates a fundamental problem with localization based on
inter-sensor ranges: the limited availability of inter-sensor range data
means that some sensors may prove impossible to accurately localize.
The advantage of simultaneous localization and tracking (SLAT) is that
these nodes may become localizable in the future after additional sight-
ings of the mobile. Furthermore, SLAT offers highest accuracy where
mobiles move most frequently, whereas inter-sensor range-based algo-
rithms typically offer highest accuracy where sensor density is greatest
or in areas where ranging between sensors is easiest. In an ideal world,
these regions would coincide, but in an ad-hoc deployment, this may
not be the case.

13

2.2 Tracking

Like localization, target tracking is a well established problem in sen-
sor networks. However, most literature on the subject assumes that
localization information is available before tracking begins. As a re-
sult, most of the literature on tracking considers cluster formation [9],
power economy [36], or related problems such as target identification
and classification [3].

In this thesis, we assume that targets are easy for sensors to iden-
tify, allowing us to focus purely on tracking. This is reasonable in any
circumstance where the targets are tracked voluntarily – for instance
when the network is guiding a mobile robot or providing in-building
location information to a hand-held computer user. We also ignore
concerns such as power conservation, and focus instead on what in-
formation can be extracted from sensor measurements once they are
obtained.

2.3 Calibration

Several authors [6, 35] have researched automatic calibration in sensor
networks. Bychkovskiy et al. [6] calibrate photo-sensors in a dense
network by making use of the fact that adjacent sensors are likely to
observe the same level of stimulus.

The most directly relevant work to this thesis is the Calamari Ad-
hoc Localization System by Cameron Whitehouse [35]. Calamari uses
acoustic time difference of arrival (TDoA) ranging between sensors to
perform localization. Whitehouse showed that post-deployment cali-
bration of the acoustic sensors dramatically improved localization ac-
curacy. He also developed a macro-calibration technique in which in-
dividual sensor parameters are chosen to optimize the performance of
the network as a whole.

2.4 SLAT

Various authors have used mobiles to localize sensor networks [8, 12,
26–28], but these methods assume the location of the mobile is known.
One exception is [12], which builds a constraint structure as measure-
ments become available. Compared to [12], we employ a very extensible
statistical framework that allows more realistic measurement models.
Priyantha et al. [28] show how to guide a mobile to form rigidly local-
izable structures. Our problem differs from the one discussed in [28] in

14

that we make no assumptions about the trajectory of the mobile.
Our method is most similar to [26], which used an Extended Kalman

Filter (EKF) to track an underwater vehicle while localizing sonar bea-
cons capable of measuring their range to the vehicle. We replace the
EKF’s approximate measurement model with one based on Laplace’s
method. This provides faster convergence and greater estimation ac-
curacy. We also demonstrate that the Bayesian filtering framework
can calibrate the sensor nodes, and that the computation is capable of
distributing over the sensor nodes in a straightforward way.

2.5 SLAM

The SLAT problem is similar to SLAM and the 3D Structure from Mo-
tion (SFM) problem in computer vision. In these problems, two sets
of unknown variables are coupled in such a way that jointly estimat-
ing the two sets is relatively difficult, while estimating one set with
the other set given is relatively easy. In sensor network localization,
knowing the position of the nodes significantly simplifies tracking, and
knowing the position of the mobile significantly simplifies localization.
In SLAM and SFM, this relationship holds between the pose of the
robot or camera and that of features in the scene.

Our solution to SLAT adopts various important refinements to the
original Extended Kalman Filter (EKF) formulation of SLAM [33].
LaSLAT processes measurements in small batches and discards vari-
ables that are no longer needed, as demonstrated by McLauchlan [19].
Following [34], LaSLAT operates on inverse covariances of Gaussians
rather than on covariances directly to accelerate updates and facilitate
distributed computation.

15

Chapter 3

LaSLAT

LaSLAT uses a Bayesian filtering framework. Under this framework,
as each batch of measurements becomes available, it is used to up-
date a prior distribution over sensor locations, the mobile trajectory,
and various sensing parameters. The resulting posterior distribution is
then propagated forward in time using a dynamics model to make it a
suitable prior for use with the next batch of measurements.

In LaSLAT, after incorporating each batch of measurements the
posterior distribution is approximated with a Gaussian using Laplace’s
method [13]. Consequently, the amount of state saved between batches
is constant with respect to the number of measurements taken in the
past. The Gaussian approximation also simplifies propagation using the
dynamics model and incorporation of the next batch of measurements.

3.1 Approximate Bayesian Filtering for SLAT

As the mobile moves through the network, it periodically emits events
which allow some of the sensors to measure their distances from the
mobile.

Let ej denote the location of the mobile when it generated the
jth event. The tth batch et is a collection of consecutive events et =
{em . . . em+n}, with et

j denoting the jth event in the tth batch. Each
LaSLAT iteration incorporates the measurements from a single batch
of events.

Let si =
[

sx
i sθ

i

]

represent the unknown parameters of sensor i,

with sx
i denoting the sensor’s position and sθ

i its calibration parameters.
Then s = {si} is the set of all sensor parameters. The scalar yt

ij denotes

16

the range measurement between sensor i and the jth event in batch t,
so yt = {yt

ij} is the collection of all range measurements in batch t.
For each batch t, et and s are the unknown values that must be

estimated. We aggregate these unknowns into a single variable xt =
[

s et
]

for notational simplicity. Note that as defined, e and sx may
be vectors of either 2D or 3D points, allowing LaSLAT to be run easily
in either two or three dimensions.

The Bayesian filtering framework is a non-linear, non-Gaussian gen-
eralization of the Kalman Filter. For each batch t, it computes the
posterior distribution over sensor parameters, s, and events locations,
et, taking into account all range measurements taken so far:

p(xt|y1,y2, . . . ,yt).

In LaSLAT, we wish to update this distribution as range measure-
ments become available, and discard measurements as soon as they
have been incorporated. To do this, one can rewrite the distribution in
terms of a measurement model and a prior distribution derived from
the results of the previous iteration. Rewriting p(xt|y1,y2, . . . ,yt) as
p(xt|yold,yt), we get by Bayes’ rule:

p(xt|yold,yt) ∝ p(yt,xt|yold)

∝ p(yt|xt,yold)p(xt|yold)

∝ p(yt|xt)p(xt|yold), (3.1)

where proportionality is with respect to xt. The final equality follows
because when the sensor and mobile locations are known, the past mea-
surements do not provide any additional useful information about the
new batch of measurements. The distribution p(yt|xt) is the measure-
ment model: it reflects the probability of a set of observations given a
particular configuration of sensors and event locations (Section 3.2).

The distribution p(xt|yold) summarizes all information collected
prior to the current batch of measurements, in the form of a predic-
tion of xt and an uncertainty measure. It can be computed from the
previous estimate, p(xt−1|yold), by applying a dynamic model:

p(xt|yold) =

∫

xt−1

p(xt−1|yold)p(xt|xt−1) dxt−1. (3.2)

The distribution p(xt|xt−1) models the dynamics of the configuration
from one batch to another by discarding old event locations and pre-
dicting the locations of new events (Section 3.4).

17

1. Observe a new batch of measurements yt.

2. Represent the posterior p(xt|yt,yold) in terms of the prior
p(xt|yold) and the measurement model p(yt|xt) using Equation
(3.1).

3. Using Newton-Raphson [14], compute curvature at the mode of
p(xt|yt,yold) and use it to construct the approximate posterior
q(xt|yt,yold). This posterior is the estimate for the batch t (Sec-
tion 3.3).

4. Compute the prediction p(xt+1|yt,yold) using q(xt|yt,yold) (Sec-
tion 3.4).

5. Using the prediction as the new prior, return to step 1 to process
batch t + 1.

Table 3.1: One iteration of LaSLAT. Incorporates batch t and prepares
to incorporate batch t + 1.

When the measurement model p(yt|xt) is not Gaussian, the up-
dates (3.1) and (3.2) become difficult to compute. We handle the non-
Gaussianity of the measurement model by approximating the poste-
rior p(xt|yold) with a Gaussian distribution q(xt|yold) using Laplace’s
method (Section 3.3). This Gaussian becomes the basis for the prior
distribution for the next batch. q is much simpler to save between
batches than the full posterior – in particular, it allows all the old mea-
surements to be discarded. Table 3.1 summarizes the steps of LaSLAT.

Other approximate Bayesian filters such as the Extended Kalman
Filter (EKF) or particle filters could also be used in place of our Lapla-
cian method. The EKF differs from our algorithm because it does not
perform a full optimization when incorporating each event. In many
cases this is a helpful optimization; however, as we show in chapter 6,
on the SLAT problem it sacrifices accuracy and speed of convergence.
Particle filters allow a closer approximation of the posterior distribu-
tion, especially when the distribution is multi-modal. However, our al-
gorithm seems to perform well in practice while requiring significantly
less computation.

18

3.2 Measurement Model

New measurements influence localization and calibration estimates via
the measurement model. A measurement model is a probability distri-
bution p(yt|xt) over a batch of range measurements, given a particular
choice of the calibration parameters and positions for the sensors and
the mobile. One advantage of the LaSLAT framework is that this mea-
surement model can be tailored to specific measurement hardware and
deployment parameters. The measurement model encapsulates details
such as the kind of data being observed (angle of arrival, distance, radio
signal strength, etc), as well as the types of noise that are possible in
the environment.

In this thesis, we develop a measurement model that reflects the
characteristics of the popular acoustic time difference of arrival (TDoA)
ranging technique. In most TDoA implementations, the transmitter (in
this case the mobile) emits a tagged radio message, then a short time
later produces an acoustic signal. Upon hearing the radio message,
the sensors in the network activate their microphones and listen for
the arrival of the acoustic signal. Once the acoustic signal arrives, the
sensors use the difference in arrival time between the acoustic signal
and the radio message to estimate the distance between the sensor and
the transmitter.

This technique can be quite accurate, especially when line-of-sight
exists between the transmitter and the receiver. The Cricket ranging
system [1], which uses a single inaudible ultrasound pulse, can measure
distances up to ten meters with error as small as 1-2 centimeters.

However, TDoA measurements are susceptible to several types of
error. First, various random delays in the ranging process introduce
small (sub-centimeter) errors, which take the form of a variance from
measurement to measurement. Second, mis-calibration can result in a
measurement bias. For instance, temperature or humidity can cause
the actual speed of sound to be different from the pre-calibrated con-
stant used by the sensor. The measurement bias can easily vary from
deployment to deployment, making accurate pre-calibration at the fac-
tory nearly impossible. In the Cricket ranging system, we have ob-
served biases of between 3 and 10 centimeters. The biases vary only
slightly from sensor to sensor, but are typically consistent throughout
a deployment area. Finally, TDoA measurements can be vulnerable to
both echoes and ambient noise. In both cases errors occur because the
time of flight observed by the sensor does not correspond to the straight
line distance from the sensor to the event; instead, it corresponds to a
longer path (in the case of an echo), or no path at all (in the case of an

19

ambient noise). In one test environment, a security system produced 40
kHz ultrasound that occasionally interfered with the Crickets’ ranging
system.

In this section, we ignore echo effects, and assume that each mea-
surement is a corrupted version of the true distance between the event
and the sensor that took the measurement:

yt
ij = ‖sx

i − et
j‖ + sθ

i + ωt
ij , (3.3)

where ‖ · ‖ indicates the vector 2-norm, giving the Euclidean distance
between sx

i and et
j . ωt

ij is a zero-mean Gaussian random variable with

variance σ2, and sθ
i is a bias parameter that models an unknown shift

due to sensor mis-calibration. In section 4.1 we present a richer model
that performs better in the presence of echoes.

As defined in equation (3.3), p(yt
ij |si, e

t
j) is a univariate Gaussian

with mean ‖si − et
j‖ + sθ

i and variance σ2. Since each measurement
yt

ij depends only on the sensor si that took the measurement and the
location et

j of the mobile when it generated the event, the measurement
model factorizes according to

p(yt|xt) =
∏

i,j

p(yt
ij |si, e

t
j), (3.4)

where the product is over the sensors and the events that they perceived
in batch t. Equation (3.4) is the complete measurement model for a
batch of measurements.

Though LaSLAT is designed to operate in their absence, LaSLAT
can make use of inter-sensor range measurements if they are available.
These can be encoded using a generative model similar to equation
(3.3):

yt
kl = ‖sx

k − sx
l ‖ + sθ

k + ωt
kl, (3.5)

where sk and sl are the sensor pair that generates the inter-sensor range
measurement yt

kl, and ωt
kl is additive zero-mean Gaussian noise. The

resulting probability distribution p(yt
kl|sk, sl) becomes an additional

factor in the product (3.4). This demonstrates the ease with which
LaSLAT can rigorously incorporate additional sources of localization
information.

3.3 Incorporating Measurements

The measurement model derived in the last section can be combined
with a prior distribution p(xt|yold) using equation (3.1) to find the
posterior distribution p(xt|yold,yt).

20

This posterior has no compact representation – in particular, it
takes up space proportional to the total number of measurements ob-
served by the network since the first batch. To curb this complexity,
we save only a Gaussian approximation of the posterior. This Gaussian
representation requires constant space with respect to the number of
measurements observed, which allows LaSLAT to run indefinitely with-
out requiring additional memory. It also has the advantage of being
easy to distribute across the sensor network (chapter 5).

This approximate Gaussian posterior q(xt|yold,yt) can be obtained
from the prior distribution p(xt|yold) and the measurement model p(yt|xt)
using Laplace’s method [13].

To fit an approximate Gaussian distribution q(x) to a distribution
p(x), Laplace’s method first finds the mode x∗ of p(x), then computes
the curvature of the negative log posterior at x∗.

Λ−1 = −
∂2

∂x2
log p(x)

∣

∣

∣

x=x∗

.

The mean and covariance of q(x) are then set to x∗ and Λ respectively.
Notice that when p is Gaussian, the resulting approximation q is exactly
p. For other distributions, the Gaussian q locally matches the behavior
of p about its mode.

The mode finding problem can be expressed as:

xt∗ = argmax
xt

p(xt|yt,yold)

= arg min
xt

− log
[

p(yt|xt)p(xt|yold)
]

= arg min
xt

(xt − µ)T Ωx(xt − µ) +
1

σ2

∑

i,j

(‖sx
i − et

j‖ + sθ
i − yt

ij)
2,

(3.6)

where µ = E
[

xt|yt,yold
]

, and Ωx = Cov−1
[

xt|yold
]

.
We use the Newton-Raphson iterative optimization algorithm [14]

to find the mode xt∗ and the curvature H (Appendix B). Following
Laplace’s method, the mean E

[

xt|yold,yt
]

of q is set to xt∗ and its in-

verse covariance Cov−1
[

xt|yold,yt
]

is set to H. Representing q using
its inverse covariance allows us to avoid computing the matrix inverse
H−1 after adding each measurement, which significantly improves per-
formance and facilitates a distributed implementation of our algorithm
(Chapter 5).

The Gaussian approximation described in this section works well
when the posterior distribution has a single strong mode. However,

21

when the posterior contains several equally probable modes, the Gaus-
sian approximation effectively discards all but one. Consequently, this
algorithm is vulnerable to substantial errors when the measurements
and prior do not favor a unique estimate. This can occur if the mobile
does not move very much during a batch and the prior distribution is
mostly uninformative. In that case, the Gaussian approximation risks
committing too quickly to a particular parameter estimate. In our ex-
perience, this problem can be avoided by using larger batch sizes when
the prior’s covariance is large. It can also be solved by using a Gaussian
mixture model or a particle filter to approximate the posterior distribu-
tion between batches. These alternatives are able to fit a multi-modal
posterior; however, they are more complex and consequently require
greater computational power to manipulate.

3.4 Dynamics Model

In this thesis, we assume mobiles can move arbitrarily and that sensors
are stationary. When propagating the posterior q(xt|yold,yt) forward
in time, we need only retain the components that are useful for incor-
porating the next batch of measurements. Thus, we may remove the
estimate of the mobile’s trajectory from batch t, but we must incorpo-
rate a guess for the mobile’s path during batch t + 1. Therefore, the
prediction step of Equation (3.2) can be written:

p(xt+1|yold,yt) = p(s, et+1|yold,yt) = p(et+1)q(s|yold,yt) (3.7)

q(s|yold,yt) =

∫

et

q(xt|yold,yt) det.

The Gaussian q(xt|yold,yt) captures the posterior distribution over sen-
sor locations given all measurements taken so far, and has already been
computed by the method of section 3.3. We obtain q(s|yold,yt), by
marginalizing out the mobile’s trajectory during batch t.

The prior p(et+1) is Gaussian with very broad covariance, indicating
that the future trajectory of the mobile is unknown. In some applica-
tions, it may be possible to use past trajectories to make better guesses
for et+1. For example, p(et+1) could be used to require events to form a
smooth path. This can help accurately position events with few quality
measurements. For maximum generality, we will not attempt to do so
in this section, meaning that the mobile is allowed to move arbitrarily
between events. In section 4.2, we present a method of requiring that
events follow a smooth trajectory.

22

The operations of Equation (3.7) can be carried out numerically
by operating on the mean and inverse covariance of q(xt|yold). First,
partition according to s and et:

E
[

xt|yold
]

=

[

E[s|yold]
E[et|yold]

]

Cov−1
[

xt|yold
]

=

[

Ωs Ωset

Ωets Ωet

]

.

Marginalizing out et produces a distribution q(s|yold) whose mean is
the s component of the mean of q(xt|yold) and whose inverse covariance
is:

Cov−1
[

s|yold
]

= Ωs − ΩsetΩ−1
et Ωets. (3.8)

The parameters of p(xt+1|yold) are those of q(s|yold), augmented by
zeros to account for an uninformative prior on et+1:

E
[

xt+1|yold
]

=

[

E
[

s|yold
]

0

]

Cov−1
[

xt+1|yold
]

=

[

Cov−1
[

s|yold
]

0

0 0

]

. (3.9)

The components of the inverse covariance of p(xt+1|yold) corresponding
to et+1 are set to 0, corresponding to infinite variance, which in turn
captures our lack of a priori knowledge about the location of the mobile
in the new batch. The mean is arbitrarily set to 0. If some information
is known a priori about et+1, then the 0 components of E

[

xt+1|yold
]

and the bottom right 0 components of Cov−1
[

xt+1|yold
]

can be used
to capture that knowledge.

3.5 Prior Information and Initialization

Prior information about the sensor parameters is easy to incorporate
into LaSLAT. Such information might be available because the sensors
were placed in roughly known positions, or because another less accu-
rate source of localization is available. Prior information may also be
used to define LaSLAT’s global coordinate system, by fixing the rela-
tive positions of several sensors. In addition, calibration in the factory
might supply prior information.

If such prior information is available it can be supplied as the prior
when incorporating the first batch of measurements. We set the co-
variance of this prior to σ0I, with σ0 a large scalar, which makes the

23

prior diffuse. The large covariance allows measurements to override
the positions prescribed by the prior, but provides a sensible default
when few measurements are available. The mode of this prior (or for
subsequent iterations, the mode of p(s|yold)) is also used as the initial
iterate for the Newton-Raphson iterations. To obtain the initial iterate
for an event, we use the average estimated location of the three sensors
with the smallest range measurements to the event.

In our experiments, we utilize the radio connectivity of the sen-
sors to obtain prior localization information. The initialization step
described by Priyantha et al. [29] (see Appendix A) provides rough
position estimates to serve as a prior before any measurements are in-

troduced. This prior takes the form p(sx) ∝ exp
[

− 1
2σ2

0

∑

i ‖s
x
i − x0

i ‖
2
]

,

where x0
i is the position of the ith sensor as predicted by the initializa-

tion step and σ0 is a large variance.
We have observed empirically on Cricket hardware [1] that though

measurement biases vary between deployments, they tend to be fairly
consistent from sensor to sensor. This information can be used as a
prior over the sensor measurement biases sθ

i . We encode this informa-

tion as a distribution with the form p(sθ) ∝ exp
[

− 1
2σ2

b

∑

i∼j(s
θ
i − sθ

j)
2
]

,

where the summation is over sensors that are in close proximity to
each other, and σb is a constant used to tune the impact of this prior
on the measurement biases. This illustrates a important attribute of
LaSLAT: it is easy to add platform-specific optimizations to improve
performance. In many localization algorithms this is impossible: a
change in hardware or deployment environment often necessitates a
completely new approach.

24

Chapter 4

LaSLAT Extensions

In the last chapter, we described the core LaSLAT algorithm. In this
chapter, we consider several useful enhancements. First, we describe
a measurement model that provides robust detection and elimination
of erroneous range measurements. Then, we show how to require that
LaSLAT’s event position estimates follow a smooth path.

4.1 Robust Measurement Outlier Rejection

When using time difference of arrival (TDoA) acoustic ranging, many
external factors can cause non-Gaussian measurement error. For in-
stance, in some environments, ambient sounds can cause completely
spurious measurements. In addition, environmental echoes can cause
substantial delays in the sound pulse’s time of flight, resulting in highly
errant measurements. This effect is illustrated in figure 4.1. In these
types of environments, it can be helpful to define a more robust mea-
surement model. We propose a mixture model for this purpose. Let
ht

ij be a Bernoulli random variable that is 1 with probability p. Then
a generative model of measurements might be:

yt
ij =

{

‖sx
i − et

j‖ + sθ
i + ωt

ij , ht
ij = 1

ut
ij , ht

ij = 0
, (4.1)

where ut
ij is a uniform random variable over all possible range mea-

surements. Equation (4.1) produces an accurate measurement with
probability p, and an uninformative and therefore useless result with
probability 1 − p. Physically, when a measurement occurs, there are
three possible results:

25

170 180 190 200 210 220 230 240 250
0

5

10

15

20

25

30

Reported distance (cm)

N
um

be
r

of
 m

ea
su

re
m

en
ts

Figure 4.1: An example of outlying range measurements. This data
was generated by rotating a beacon cricket at a fixed distance from
a sensor. This histogram plots the range measurements taken by the
sensor. Notice that the majority of the measurements are reasonably
close to the true distance (much of the variance is caused by the move-
ment of the ultrasound transmitter on the beacon with respect to the
sensor); however, a few measurements are nearly half a meter too long.
These outlying measurements can dramatically decrease localization
and tracking performance, so it is desirable to detect and discard them.

26

• The radio message is received, and the sensor’s microphone is ac-
tivated. However, before the acoustic pulse arrives at the sensor,
an unexpected environmental sound reaches the sensor, causing
a short measurement.

• The radio message is received, and the sensor’s microphone is
activated. However, the acoustic pulse is deflected by an obstacle.
Before the microphone deactivates due to a timeout, an echo of
the acoustic pulse arrives, causing a long measurement.

• The radio message is received, and the acoustic pulse arrives at
the microphone without incident. The measurement is accurate.

Equation (4.1) models this as a Bernoulli trial: the third case occurs
with probability p, and one of the error cases occurs with probability
1− p. ht

ij is the random variable representing the outcome of this trial
for measurement yt

ij . Equation (4.1) leads directly to the probability
distribution:

p(yt
ij |si, e

t
j) =p(ht

ij = 1)
1

Z1
exp

[

−
(yt

ij − ‖sx
i − et

j‖ − sθ
i)

2

2σ2

]

+ p(ht
ij = 0)

1

Z2
, (4.2)

where Z1 and Z2 are normalization constants. This changes the struc-
ture of equation (3.6), since each measurement yt

ij now has an unknown
explanatory variable ht

ij . This new structure is straightforward to op-
timize using an Expectation Maximization (EM) algorithm [13]. Let
θ = [xt]. EM finds a maximizing θ repeatedly applying the following
update step:

θk+1 = argmax
θ

Ep(ht|yt,θk)

[

log p(yt,ht|θ,yold) + log p(θ|yold)
]

= argmax
θ

∑

ht

p(ht|yt, θk)
[

log p(yt,ht|θ,yold) + log p(θ|yold)
]

= argmax
θ

log p(θ|yold) +
∑

i,j

∑

ht
ij

p(ht
ij |y

t
ij , θ

k) log p(yt
ij , h

t
ij |θ)

(4.3)

4.1.1 E-step

In the E-step, we must compute p(ht
ij |y

t
ij , θ

k) for all i and j. Since
log p(yt

ij , h
t
ij = 0|θ) is constant with respect to θ, the corresponding

27

terms have no effect on the maximization (4.3). Consequently, we need
only calculate:

p(ht
ij = 1|yt

ij , θ
k) =

p(yt
ij , h

t
ij = 1|θk)

∑

h p(yt
ij , h|θ

k)

=
p(ht

ij = 1)p(yt
ij |h

t
ij = 1, θk)

∑

h p(h)p(yt
ij |h, θk)

This expression is easy to compute since it is in terms of the measure-
ment model conditioned on h and the Bernoulli distribution p(h):

p(ht
ij = 1|yt

ij , θ
k) =

pN

pN + (1 − p)/Z2
, (4.4)

where

N =
1

Z1
exp

[

−
(yt

ij − ‖sx
i − et

j‖ − sθ
i)

2

2σ2

]

.

4.1.2 M-step

In the M-step, we optimize equation (4.3) to find a new estimate θk+1.

Let wt,k
ij = p(ht

ij = 1|yt
ij , θ

k) as computed in the E-step by equation
(4.4). Equation (4.3) reduces to:

θk+1 = arg max
θ

log p(θ|yold) +
∑

i,j

wt,k
ij log p(yt

ij , h
t
ij = 1|θ)

= arg min
xt

(xt − µ)T Ωx(xt − µ)

+
1

σ2

∑

i,j

wt,k
ij (‖sx

i − et
j‖ + sθ

i − yt
ij)

2. (4.5)

The M-step (4.5) is therefore a re-weighting of the original LaSLAT
optimization problem (equation (3.6)). As a result, it can be per-
formed analogously using Newton-Raphson (see Appendix B). Note
that the weight wt

ij of a measurement yt
ij after the final EM iteration

corresponds to the probability that the measurement is accurate given
the current parameter estimates. Thus, accurate measurements are as-
signed weights close to one, and highly inaccurate measurements are
assigned weights close to zero. This accomplishes the goal of rejecting
outlying measurements.

28

4.1.3 Outlier rejection summary

When the update step (4.3) is performed repeatedly, the θk ’s con-
verge to xt∗, an optimal estimate of sensor parameters and event lo-
cations that detects and ignores outlying measurements. This im-
proves LaSLAT’s performance in the presence of environmental am-
bient sounds or echoes due to physical obstacles.

4.2 Specifying Mobile Dynamics

In section 3.4, we assumed that the mobile moved arbitrarily. However,
in some cases (for instance when tracking targets that move continu-
ously and trigger events frequently), one may improve performance by
explicitly requiring that successive events occur close to each other. In
this section, we present a technique for adding such a constraint to
LaSLAT.

As shown in section 3.4, the prior distribution for LaSLAT
p(xt+1|yt,yold) is computed according to:

p(xt+1|yold,yt) = p(et+1)q(s|yold,yt). (4.6)

Until now, we have defined p(et+1) to be a Gaussian with high covari-
ance. Let et+1

j = [ex
j ev

j ea
j], where ev

j and ea
j represent the velocity

and acceleration of the mobile at the time of event j, and define et+1
0 to

be the estimated parameters of the event immediately preceding batch
t + 1. Then we can express p(et+1) as follows:

p(et+1) =
n

∏

j=1

p(et+1
j |et+1

j−1). (4.7)

We enforce smoothness by setting p(et+1
j |et+1

j−1) to a Gaussian with

mean Aet+1
j−1 and covariance σ2

dI . A is a matrix that expresses the
expected physical motion of the mobile. We assume that events occur
at a constant rate, and ignore quadratic terms, allowing us to use the
matrix:

A =

I I 0
0 I I
0 0 I

as the dynamics matrix. This matrix has the advantage of being compu-
tationally straightforward while having the desired effect of smoothing
the event positions. σd is a tunable constant that allows us to vary the

29

effect of the smoothness prior versus the effect of measurement data on
the events’ position estimates.

Thus, we can rewrite equation (4.7) as:

p(et+1) ∝ exp

[

−
1

2σ2
d

‖et
j − Aet

j−1‖
2

]

.

This term can be rewritten in the form:

p(et+1) ∝ exp

[

−
1

2
(et − µd)

T B(et − µd)

]

,

where the block tridiagonal matrix B and vector µd are constants ex-
pressible in terms of A and et+1

0 :

B =
1

σ2
d

I + AT A −AT

−A
. . .

. . .

. . . I + AT A −AT

−A I

µd = B−1

−A
0
...

et+1
0 .

B and vector µd can then incorporated into equation (3.9) as follows:

E
[

xt+1|yold
]

=

[

E
[

s|yold
]

µd

]

Cov−1
[

xt+1|yold
]

=

[

Cov−1
[

s|yold
]

0

0 B

]

.

As we demonstrate in chapter 6, this smoothness constraint can
noticeably improve performance on occasional poorly measured events.

Unfortunately, the smoothness constraint complicates the marginal-
ization step shown in equation (3.8), since the inverted matrix Ω−1

et is no
longer diagonal. Consequently, the smoothness prior is recommended
for use only when LaSLAT computations are being performed centrally.

30

Chapter 5

Implementation

Our current implementation sends measurement batches to a central
computer; however, we show here that LaSLAT can be feasibly dis-
tributed if desired. We also explore running time bounds for both a
distributed implementation and a centralized implementation. Finally,
we discuss the trade-off between centralized and distributed processing
in LaSLAT.

5.1 Definitions

In order to quantify LaSLAT’s performance, several definitions are re-
quired. Let nlocal be the expected number of sensors within a one-hop
neighborhood of a sensor s. The one-hop neighborhood can be thought
of as a circle around s whose radius is two times the sensor’s maximum
sensing range. Thus, the one-hop neighborhood contains all sensors
that can sense an event in common with s. We assume that s can com-
municate directly with all of the sensors in this one-hop neighborhood.

Furthermore, we define nevents to be the number of events observed
by s in a single batch of measurements. nevents can be held constant
by varying the amount of time between batches.

Note that nlocal and nevents are constants fixed at deployment by
the network designer. This means that asymptotic bounds in nlocal and
nevents are in some sense constant bounds, since they enable sensors to
be provisioned with an amount of memory and processing power that is
guaranteed sufficient no matter how many events the network observes.

31

5.2 Graph Locality

The Gaussian prior p(xt|yold) is completely summarized by a vector of
means xt∗ and an inverse covariance Ω.

The symmetric inverse covariance matrix Ω =
[

Ωs Ωse

Ωes Ωe

]

defines an
undirected graph between sensors and events. Two vertices in this
graph are connected if their corresponding block in Ω is non-zero. We
say Ω has local connectivity if the corresponding graph only connects
sensors that are within one hop of each other and connects events only
to the sensors that measured the event. As we will show, in LaSLAT
Ω always has local connectivity.

5.3 Distributability of the Prior

The mean vector is straightforward to distribute: each sensor simply
stores its own mean, those of its one hop neighbors, and those of all
nearby events. Thus, storage for means requires at most O(nlocal +
nevents) per sensor.

Ω requires more careful consideration, but is also distributable. If
Ω has local connectivity, each row of Ω corresponding to a sensor has
about nlocal + nevents non-zero entries. Each row corresponding to an
event has less than nlocal non-zero elements, since only sensors within
the neighborhood of the event obtain measurements to it. Locally
connected matrices are therefore easy to distribute. Each sensor stores
its own rows in Ω. Event rows are delegated randomly to a sensor
for storage, leaving sensor storing about nevents/nlocal event rows. The
amount of data stored by each sensor is consequently O(nlocal+nevents).
If the computation is performed centrally, then the central computer
must store this same amount of data per sensor in the network.

5.4 Performing Computations

LaSLAT consists of two significant computational steps: incorporating
measurements and applying the dynamics model. As formulated in this
paper, these steps can be performed using only local communication
between sensors that have witnessed a common event. Furthermore,
these operations retain local connectivity in the prior inverse covariance
matrix Ω.

32

5.4.1 Measurement incorporation

The principal operation involved in incorporating new measurements is
a Newton-Raphson iteration, shown in equation (B.3). Each Newton-
Raphson iteration has two parts. First a matrix and vector must be
computed based on equation (B.3). Then, a least squares optimization
must be performed.

The matrix and vector can be computed locally, since they require
only the parts of Ω and xt∗ that are found locally and the measurements
to any local events. The communication and time costs for each are
proportional to nevents ∗nlocal, which is the minimum time required for
each sensor to broadcast new measurements to neighboring sensors and
receive their measurements in return. It is similarly the minimum time
for all sensors to transmit their measurements to a central computer.

Once the matrix and vector are computed, the least squares opti-
mization can be performed using Gauss-Seidel iterations [2]. Gauss-
Seidel is guaranteed to converge when solving symmetric positive defi-
nite systems of equations like those found in LaSLAT. Each iteration of
Gauss-Seidel requires O(nlocal) computation and O(1) radio messages
per sensor and event when distributed, or O(n ∗ nlocal) computation
when centralized, where n is the total number of sensors and events.
In practice, we find that Gauss-Seidel converges in a few tens of iter-
ations for our systems, since LaSLAT does not require high precision
convergence.

Gauss-Seidel requires that sensors perform their processing in a con-
sistent order, which diminishes the potential parallelization of the least
squares computation. However, with a constant bound on the number
of Gauss-Seidel iterations, the total time required for each distributed
Newton-Raphson iteration is O(n∗nlocal). Note that this is not a tight
upper bound: as the sensor parameters begin to converge, many pa-
rameters will not need to be updated every batch. This increases the
amount of parallelism that can be exploited, allowing the total running
time to approach O(nlocal), the amount of time required to simply
locate the newest events. See [2] for more details and an in-depth de-
scription of Gauss-Seidel iterations.

5.4.2 Event marginalization

Marginalization is performed using equation (3.8):

Cov−1
[

s|yold
]

= Ωs − ΩsetΩ−1
et Ωets.

It is distributable because each sensor row is updated only on behalf of
local events. Since Ωset and Ωets are sparse and Ωet is block diagonal,

33

the total time required is only O(nlocal ∗ nevents) per sensor. All the
computations can occur in parallel.

Unfortunately, the smooth dynamics extension developed in section
4.2 produces an Ωet that is block tridiagonal and has a dense matrix
inverse in general. As a result, the smooth dynamics extension ruins
local connectivity. Thus, smooth dynamics may only be employed when
LaSLAT computations are performed at a central computer.

5.4.3 Preservation of local connectivity

It remains to be shown that the LaSLAT computations retain local con-
nectivity in Ω when the smooth dynamics extension is not employed.
This is easily confirmed by induction on Ωs. The initial prior has
Ωs = σ0I , which is diagonal and therefore locally connected. As we
show in the appendix, the measurement incorporation and Gaussian
approximation steps do not change the connectivity of Ω. The con-
nectivity of Ωs only changes when events are marginalized out of the
Gaussian prediction by equation (3.8). It can be verified, however, that
the −ΩseΩ

−1
e Ωes term added to Ωs only affects elements of Ωs whose

corresponding sensors observed an event in common during the most
recent batch. As a result, Ωs retains local connectivity during LaSLAT
operations.

5.4.4 LaSLAT convergence

Each LaSLAT batch requires at least one Newton-Raphson optimiza-
tion, which consists of several iterations. However, these iterations
need not continue until the solution is fully converged. In fact, if each
LaSLAT batch performs only one Newton-Raphson iteration, then the
resulting algorithm is almost precisely the Extended Kalman Filter
(EKF) form of SLAT. As we show in chapter 6, additional Newton-
Raphson iterations substantially improve performance. However, little
performance is lost if the number of iterations is bounded at a small
constant. In our experiments, Newton-Raphson often converged in less
than ten iterations. In two dimensions, frequently as few as three or
four were required for convergence. Thus, the number of iterations may
be treated as a constant factor.

When using measurement outlier rejection (section 4.1), even less
Newton-Raphson iterations are required per optimization, since the EM
optimization runs Newton-Raphson repeatedly. The EM optimization
remains distributable, since the only additional processing step is the
computation of measurement weights.

34

5.5 Centralized vs. Distributed Implemen-

tation

As we have demonstrated, LaSLAT is amenable to both centralized
and distributed implementation. In a centralized implementation, the
network must transport all range observations to a central computer,
which performs LaSLAT computations and optionally returns position
estimates to the network. In a distributed implementation, the LaSLAT
computations are performed in-network.

Consider a small network in a controlled environment such as a
building. The experiments in chapter 6 are all representative of such a
scenario. In this case, the central computer can be positioned within
a single radio hop of all or nearly all sensors. In this case, the best
performance is obtained by transferring all the measurements to the
central computer. Centralization in this case reduces the radio band-
width, memory, and processing requirements on the sensors, decreasing
the hardware cost of the network. Currently, sensors remain somewhat
expensive and radio bandwidth remains a scarce commodity, so cen-
tralization is very desirable.

As the network grows larger distributed computation begins to look
compelling. When multiple hops are required to transmit data to the
central computer, the energy and bandwidth cost of centralization in-
creases, particularly for nodes near the central computer. In this case,
distributing LaSLAT may save power by keeping computation and com-
munication local. Furthermore, in some scenarios (such as battlefield
applications), it may be impossible to provision the network with a
central computer, in which case distributed computation is necessary.

In many cases, however, centralized computation is straightforward
and desirable even in large networks. For instance, in large indoor
networks, it is possible to use pre-existing high-speed wireless or wired
networks to transmit data rapidly to a central computer, which need
not be co-located with the network. In these environments, the network
forms a hierarchy in which sensors transmit directly to a base station,
which in turn transmits to the central computer over a high-speed link.
This architecture has the advantage that the individual sensors need
relatively few capabilities. The tracking sensor required for LaSLAT,
for example, could be little more than a radio, an ultrasound receiver,
and a tone detector. Such a limited sensor is likely to be cheaper
and require less power than a sensor with enough processing power,
memory, and radio bandwidth to perform distributed computations.
The savings may be used to provision a smaller number of computation

35

nodes or base stations with a high speed link or fast processor and a
more substantial power supply. Furthermore, the hierarchical network
is better suited to delivering tracking data from the network to end
users, since end users are more likely to be connected to a high speed
network than to the sensor network’s radio system.

LaSLAT has been designed to perform well with either a central-
ized or a distributed implementation. The results in this thesis were all
computed using the centralized variant. The distributed variant per-
forms exactly the same computations, and can therefore be expected
to achieve the same results.

36

Chapter 6

Results

Our experiments use the Cricket ranging system [1] (see figure 6.1).
Sensor Crickets are placed in an area, and one Cricket is attached to
a mobile. The mobile Cricket periodically emits an event (a radio and
ultra-sound pulse) at a rate between one and three per second. At each
sensor, the difference in arrival time of these two signals is propor-
tional to the distance between the sensor and mobile. The crickets can
therefore estimate ranges from these arrival times. No range measure-
ments between the sensor Crickets are collected. The measurements
are transmitted to a desktop machine, which processes them in batches
using LaSLAT, which we implemented in Java. The ultra-sound sensor
on a Cricket occupies a 1 cm by 2 cm area on the circuit board, so it

Figure 6.1: The Cricket sensor node used in our experiments.

37

0 50 100 150 200
−200

−150

−100

−50

0

50

Figure 6.2: Small network setup. Six sensors (squares) are arranged
around a rectangular enclosure. A camera captured the ground truth
trajectory of the ROOMBA. The ROOMBA followed the trajectory
depicted.

difficult to estimate the ground truth location of a Cricket beyond that
accuracy.

In all of the experiments, LaSLAT recovered sensor locations in
a relative coordinate system that can be aligned to a global coordi-
nate system using a single rigid transformation (a rotation and transla-
tion). In order to compare LaSLAT’s results to measured ground truth,
we computed the necessary rigid transformation using the method de-
scribed in [15].

6.1 ROOMBA Experiment

Our first experiment used the same setup as [22]. Six sensor crickets
were placed around a rectangular enclosure 2.1 meters by 1.6 meters.
A ROOMBA robotic vacuum cleaner with the mobile Cricket attached
was allowed to move freely within the enclosure, generating about 250
events. See Figure 6.2.

Most events were measured by all 6 sensors. An initial localization
guess was obtained from radio connectivity information using the ini-

38

−100 −50 0 50 100 150 200 250 300
−350

−300

−250

−200

−150

−100

−50

0

50

Figure 6.3: Recovered trajectory and sensor positions. Circles are
guesses of initial sensor locations obtained from radio connectivity (ap-
pendix A). LaSLAT processed measurements in batches of 30 events,
and recovered sensor locations depicted by crosses. The trajectory is
also correctly recovered. LaSLAT improves considerably on the initial
localization guess obtained from connectivity. After a global rotation
and translation, the average localization error for the sensors was 1.8
cm, which is within the error tolerance of the ground truth.

39

tialization routine of [29]. The resulting average localization error in
this initial guess was 66 cm. This initial guess was used as a prior and an
initial iterate for LaSLAT. LaSLAT incorporated range measurements
in batches of 30. Each mode finding operation required an average of
only 2.8 Newton-Raphson steps. Figure 6.3 shows the estimated sensor
localizations and trajectory. Since the output had an arbitrary rota-
tion and translation, it was rigidly aligned to fit the rotation and origin
of the ground truth using the algorithm described in [15]. The final
localization error was 1.8 cm, averaged over the sensor nodes. This is
within the error tolerance of the ground truth.

6.2 Two Dimensional Experiments

In the remainder of our two dimensional experiments, sensors were
placed facing upwards on the floor of the coverage area. The mobile
cricket was manually moved through the network. It was suspended
at a constant height of about 190 centimeters, and oriented facing the
floor. Due to the conical propagation of ultrasound from the mobile,
this approximated a radial spread of sound in two dimensions. Range
measurements gathered in these experiments were adjusted in a pre-
processing phase to remove the effect of relative height.

6.2.1 27 node experiment

Our second experiment involved a larger network with 27 Cricket sen-
sor nodes deployed in a 7 m by 7 m room. Whereas in the previous
experiment the nodes were on the perimeter of the ROOMBA mobile’s
trajectory, in this experiment, we manually pushed a mobile through
the network, generating about 1500 events. Figure 6.4 shows the loca-
tion of the sensors and part of the trajectory of the mobile projected
on a top view picture of the setup.

Each event was heard by about 10 sensors. Figures 6.5(a)-(d) show
localization and tracking output as event batches are processed, along
with the ground truth and estimated mobile trajectories for that batch.
Error ellipses show unit standard deviation contours for each sensor
node. Nodes have high uncertainty at early stages, but when the mo-
bile passes near a node, its error ellipse shrinks appropriately. In this
experiment, a measurement bias of about 23 cm was computed for each
sensor node. Figure 6.6 shows the final localization of the nodes, repro-
jected on the picture of the setup. This experiment used batches of 10
measurements and produced a final localization error of 1.9 cm. Since

40

Figure 6.4: Sensor locations and mobile trajectory for a medium size
network. Circles outline each of the 27 sensor nodes. Markers on the
trajectory depict the location of events. 250 of the 1500 events are
shown, with consecutive events connected by a line. The mobile was
offset from the ground plane and could pass over nodes. To generate
this figure, a homography that accounts for the camera transformation
was used to project real-world coordinates to image coordinates.

41

(a)

(c)

(b)

(d)

Figure 6.5: The output of LaSLAT after incorporating (a) 50, (b) 120,
(c) 160, and (d) 1510 events. The batch size was 10. Recovered mo-
bile trajectory (crosses) and ground truth mobile trajectory (solid line)
for the latest batch are connected by a line to show correspondences.
Estimated mobile locations (dark rectangles) and the ground truth mo-
bile locations (light rectangles) are also connected with a line to show
correspondence. Error ellipses shrink as more data becomes available.
Between events 120 and 160 (sub-figures (b) and (c)), the mobile swept
around the bottom of the network, and the error ellipses and localiza-
tion error diminished for those sensors. Tracking improved as sensors
became better localized.

42

Figure 6.6: Final LaSLAT localization result, with batch size of 10.
Crosses show estimated sensor locations. These are correctly estimated
to fall on the corresponding sensor. Average localization is 1.9 cm.

the ground truth is only accurate to a few centimeters, localization
performance is best examined visually via Figure 6.6.

We compared LaSLAT using varying batch sizes to the Extended
Kalman Filter (EKF), which is identical to LaSLAT limited to one
Newton-Raphson iteration. Figure 6.7 shows average localization er-
rors as events were processed. The EKF performs best with no batch-
ing (batch size = 1). LaSLAT converges faster and also exhibits lower
steady state localization error. As batch sizes are increased, so does
the rate of convergence of LaSLAT. Batching also improves the final
localization error. LaSLAT, with batch sizes of 1, 10 and 40, produced
final localization errors of 3 cm, 1.9 cm, and 1.6 cm respectively. On av-
erage, LaSLAT took 3 Newton-Raphson iterations to incorporate each
batch. The EKF’s final localization error was 7.5 cm, which is outside
the error tolerance for the ground truth.

43

0 200 400 600 800 1000 1200 1400 1600

10
1

10
2

Event #

A
ve

ra
ge

 lo
ca

liz
at

io
n

er
ro

r
(c

m
)

LaSLAT (batch size=1)
LaSLAT (batch size=10)
LaSLAT (batch size=40)
EKF

Figure 6.7: Localization error as a function of the number of events ob-

served for EKF and various batch sizes for LaSLAT. LaSLAT converges more

quickly and attains a lower steady state error than the EKF. Furthermore,

larger batch sizes improve the convergence rate and the steady state error of

LaSLAT.

44

Figure 6.8: A sparser 2D sensor network with 49 nodes in a 10m by
17m environment.

45

Figure 6.9: LaSLAT localization result on a sparser sensor network with
49 nodes in a 10m by 17m environment. Crosses indicate the recovered
sensor locations, projected onto the image. The average localization
error was 7.5 cm.

46

6.2.2 49 node experiment

Figure 6.9 shows localization results on a larger network (49 sensors)
deployed over a larger area (10 m by 17 m). For comparison, the
experiment setup is shown in figure 6.8. With about 0.3 sensors per
square meter, this network is about half as dense as the one shown
in Figure 6.4, which had about 0.5 sensors per square meter. As a
result, on average only 5 sensors heard each event, and the localization
error was about 7.5 cm. The algorithm also determined a measurement
biases of about 20 cm for all nodes. For all batch sizes, the EKF
produced an average localization error of about 80 cm, showing that
the improvement due to Laplace’s method can be very significant.

6.3 Three Dimensional Experiments

It is possible to use LaSLAT to localize and track sensors and mobiles
in a three dimensional environment. We performed two experiments
designed to test LaSLAT in reasonable three dimensional deployments.

For these deployments, crickets were placed on the floor as in the
two dimensional experiments. In addition, crickets were attached to
walls using Velcro. A few sensors were also placed atop furniture in the
area. We also modified the mobile cricket by attaching two additional
ultrasound transducers. These transducers more closely simulate an
omnidirectional acoustic pulse than the conic emanation of the stan-
dard cricket transducer. See figure 6.10 for a picture of this modified
cricket.

The three dimensional environments present two obstacles that are
not present in the two dimensional experiments. First, the furniture in
the area drastically increases the effect of echoes on range measurement
quality. These echoes are suppressed using the measurement outlier re-
jection scheme presented in section 4.1. Second, the initialization algo-
rithm we used in two dimensions [29] does not provide for localization
in 3D. However, we developed a simple extension (see appendix A) to
allow us to initialize LaSLAT satisfactorily.

6.3.1 40 node experiment

In our first three dimensional experiment, we placed 40 crickets on the
floor and walls of a 4 x 6 meter room, which contained all of its normal
furniture: tables, chairs, printers, and a refrigerator. This mobile was
carried by hand through the room and moved completely arbitrarily,
including changes in speed, loops, and twists. Each event was observed

47

Figure 6.10: The omnidirectional cricket used in three dimensional ex-
periments.

Figure 6.11: Smaller environment used for 3D localization experiments.

48

Figure 6.12: LaSLAT results plotted on a picture of the network. Plus
signs indicate the estimated 3D positions of the sensors. A small por-
tion of the mobile trajectory (about 80 events) is plotted as asterisks
connected by a dotted line. LaSLAT localized sensors to within 7 cm.

by on average 17 sensors. The network is shown in figure 6.11. Lo-
calization results are plotted in figure 6.12. LaSLAT localized sensors
to within 7 cm while successfully tracking the path of the mobile in
3D. Much of this error is accounted for by the difficulty of measuring
ground truth in this environment.

The best 3D results were obtained using a relatively large batch
size of 250 events. Smaller batch sizes lose too much information in
the Gaussian approximation used to preserve state between batches,
causing LaSLAT to converge slowly. In 3D, the optimization (3.6) has a
more complicated structure due to the additional unknown parameters,
which larger batches help clarify. Thus, a large initial batch helps
LaSLAT make rapid progress towards an accurate estimate. After the
first few batches, the batch size may be decreased to speed computation,
since the later batches need only refine the already fairly high quality
estimate.

The 3D environment shown in figure 6.11 is considerably less san-
guine to ultrasound time-of-flight ranging than the two dimensional en-
vironments. Most events caused several very erroneous measurements.
Figure 6.13 shows a partial screen capture from our Java-based LaSLAT
implementation. The dark line indicates a portion of the trajectory re-
covered by LaSLAT. The light line is recovered using multilateration on

49

Figure 6.13: Sample LaSLAT 3D tracking results. The black line shows
the mobile trajectory recovered by LaSLAT on the 40 node 3D topology.
The gray line shows the mobile trajectory recovered using multilater-
ation on raw measurements and ground truth sensor positions. Stars
represent the position of the mobile at the time of an event. Approx-
imately three events occurred every second. Note that LaSLAT very
noticeably outperforms the naive tracking algorithm, even though it
does not know the sensor positions a priori.

50

the ground truth sensor positions and the raw measurement data, and
therefore serves as a baseline tracking algorithm. LaSLAT’s improved
tracking performance is due to the combination of sensor calibration
(section 3.2), measurement outlier rejection (section 4.1), and smooth
dynamics (section 4.2). Some of these techniques can be and have been
adapted to pure tracking applications. However, LaSLAT is able to
perform the same high fidelity tracking while simultaneously localizing
and calibrating the network.

We ran LaSLAT both with and without smooth dynamics and out-
lier rejection to observe the techniques’ impacts on localization accu-
racy. The results for the 40-node 3D experiment are graphed in figure
6.14. Note that LaSLAT with smooth dynamics and outlier rejection
performs best, with a final accuracy of less than 7 centimeters.

Smooth dynamics makes relatively little difference to sensor local-
ization, as its final average position error is 8 centimeters. This is ac-
counted for by the fact that smooth dynamics primarily affects events
that deviate from their neighbors. Since most events tend to be ac-
curately placed without requiring smooth mobile dynamics, correcting
the few deviants events has only a small effect on the sensor position
estimates.

However, measurement outlier rejection makes a very substantial
difference on this data set. Without outlier rejection, the final localiza-
tion estimate has a mean error of 31 centimeters. This suggests that
the outlier rejection technique presented in section 4.1 is effective at
detecting and de-emphasizing errant measurements.

For reference, we also plot the performance of the Extended Kalman
Filter (EKF) on this 40-node experiment. The final EKF estimate has
on average over half a meter of localization error.

6.3.2 55 node experiment

In our second 3D experiment, we used 55 sensors to cover the floor
and walls of a 7 x 10 meter room. Since the sensors were packed less
densely, on average only 11 sensors witnessed each event. A portion of
the network is shown in figure 6.15, and the results are plotted in figure
6.16. LaSLAT localized the sensors to within 7 cm, consistent with the
previous experiment.

This environment was better suited to the Cricket ultrasound rang-
ing system since it contained few obstacles. Consequently, sensors re-
ported fewer bad measurements. Nevertheless, enough poor measure-
ments were taken that outlier rejection improved performance notice-
ably.

51

0 500 1000 1500 2000 2500 3000
0

50

100

150
Extended Kalman Filter (EKF)
LaSLAT w/o smooth dynamics or outlier rejection
LaSLAT w/o outlier rejection
LaSLAT w/o smooth dynamics
LaSLAT

Figure 6.14: Performance impact of dynamics and outlier rejection on
a 3D dataset. Note that all four variants of LaSLAT outperform the
Extended Kalman Filter (EKF) implementation.

Figure 6.15: Part of the 55 node network for 3D localization experi-
ments. Sensors are circled in blue.

52

Figure 6.16: Results for the 55 node 3D experiment. Estimated posi-
tions are plotted with crosses, and a portion of the recovered mobile
trajectory is plotted using asterisks and a dotted line. LaSLAT local-
ized this network with a mean error of 7 centimeters.

53

Chapter 7

Future Work

In addition to the features developed in this thesis, LaSLAT raises
several interesting possibilities for future work.

7.1 Hallway Alignment

As we demonstrated in chapter 6, LaSLAT performs very well in net-
works that have a reasonably convex shape. However, its performance
diminishes when the network is divided into convex areas separated
by narrow connections: for instance, two rooms separated by a nar-
row hallway. In these topologies, LaSLAT accurately localizes sensors
in the rooms with respect to other sensors in the same room. How-
ever, it cannot always orient the rooms as a whole with respect to each
other. It appears that the measurements gathered from events in and
around the hallway area typically fail to unambiguously resolve the
alignment. Augmenting LaSLAT using a coordinate system stitching
approach similar to [7, 21, 22, 24, 31] could help resolve this ambiguity.

7.2 Stationary Targets

In our experiments, the mobile moved continuously for the majority
of the experiment. However, real mobiles can be expected to remain
stationary, potentially for lengthy periods of time. After LaSLAT has
been running for some time, this poses no problem. However, during
the first few batches of LaSLAT difficulties can arise. A stationary
mobile causes a large number of highly similar events. This results in
a batch of events that resolves few ambiguities in the sensor positions.

54

This leads in turn to a multi-modal posterior whose complexity is lost
in LaSLAT’s Gaussian approximation. As a result, LaSLAT’s estimate
may converge artificially to a very poor estimate. The corresponding
prediction has low covariance since it is the product of many events,
but is nevertheless quite inaccurate.

There are a number of techniques available to resolve this prob-
lem. First, it may be possible to use a heuristic over the collected
measurements or the LaSLAT results to detect uninformative batches
of events. Bad batches can then be ignored. In effect, LaSLAT would
wait to begin localization until good quality data becomes available.
Alternatively, we could use a multi-modal posterior approximation in-
stead of the Gaussian approach detailed in this thesis.

7.3 Multi-modal Posterior Approximation

The Gaussian approximation described in section 3.3 has an important
disadvantage: it cannot accurately represent a multi-modal posterior
distribution. Consequently, LaSLAT requires that the initial measure-
ment batches identify a single high probability mode. This necessity
can be diminished by using a different approximation such as a mix-
ture of Gaussians or a particle filter. These approximations can model
multi-modal distributions; however, they increase the processing load
for a LaSLAT batch.

We were not able to experiment with these types of representation
for this thesis. However, they may be necessary for accurate localization
of some networks, especially when areas have few measurements or the
mobile is somewhat stationary. They may also permit reduced batch
sizes when performing three dimensional SLAT.

7.4 Low Quality Hardware

In this thesis, we used the Cricket platform [1] for all of our experi-
ments. The Cricket ranging algorithm is highly accurate in the absence
of echoes, achieving 1-2 centimeter accuracy on ranges of up to ten me-
ters. However, we suspect that LaSLAT will remain effective when less
accurate hardware is used.

One significant cause of error in some acoustic time of flight rang-
ing systems can be manufacturing differences between sensors. In our
experiments with the Cricket system, we encountered no need to model
such inter-sensor differences explicitly. In fact, as we indicated in sec-
tion 3.5, we found it helpful to encourage sensor measurement biases

55

to be similar. However, [35] shows that some types of acoustic ranging
can benefit from careful modeling of individual sensor characteristics.
LaSLAT seems well-suited to perform this type of analysis.

We have shown in this thesis that LaSLAT performs very well on
Cricket networks that are deployed with reasonable density in indoor
environments; however, we are very interested in determining the min-
imal hardware profile required for effective use of LaSLAT. This means
performing additional experiments on networks with reduced sensor
density, event frequency, and measurement accuracy. The low density
experiments presented in chapter 6 represent initial research in this
area. Nevertheless, much remains to be done, especially with regard to
the use of cheaper and lower quality sensor hardware.

7.5 Sensor Dynamics

LaSLAT is well-suited to localizing moving sensors. In section 3.4, we
stated the assumption that sensor positions are stationary. However,
LaSLAT could easily be adapted to use the more relaxed constraint
that sensors may move over time. This sensor mobility constraint might
resemble the smooth dynamics extension discussed in section 4.2. This
would allow LaSLAT based tracking networks even greater flexibility:
a user could move sensors after deployment to optimize the network. If
sensors were able to move autonomously, sensors could automatically
migrate to achieve the desired quality of sensor coverage.

7.6 Acoustic-only LaSLAT

This thesis has been written under the assumption that sensors com-
pute ranges using Time Difference of Arrival (TDoA) ranging; thus,
the mobile emits a tagged radio pulse followed by an acoustic pulse.
Sensors use the difference in time of arrival between the radio message
and the acoustic pulse to estimate distance.

However, the measurement model (section 3.2) can be adapted to
use an acoustic pulse alone. In this case, the sensors must be time
synchronized, which can be done using an off-the-shelf time synchro-
nization system such as [18]. The sensors measure the arrival times
of acoustic pulses, which they report to LaSLAT. These arrival times
can be seen as a function of the true distance between the event and
the sensor and the true time of the event. The event time becomes an
additional parameter to be estimated by the Bayesian filter. Such a
measurement model would allow SLAT to localize and track using only

56

acoustic time of arrival. More generally, it may be possible to localize
using ambient environmental noise, as long as recognizable noises are
witnessed by enough sensors.

7.7 Distributed Implementation

The results provided in chapter 6 were generated using a centralized
implementation. Measurements were taken in a real network, then ex-
filtrated to a laptop for processing. However, as we show in chapter
5, LaSLAT can be feasibly distributed to perform the necessary com-
putations in-network. As we argue in that section, it is not always
desirable to distribute LaSLAT processing; however, a distributed im-
plementation will allow LaSLAT to be of assistance in networks where
centralized computation is infeasible.

57

Chapter 8

Conclusion

In this thesis we presented LaSLAT, a sensor network algorithm that si-
multaneously localizes sensors, calibrates sensing hardware, and tracks
unconstrained moving targets using only range measurements between
the sensors and the mobile. On both two- and three-dimensional net-
works using the Cricket ranging system, LaSLAT was able to localize
sensors to within several centimeters of their ground truth positions
while recovering a range measurement bias for each sensor and the
complete trajectory of the target.

LaSLAT is based on a Bayesian filter, which updates a probabil-
ity distribution over the quantities of interest as measurements arrive.
The algorithm is distributable, and requires only a constant amount
of space with respect to the number of measurements incorporated.
LaSLAT is easy to adapt to new types of hardware and new physical
environments due to its use of intuitive probability distributions: one
adaptation demonstrated in this thesis uses a mixture measurement
model to detect and compensate for bad acoustic range measurements
due to echoes.

Localization and calibration using an unconstrained mobile offers
several advantages over localization and calibration using inter-sensor
ranges. Since the mobile may move freely, the measurements taken
by the sensors have greater diversity and therefore diminished likeli-
hood of systematic errors. In particular, the mobile can help overcome
interference from fixed obstacles such as furniture.

Use of a mobile also means that the sensors are no longer con-
strained to have line of sight to each other. This enables a broader
range of network deployments: in particular, it allows sensors to be
placed to optimize tracking coverage rather than to accommodate the

58

peculiarities of a localization algorithm.
LaSLAT in its current form could be used to facilitate deployment of

indoor navigation systems, either for human use or as a guidance system
for mobile robots. Using LaSLAT, the sensors for such a system could
be deployed in an ad-hoc fashion on walls, floors, or ceilings. They
could then use the movements of persons to be tracked (i.e. targets) to
localize and calibrate in-place, forming a high-precision location service
with little human effort.

LaSLAT also suggests an interesting automated sensor deployment
system using a mobile robot. Such a robot would survey its environ-
ment, periodically dropping sensors. The sensors would provide high
quality landmarks for the robot’s mapping system, while the robot pro-
vided a moving target for LaSLAT-based localization of the sensors.
The sensors could even provide a long term record of the mapping op-
eration, which they could propagate to other robots not tasked with
surveying.

While many impediments remain, LaSLAT is an important step to-
ward cheap, easily deployable, and accurate sensor networks for target
tracking.

59

Appendix A

Initialization

Initialization plays an important role in LaSLAT. As several authors
[22,29] have observed, inferring locations using distance measurements
can suffer from local minima. The Newton-Raphson optimization de-
scribed in appendix B does not always find the globally minimal posi-
tioning. Rather, it finds a minimum near its initial value, which may
or may not be the global minimum.

This problem is typically solved in one of two ways. The first
method involves running the optimization several times using different
random choices of initial value. The best result from these optimiza-
tions is taken as the global minimum.

In the second method, which we use in LaSLAT, the initial iterate
is chosen intelligently to be close to the true solution. As a result, the
Newton-Raphson optimization converges to the global minimum on the
first try. After the first LaSLAT iteration, the estimate from the pre-
vious iteration is generally a good initial iterate for Newton-Raphson.
However, we depend on a separate initialization algorithm to provide
an initial iterate for the first LaSLAT iteration. In particular, we use a
distributed initialization algorithm suggested by Priyantha et al. [29].
We have also experimented with techniques such as gradient multi-
lateration [23] and multidimensional scaling [17]. In our experience,
the algorithm from [29] offered the best performance. This algorithm
provides a coarse position estimation for the sensors in the network
by defining a polar coordinate system based on hop counts between
specially chosen sensors. It is described in detail below.

60

A.1 Initialization Using Radio Connectiv-

ity

Let hi,j be the minimum number of radio hops required to forward a
message from sensor i to sensor j. Perform the following steps:

1. Choose node n0 to be the sensor with minimal ID. Propagate a
gradient from n0 to compute h0,k for all k.

2. Choose node n1 to be the sensor k with maximal h0,k, break-
ing ties by ID. n1 is one “corner” of the network. Propagate a
gradient from n1.

3. Choose node n2 to be the sensor k with maximal h1,k, breaking
ties by ID. n2 is the corner opposite n1. Propagate a gradient
from n2.

4. Choose node n3 to be the sensor k that minimizes |h2,k − h1,k|,
breaking ties by the sum h2,k +h1,k (any further ties are resolved
by ID). n3 is the corner between n1 and n2. Propagate a gradient
from n3.

5. Choose node n4 to be the sensor k that minimizes |h2,k − h1,k|,
breaking ties by maximizing h3,k (any further ties are resolved by
ID). n4 is the final corner. Propagate a gradient from n4.

6. Choose node n5 to be the sensor k that minimizes |h2,k − h1,k|+
|h4,k − h3,k|, breaking ties by ID. This sensor is closest to the
center of the network. Propagate a gradient from n5.

7. For each sensor k, define ρk = h5,k ∗ R, and tan(θk) =
h1,k−h2,k

h3,k−h4,k
,

where R is the maximum range of the sensor’s radio. Compute
the position sx

k by converting the polar coordinate (ρk, θk) to
rectangular coordinates.

This initialization algorithm tends to be highly inaccurate (see fig-
ure A.1). However, the chosen positions tend to help the LaSLAT
optimization avoid local minima that decrease accuracy. Our specific
choice of initialization is somewhat irrelevant – any reasonably accurate
localization algorithm could be substituted.

61

−400 −300 −200 −100 0 100 200 300 400 500
−300

−200

−100

0

100

200

300

400

500

Figure A.1: Initialization results for the 27 node 2D experimental topol-
ogy. Initial position estimates are marked with circles. Lines are drawn
from these estimates to the corresponding ground truth sensor loca-
tions. The average position estimate error is 70 cm.

62

A.2 Initialization in 3D

The algorithm described in the previous section is not designed to lo-
calize sensor configurations that have height differences. In general,
most two dimensional localization algorithms extend poorly to practi-
cal three dimensional topologies. Most two dimensional topologies re-
semble a “cloud” of sensors – sensors are evenly scattered throughout a
generally convex area. In three dimensions, this is typically infeasible,
especially indoors. Instead, practical deployments look more like figure
6.11, where sensors are placed mostly on walls and either the floor or
the ceiling. As a result, naive three dimensional extensions to 2D lo-
calization algorithms such as [11, 17, 22, 29, 31] tend to perform badly
on real networks.

We have developed a simple method of extending these algorithms
to three dimensions, using a single additional bit of information that
indicates whether a sensor is placed on a floor or a wall. This informa-
tion could be obtained by a relatively cheap and imprecise orientation
sensor on each node or by manual configuration. Also, it is probable
that in an indoor environment the form factor of the sensors will vary
between wall sensors and floor sensors, making manual configuration
straightforward.

If the radio range is sufficiently small (this may be accomplished by
temporarily reducing the power of the sensors’ radios), a 3D topology
like figure 6.11 will appear to be two dimensional from the perspective
of radio connectivity, where wall sensors appear at the outer extremities
of the topology. In this case, a two dimensional localization algorithm
such as the one described in the previous section may be applied. As a
post-processing step, the regions of the two dimensional plane contain-
ing wall sensors may be “folded” upwards into the height dimension to
approximate the structure of the 3D environment.

In our experience so far, this trivial modification allows algorithms
such as [29] to be successfully used in 3D LaSLAT.

63

Appendix B

Newton-Raphson

In this appendix, we show how to optimize equation (3.6) using the
Newton-Raphson iterative optimization algorithm. We also derive the
curvature of the negative log posterior required for Laplace’s method
(section 3.3), and show that mode finding preserves local connectivity.

B.1 Finding a Mode

Equation (3.6) can be expressed in the form of non-linear least squares.
Let fij(x) = ‖sx

i −et
j‖+sθ

i , and define f(x) as a column vector consisting

of all fij(x). Using Ωx = Cov−1
[

xt|yold
]

, and µx = E
[

xt|yold
]

, we
can write equation (3.6) as:

argmin
x

1

σ2
‖f(x) − yt‖2 + (x − µx)T Ωx(x − µx) (B.1)

Each iteration of Newton-Raphson maps an iterate x(t) to the next
iterate x(t+1) by approximating (B.1) with a linearization about x(t),
then optimizing over x:

x(t+1) = argmin
x

1

σ2

∥

∥

∥
∇f (t)x− b

∥

∥

∥

2

+ (x − µx)T Ωx(x − µx), (B.2)

where the matrix ∇f (t) is the derivative of f with respect to x at x(t),
and the column vector b = ∇f (t)x(t) − f

(

x(t)
)

− yt.
Equation (B.2) is a linear least squares problem in terms of x. Its

solution can be found by setting the derivative with respect to x to zero.
This leaves a linear problem that can be solved by matrix inversion:

[

Ωx +
1

σ2
∇f (t)>∇f (t)

]

x = Ωxµ +
1

σ2
∇f (t)>b. (B.3)

64

Furthermore, differentiating (B.2) one more time results in H =
Ωx + 1

σ2∇f (t)>∇f (t), which is required for Laplace’s method (section
3.3). Since (B.2) is an approximation to the negative log posterior
(3.6), H serves as an approximation to its Hessian at x(t).

B.2 Locality of Mode Finding

Because the true distance fij depends only on sensor i and event loca-
tion j, each row of ∇f (t) is made up of zeros, except at locations cor-
responding to the ith sensor and the jth event. Thus ∇f (t)>∇f (t) has
local connectivity. If Ωx = Cov−1

[

xt|yold
]

has local connectivity, then

the updated covariance matrix Cov−1
[

xt|yold
]

= Ωx +∇f (t)>∇f (t)/σ2

also has local connectivity. Therefore as claimed in chapter 5, incorpo-
rating a batch of measurements preserves local connectivity.

65

Bibliography

[1] H. Balakrishnan, R. Baliga, D. Curtis, M. Goraczko, A. Miu, N. B.
Priyantha, A. Smith, K. Steele, S. Teller, and K. Wang. Lessons
from developing and deploying the cricket indoor location system.
Technical report, MIT Computer Science and AI Lab, http://

nms.lcs.mit.edu/projects/cricket/#papers, 2003.

[2] D. P. Bertsekas and J. T. Tsitsiklis. Parallel and Distributed Com-
putation: Numerical Methods. Prentice-Hall, 1989.

[3] R. Brooks, P. Ramanathan, and A. Sayeed. Distributed target
classification and tracking in sensor networks. In Proceedings of
the IEEE, volume 91. IEEE, August 2003.

[4] N. Bulusu, V. Bychkovskiy, D. Estrin, and J. Heidemann. Scal-
able, ad hoc deployable rf-based localization. In Grace Hopper
Celebration of Women in Computing Conference 2002, Vancou-
ver, British Columbia, Canada., October 2002.

[5] W. Butera. Programming a paintable computer. PhD thesis, mit,
2002.

[6] V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak. A
collaborative approach to in-place sensor calibration. UCLA Tech
Report.

[7] S. Capkun, M. Hamdi, and J. Hubaux. GPS-free positioning in
mobile ad-hoc networks. In HICSS, 2001.

[8] V. Cevher and J.H. McClellan. Sensor array calibration via track-
ing with the extended kalman filter. In IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP),
volume 5, pages 2817–2820, 2001.

66

[9] W. Chen, C. Hou, and L. Sha. Dynamic clustering for acoustic
target tracking in wireless sensor networks. In IEEE International
Conference on Network Protocols, 2003.

[10] B. Dalton and M. Bove. Audio-based self-localization for ubiqui-
tous sensor networks. In 118th Audio Engineering Society Con-
vention, 2005.

[11] L. Doherty, L. El Ghaoui, and K. S. J. Pister. Convex position
estimation in wireless sensor networks. In Proceedings of Infocom
2001, April 2001.

[12] A. Galstyan, B. Krishnamachari, K. Lerman, and S. Pattem. Dis-
tributed online localization in sensor networks using a moving tar-
get. In Information Processing In Sensor Networks (IPSN), 2004.

[13] A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data
Analysis. Chapman & Hall/CRC, 1995.

[14] G. Golub and C.F. Van Loan. Matrix Computations. The Johns
Hopkins University Press, 1989.

[15] B. K. P. Horn. Relative orientation. International Journal of
Computer Vision, 4:59–78, January 1989.

[16] A. Ihler, J. Fisher, R. Moses, and A. Willsky. Nonparametric belief
propagation for self-calibration in sensor networks. In Information
Processing in Sensor Networks (IPSN), 2004.

[17] X. Ji and H. Zha. Sensor positioning in wireless ad hoc networks
using multidimensional scaling. In Infocom, 2004.

[18] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. Robust multi-hop
time synchronization in sensor networks, 2004.

[19] P. F. McLauchlan. A batch/recursive algorithm for 3D scene re-
construction. Conf. Computer Vision and Pattern Recognition,
2:738–743, 2000.

[20] J. McLurkin. Algorithms for distributed sensor networks. Master’s
thesis, UCB, December 1999.

[21] L. Meertens and S. Fitzpatrick. The distributed construction of
a global coordinate system in a network of static computational
nodes from inter-node distances, 2004.

67

[22] D. Moore, J. Leonard, D. Rus, and S. Teller. Robust distributed
network localization with noisy range measurements. In Proceed-
ings of ACM Sensys-04, Nov 2004.

[23] R. Nagpal, H. Shrobe, and J. Bachrach. Organizing a global coor-
dinate system from local information on an ad hoc sensor network.
In 2nd International Workshop on Information Processing in Sen-
sor Networks (IPSN ’03), Palo Alto, published as Lecture Notes in
Computer Science LNCS 2634, April 2003.

[24] D. Niculescu and B. Nath. Ad hoc positioning system (aps, 2001.

[25] D. Niculescu and B. Nath. Localized positioning in ad hoc net-
works, 2003.

[26] E. Olson, J. J. Leonard, and S. Teller. Robust range-only beacon
localization. In Proceedings of Autonomous Underwater Vehicles,
2004.

[27] P. Pathirana, N. Bulusu, S. Jha, and A. Savkin. Node localiza-
tion using mobile robots in delay-tolerant sensor networks. IEEE
Transactions on Mobile Computing, 4(4), Jul/Aug 2005.

[28] B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller. Mobile-
assisted localization in wireless sensor networks. In IEEE INFO-
COM, Miami, FL, March 2005.

[29] N. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller. Anchor-
free distributed localization in sensor networks, 2003.

[30] A. Savvides, C. Han, and M. Strivastava. Dynamic fine-grained
localization in ad-hoc networks of sensors. In Mobile Computing
and Networking, pages 166–179, 2001.

[31] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz. Localization
from mere connectivity. In MobiHoc, 2003.

[32] S. Simic and S. Sastry. Distributed localization in wireless ad hoc
networks, 2002.

[33] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial
relationships in robotics. In Uncertainity in Artificial Intelligence,
1988.

[34] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and
H. Durrant-Whyte. Simultaneous localization and mapping with

68

sparse extended information filters. Submitted for journal publi-
cation, April 2003.

[35] C. Whitehouse. The design of calamari: an ad-hoc localization sys-
tem for sensor networks. Master’s thesis, University of California
at Berkeley, 2002.

[36] X. Yu, K. Niyogi, S. Mehrotra, and N. Venkatasubramanian.
Adaptive target tracking in sensor networks. In Communication
Networks and Distributed Systems Modeling and Simulation Con-
ference (CNDS’04), January 2004.

69

