
Computer Science and Artificial Intelligence Laboratory

How to Construct a Correct and Scalable iBGP
Configuration
Mythili Vutukuru, Paul Valiant, Swastik Kopparty,
Hari Balakrishnan

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

August 3, 2005MIT-CSAIL-TR-2005-049
MIT-LCS-TR-996

1

How to Construct a Correct and Scalable
iBGP Configuration

Mythili Vutukuru, Paul Valiant, Swastik Kopparty, and Hari Balakrishnan
MIT Computer Science and Artificial Intelligence Laboratory

{mythili,pvaliant,swastik,hari}@csail.mit.edu

Abstract— The Border Gateway Protocol (BGP),
the current inter domain routing protocol in the
Internet, has two modes of operation: eBGP (External
BGP), used to exchange routing information between
autonomous systems, and iBGP (Internal BGP), used
to propagate that information within an autonomous
system (AS). This paper focuses on the construction
of an iBGP session configuration that guarantees two
correctness properties—loop-free forwarding paths and
complete visibility to all eBGP-learned best routes—
while attempting to minimize the number of iBGP
sessions (for scalability) and ensuring that the con-
structed configuration guarantees the two correctness
properties even in the face of link failures and IGP
path changes. Our algorithm constructs an iBGP con-
figuration based on route reflectors [2], a commonly
used way to control the number of iBGP sessions.
The algorithm, BGPSep, uses the notion of a graph
separator, a (small) set of nodes that partition a
graph into connected components of roughly equal
sizes, recursively applies this idea to the connected
components, and produces a route reflector hierarchy
and the associated iBGP sessions. We prove that
BGPSep guarantees the desired correctness properties,
and evaluate an implementation of the BGPSep algo-
rithm on several real-world and simulated network
topologies. Across these topologies, we find that the
number of iBGP sessions with BGPSep is a factor of
2.5 to 5× smaller than with a “full mesh” iBGP, while
guaranteeing the desired correctness properties.

I. INTRODUCTION

The Internet is made up of many Autonomous
Systems (ASes), which are networks or groups
of networks under a common administration and
with a common routing policy. An egress router
at the border of an AS uses the Border Gateway
Protocol (BGP) to exchange routes on an external
BGP (eBGP) session with a peer router. Each eBGP
router picks its best route to each destination, and
then must disseminate that route to every external
destination prefix to the other routers in the AS.
These other routers obtain information about all

possible routes to the destination, and pick their own
best choice.

One approach to this intra-AS route dissemination
is to rely on the Interior Gateway Protocol (IGP)
used to propagate routing information for destina-
tions within an AS, and introduce routes for external
destinations into the IGP. This approach, however,
does not work well because common IGPs such as
OSPF [17], IS-IS [3], EIGRP [13], and RIP [16]
don’t handle the required scale well, and don’t offer
the policy expressiveness offered by BGP.

To solve the intra-AS route dissemination prob-
lem, the designers of BGP proposed the use of a
“full mesh” intra-AS BGP configuration. Here, each
eBGP router in the AS establishes BGP sessions
with all the other routers (both eBGP routers and
internal routers) in the network. These internal BGP
(iBGP) sessions rely on the AS’s underlying IGP to
achieve connectivity.

The advantage of the full-mesh iBGP configu-
ration is that it satisfies two important correctness
properties:

P1 Loop-free forwarding: After the dissemina-
tion of eBGP learned routes, that the resulting
routes (and the subsequent forwarding paths of
packets sent along those routes) picked by all
routers are free of deflections and forwarding
loops [5], [11].

P2 Complete visibility: The dissemination of
information amongst the routers is “complete”
in the sense that, for every external destina-
tion, each router picks the same route that it
would have picked had it seen the best routes
from each eBGP router in the AS.

These two desirable properties, however, are
achieved at significant cost in the full-mesh iBGP
configuration, because the number of iBGP sessions
in an AS could be quite large. In many Internet
Service Provider (ISP) networks, the number of ses-

2

sions per router is several hundred, and the number
of sessions in the AS is a few hundred thousand.
An AS with e eBGP routers and i interior routers
has e(e− 1)/2 + ei iBGP sessions.

This lack of scalability has long been a problem
with the full-mesh configuration, and has led to a
few different proposals to improve scalability [21],
[2]. The most common technique used today is route
reflection [2], where a subset of BGP routers are
designated as route reflectors, providing their best
routes to other routers configured as their clients.
Large networks use route reflectors hierarchically,
but they are often configured in an unprincipled
fashion. As a result, researchers have found that
the two correctness properties (P1 and P2) described
above can be violated ([5], [11], [6], [7]), leading
to routing loops, forwarding loops, and sub-optimal
paths. Moreover, as explained in Section II, route
reflection does not preserve properties P1 and P2
when IGP costs change, or when links or routers
fail.

Previous work about iBGP configuration correct-
ness [11] gives sufficient conditions to check if
a given iBGP configuration is correct. However,
there has not been any work on how to generate
correct iBGP configurations that are scalable. In this
paper, we describe the design, implementation, and
evaluation of the BGPSep algorithm to generate
an iBGP configuration that guarantees that prop-
erties P1 and P2 hold under static conditions, and
when IGP costs change or failures occur. BGPSep
takes an IGP topology as input and produces a
hierarchical configuration of route reflectors and
reflector clients, as well as the associated iBGP
sessions (Section III). We prove that the resulting
iBGP configuration satisfies the desired correctness
properties (Section IV), and show using an analysis
of real-world ISP and synthetic network topologies
that the number of iBGP sessions with BGPSep
is significantly (between a factor of 2.5 and 5 in
the ISP topologies) smaller than in a full-mesh
configuration (Section VI).
BGPSep is based on the notion of a graph

separator, a (small) set of nodes that partition a
graph into roughly equal-sized connected compo-
nents. We observe that if routers in different con-
nected components each have iBGP sessions with
all routers in a separator, then each router will
learn the same information as when it is directly
connected to all the eBGP routers in the other
components. That’s because the shortest path (in

fact, all paths) between nodes in different connected
components must traverse one or more nodes in
the separator. BGPSep applies this idea recursively
to construct a route reflector hierarchy that has a
relatively small number of sessions. BGPSep is
practical—efficient algorithms for graph separators
using spectral techniques are known [19], and our
implementation uses this method (Section V). The
run time of the spectral partitioning algorithm is
linear in the number of nodes in the graph. BGPSep
takes between 5 seconds and 60 seconds to produce
the iBGP configuration for real-world ISP topolo-
gies whose sizes range from 80 to 300 routers.

II. BACKGROUND AND MOTIVATION

A. BGP route selection rules

For every external destination, every BGP speak-
ing router invokes the BGP decision process [18] to
select one best route from the set of routes learned
through eBGP and iBGP for that destination. BGP’s
route selection process involves the comparison of
the following attributes in the given order: local
preference, AS path length, MED, origin AS, and
the IGP path cost to reach the egress (the route
through the egress router with the lowest IGP cost
is preferred). If two egresses have the same IGP
path cost, then some deterministic mechanism such
as the smallest router ID is used to break ties.1

Every router then combines information about the
egress router of the best route with the reachability
information about the physical topology to map
external destinations to outgoing links.

B. Route reflection

Route reflection [2] improves the scalability of
intra-AS route dissemination. Some BGP routers in
an AS are designated as route reflectors. Normal
iBGP peers do not propagate the route learned from
one peer to another, in order to guarantee loop-free
forwarding. Route reflectors, however, have different
rules. The internal peers of a route reflector are
divided into two groups: (1) client peers and (2)
non-client peers. When a route reflector receives a
route from an iBGP peer, it selects the best route
based on the rules mentioned above. After the best
path is selected, it must do the following depending

1In the discussions that follow, we do not deal with the case of
tied IGP costs separately. We implicitly assume a deterministic
tie-breaking mechanism between routers with same IGP path
costs.

3

Figure 1. iBGP using route reflection

on the type of the peer it is receiving the best path
from: (1) A route from a non-client iBGP peer is
reflected to all the clients (2) A route from a client
peer is reflected to all the non-client peers and also
to the client peers. Hence, the client peers are not
required to be fully meshed, reducing the number
of iBGP sessions.

Typically, the route reflectors in an AS are ar-
ranged as clusters. Every route reflector cluster has
one or more route reflectors. The other routers in the
cluster are made the clients of the route reflectors
in the cluster. All the top level route reflectors (i.e.,
the route reflectors which are not clients of any other
route reflector) in an AS are fully meshed with each
other to ensure that all route reflectors hear of the
best routes of all routers in the system [6].2 The
clients within a cluster may or may not peer with
each other. There could also be a hierarchy of route
reflectors where a client of a route reflector acts
as a route reflector for other routers. An example
iBGP configuration with a single level hierarchy of
route reflectors is shown in Figure 1. Note that this
graph is different from the physical IGP graph of
the network.

C. Problems with Route Reflection

The iBGP configurations that use route reflection
do not provably satisfy the properties P1 and P2. We
now describe how these properties may be violated
in some iBGP configurations.3

2This property is called visibility by the authors of [6].
3In the discussion that follows, the set of routes and egresses,

will, by default, refer to the set of routes filtered in the steps of
comparing other attributes like local preference, AS path length,
MED etc., that are tied up to the step of comparing the IGP
cost. We will also refer to the ‘route’ and the ‘egress router’ that
announces that route interchangeably.

a) Loop-free forwarding: Route reflection
iBGP configurations are susceptible to forwarding
anomalies like deflections and forwarding loops
[11], which make such configurations hard to main-
tain and debug. At every router, BGP selects only
the egress router for a destination, while the actual
forwarding path from that router to the egress is
provided by the IGP. Some router on the shortest
path to the egress may choose a different egress for
the same external destination, causing the packets
to be deflected along this forwarding path. Multiple
deflections may interact to produce persistent for-
warding loops [5], [11].

For example, consider the iBGP configuration
shown in Figure 2. Route reflector R1 and its client
C1 constitute a cluster, as do R2 and C2. The
IGP and iBGP interconnections are as shown in the
figure. Two routes, tied up to the step of comparing
the IGP costs to the next hop, arrive at R1 and R2.
R1 and R2 choose the routes through themselves
as their best routes and advertise them to their
clients. C1 chooses the route through R1 and C2
the one through R2. However, C1’s shortest path to
R1 goes through C2 and C2’s shortest path to R2
goes through C1. Thus, when C1 sends the packets
destined to d to C2 (intending that they should reach
R1), C2 sends them back to C1, because C2-C1-R2
is its chosen path to d. Any packet destined to d that
reaches either C1 or C2 would loop forever.

Such forwarding anomalies would never occur in
a full mesh iBGP configuration where every router
learns of the best routes from all egresses and thus
picks the egress closest to itself, from amongst the
egresses that have an otherwise equally good route
(i.e., equally good upto the step of comparing the
IGP cost to the egress) to a given destination.

b) Complete visibility: In an iBGP configura-
tion using route reflection, a route reflector reflects
only its best route (and not all routes it learns) to
its clients and thus every router does not choose the
same routes that it would have chosen had it seen
all the eBGP learned routes. For example, in Figure
2, router C1 chooses the route through R1. Had it
learned of all the eBGP routes, however, it would
have picked the route through R2 because C1 has a
lower IGP cost to R2.

If the property of complete visibility is violated,
the system will fail to implement “hot-potato” rout-
ing and this might cause network resources to be
wasted. Also, predicting the outcome of the complex
BGP decision process become trivial with an AS

4

Figure 2. An incorrect iBGP configuration

Figure 3. An iBGP configuration using route reflectors that has
low fault tolerance

when complete visibility is ensured, because every
router is guaranteed to pick the route it would have
picked had it seen all the eBGP learned routes. Such
predictions prove useful while modeling BGP and
for traffic engineering [9].

c) Robustness to IGP changes: In arbitrary
iBGP configurations with route reflection, correct-
ness properties like loop-free forwarding can be
violated in the face of IGP link cost changes or IGP
failures. For example, consider the iBGP configura-
tion shown in Figure 3. This IGP topology is similar
to the topology in Figure 2, except for a new route
reflector R3, of which both C1 and C2 are clients.
Both C1 and C2 choose R3 as their next hop for
destination d and there are no deflections en route
to R3. When R3 fails, the topology, now equivalent
to the one in Figure 2, has a forwarding loop. Thus,
it is difficult to guarantee loop-free forwarding and
complete visibility in arbitrary iBGP topologies with
route reflection in the face of node or link failures.
For the same reason, it is inherently difficult to build
route reflector topologies with redundancy, because
if a route reflector fails, the “backup” route reflector
might end up causing forwarding loops!

Needless to say, setting up correct iBGP configu-

rations with route reflection in real world networks
with a large number of BGP routers is a non-trivial
task. Not much work has been done on automated
ways to set up such configurations. Today, net-
work operators configure the iBGP based largely
on heuristics. If the resulting system goes into a
forwarding loop, they adopt quick-fix solutions like
tweaking the IGP weights until the problem disap-
pears, with the result that the IGP weights, which
are initially set to represent meaningful quantities
like end-to-end latency, lose their significance. We
believe that there is a need for an organized frame-
work to solve this problem. We need to come up
with a way to configure iBGP using route reflection
that gives us provable guarantees about loop-free
forwarding, complete visibility and robustness like
the full-mesh iBGP configuration, without losing the
scalability offered by route reflection.

III. THE BGPSEP ALGORITHM

A. The Invariants

Recall that for each destination, every router in an
AS picks the best route from amongst the routes that
it learns and forwards packets towards the egress
router of the best route of that destination. We
translate the two correctness conditions P1 and P2
to invariants INV1 and INV2 respectively, which
which are sufficient conditions for the properties to
be satisfied.

• INV1: Let d denote any destination. If a router
A picks a router B as its egress for a destination
d, then every router on the IGP shortest path
from A to B should also pick B as its egress for
the destination d. (Otherwise, there would be
deflections when packets are forwarded from
A towards B and thus P1 would be violated.)

• INV2: Every router picks its closest egress
from amongst the set of egresses that have
routes with the best path attributes, breaking
any ties deterministically.

Our solution constructs an iBGP configuration that
satisfies INV1 and INV2 and thus satisfying P1 and
P2. Our solution uses the graph theoretic notion of
graph separators to generate iBGP configurations.

B. Graph separators

A graph separator is a set of nodes that separates
a graph into two or more connected components.
More formally, given a graph G = (V, E), with a
set V of vertices and a set E of edges, |V | = n, a

5

(k, ε)-separator is a set S ⊆ V with the following
properties:

• The induced subgraph on V − S has no con-
nected component of size > n(1+ε

2
).

• |S| ≤ k

Let Gi and Gj be any two components in the
induced subgraph on V −S. Then, we observe that
any path beginning in a component Gi and ending
in a different component Gj must have one or more
nodes from S. Our solution uses this property of
graph separators.

The problem of finding the optimal graph sep-
arators is NP–hard in general. However, fast and
practical algorithms for finding small separators are
known for many families of graphs.4. We use the
spectral partitioning algorithm described in [19] to
find graph separators. The run time of the spectral
partitioning algorithm is linear in the number of
nodes in the graph.

C. A simple algorithm

Let G denote the IGP subgraph induced by
the eBGP routers and V denote the set of eBGP
routers.5 As noted in Section II, P1 and P2 can be
satisfied if we use a full mesh iBGP for G. We now
describe a naive iBGP configuration that satisfies P1
and P2 without requiring a full mesh iBGP.

• Step 1: Consider a graph separator S of G.
Make all the routers in S as route reflectors.

• Step 2: For every u, v ∈ S, configure routers
u and v as iBGP peers. This is in accordance
with the principle of fully meshing the top level
route reflectors in every AS, as described in
Section II.

• Step 3: Let G1 and G2 be the two components
into which S separates G.6 Make each BGP
router in G1 and G2 a route reflector client of
every route reflector in S.

• Step 4: Connect all routers in G1 and G2

with each other i.e., construct a full mesh iBGP
within G1 and G2.

4Provable guarantees on the size of the separator have been
shown for many families of graphs including planar graphs
(O(
√

n)) and bounded genus graphs (O(
√

gn)) [19] where g
is the genus of the graph. (The genus of a graph quantifies how
close to planar it is.)

5We assume for now that all BGP routers in the AS are egress
routers, an assumption that we will relax later.

6The arguments hold even if there are more than two compo-
nents.

Figure 4. Proving the invariants on a simple iBGP configuration

We now prove informally that the invariants INV1
and INV2 hold on this strawman iBGP configura-
tion. Let B denote the closest egress to A with a
route to d with the best path attributes.

Claim 1: A learns of the route via B and thus
picks B as its egress for destination d. (INV2)

Proof: If A and B are in the same component
(say, G1), then they have an iBGP session between
them (since each component is fully meshed) and
thus A will learn of the route via B. Suppose A and
B are in different components. Then, the shortest
path between A and B should pass through S, as
shown in Figure 4. Since all nodes in G1 and G2

are clients of all route reflectors in S, there exists
a route reflector R (in fact, in this example, there
exist two route reflectors - R and R1) on the shortest
path between A and B, of which both A and B are
clients. If B is the closest egress to A, then B will
be the closest egress to R also. Thus R will choose
the route via B as its best route and reflect it to all
its clients. Thus A will learn of the route through
B.

Claim 2: Every router on the shortest path from
A to B will also choose B as its egress for desti-
nation d. (INV1)

Proof: If A and B are in the same component
then the shortest path between A and B would also
be in the same component. Then, INV1 will hold
by the same logic that P1 would hold in a full mesh
iBGP (as proved in Section II). Suppose A and B are
in different components. Suppose the shortest path
between A and B is A–A1–R–R1–B1–B, as shown
in Figure 4. We will now prove that all routers on the
shortest path also choose B as their egress. First, we
observe that if B is the closest egress to A then B is
the closest egress to all routers on the shortest path
from A to B. Second, all routers on the shortest
path would learn of the route via B. (R and R1
learn of the route since they are route reflectors of
B. They choose this as their best route and reflect it

6

to all their clients and thus A1 and B1 learn it too.)
From these two observations, we can conclude that
all routers on the shortest path from A to B also
pick B as their egress from destination d.
Thus, our strawman design ensures that P1 and P2
are satisfied on the resulting iBGP configuration.
Though we have reduced the number of iBGP
sessions compared to the full mesh iBGP (e.g.,
routers in G1 and G2 no longer need to connect to
each other, they only need to connect to the route
reflectors in S), this design still uses a full mesh
within each of the individual components G1 and
G2. To further reduce the number of iBGP sessions,
we can apply the separator idea on G1 and G2

recursively. The recursion can terminate when the
components are small enough to be fully meshed.
Note that INV1 and INV2 continue to hold at each
stage of the recursion.

D. The Complete Algorithm
Algorithm 1 shows the recursive algorithm

BGPSep. The algorithm takes the graph G = (V, E)
formed by the BGP routers and produces the set I
of iBGP sessions that must be established between
the routers. The algorithm is a centralized algorithm.
Every element in I denotes an iBGP session and is
of the form (u, v, t) where u and v are the routers
between which the iBGP session is established and
t is the type of the iBGP session. If the value of t
is “client”, then the iBGP session between u and v
is a client–route reflector session (with u being the
client of route reflector v). If the value of t is “peer”,
then the iBGP session between u and v is a normal
non–client iBGP session. The recursion stops when
the component has one or two nodes. The algorithm
uses a procedure Graph-Separator, which is
a graph partitioning algorithm (e.g., the algorithm
described in [19]) that takes a graph G and returns
a graph separator S.

Note that while the recursion in Algorithm 1
terminates when each component has one or two
nodes, the algorithm can be modified to terminate
the recursion at an earlier stage and fully mesh
the remaining components. Infact, the maximum
number of levels of recursion (which is also equal to
the number of levels in the resulting route reflector
hierarchy) can be a user–defined parameter.

E. An example
We now give a simple example to illustrate the

BGPSep algorithm. Consider a network with ten

BGP routers, as shown in Figure 5. Step 1 of the
algorithm chooses the set of nodes S = {c, f}
to separate the graph into two components G1 =
{a, b, d, e} and G2 = {g, h, i, j}. In step 2, we fully
mesh the set of route reflectors. Thus the set I of
iBGP sessions will be {(c, f, peer)}. In step 3, we
make each node in G1 and G2 a client of every
route reflector in S.

BGPSep Input: IGP Graph G, set V of BGP
routers

Output: Set I of iBGP sessions
if |V | = 1 then

/* Recursion base case */
I = ∅;
return I ;

else if |V | = 2 then
/* Recursion base case */
{u, v} ← V ;
I = {(u, v, ‘P ′)};
return I ;

else
/* Step 1: Choose a graph

separator S. Nodes in S
are the route reflectors.
S ⊆ V */

S ← Graph-separator(G) ;
G1, . . . , Gm ← subgraph on V − S;
/* Step 2: Fully mesh the set

of route reflectors */
foreach u, v ∈ S, u 6= v do

I = I ∪ {(u, v, peer)};
end
foreach Gi do

/* Step 3: Make every node
in each component Gi a
route reflector client
of every route reflector
*/

foreach u ∈ Gi, v ∈ S do
I = I ∪ {(u, v, client)};

end
/* Step 4: Recursively

apply the algorithm over
each component */

Ii = BGPSep(Gi) ;
I = I ∪ Ii ;

end
end
return I ;

Algorithm 1: Recursive separator algorithm to
output an iBGP configuration

7

Figure 5. An IGP topology to illustrate the algorithm

In step 4, we recursively apply this algorithm over
G1 and G2. In step 1 of the recursion over G1, the
separator algorithm finds S1 = {a} as the separator
of G1 and G11 = {b}, G12 = {d} and G13 = {e}
as the components in G1 − S1. No iBGP sessions
are added in step 2 because the set S1 is a singleton
here. In step 3, we add the following iBGP sessions:
(b, a, client), (d, a, client) and (e, a, client). The re-
cursion terminates in each of the components G11,
G12 and G13 since they have one node. Similarly,
we recurse over component G2 also. The separator
S2 = {i, h} is chosen in step 1. We add the iBGP
session (i, h, peer) in step 2 and the iBGP sessions
(g, i, client), (g, h, client) (j, i, client), (j, h, client)
in step 3. The recursion now terminates because the
components {g} and {j} have just one router each.
The resulting iBGP configuration has two levels
of route reflectors, 5 route reflectors and 25 iBGP
sessions, compared to the 45 iBGP sessions in a full
mesh iBGP configuration.

F. Variants

In this section, we describe two variants of the
BGPSep optimized for different types of networks.
Note that, in all these cases, the original algorithm
would still be valid and the variants are only for
convenience.

1) Networks with internal routers: In the case
when the network contains internal routers (which
do not receive any external routes), the internal
routers need not mesh with each other (because they
do not learn any external routes). Thus the algorithm
BGPSep, when run over the entire topology of
internal and egress routers, may establish some
unnecessary iBGP sessions. We now describe how
BGPSep can be modified to be used in networks
with a large number of internal routers. In Step 1, we
first find a set S of nodes to first separate the graph
into two components - Gint containing the internal

routers and Gext containing the egress routers. Steps
2 and 3 remain the same. In step 4, we recurse on the
component containing the egress routers only since
the internal routers need not have iBGP sessions
with each other. Note that using our algorithm is
inefficient if the number of egress routers is very
small. If |S| > |Gext|, it would be easier to simply
mesh each internal router to every egress router.

2) Backbone–like ISP networks: The IGP topol-
ogy of a large ISP typically consists of a set of
Points-of-presence (PoPs) spread across the ISP’s
area of coverage [20]. Every PoP has some access
routers which connect to customer networks and
one or two (for redundancy) backbone routers that
connect the PoP to the rest of the network.7 A route
reflection iBGP is formed over the IGP topology
by configuring each PoP as an iBGP route reflector
cluster. The backbone routers in a PoP are made
route reflectors and all the access routers in a PoP
are made clients of those route reflectors. The route
reflectors at the top level in the hierarchy are fully
meshed. Additionally a route reflector hierarchy
can also be built over the route reflectors in the
backbone.

Running our BGPSep algorithm on the entire IGP
topology of an ISP outputs an iBGP configuration
that might look very different from conventional
iBGP configurations. For example, in our construc-
tion, it might so happen that an access router
might have to connect to multiple route reflectors
in different PoPs, which might be too much load
on an access router. Hence we propose a variant
BGPSep-Backbone of our original algorithm that
is more suited for ISP-like backbone networks.

The backbone of an ISP consists of backbone
routers which connect all the PoPs and which also
serve as route reflectors to the access routers in the
PoPs. Since the top level route reflectors must all be
fully meshed, we expect the ISP backbone to have a
full mesh iBGP or a route reflector hierarchy. Thus,
we can apply our algorithm on just the backbone (as
opposed to on all the BGP routers) and establish an
route reflector hierarchy over the the backbone. The
backbone routers in each PoP are then configured
as route reflectors to the access routers in each PoP.
Configuring a route reflector hierarchy according
to the separator algorithm only ensures that every
shortest path between two backbone routers has a
route reflector hierarchy on it. However, the same

7These PoPs typically correspond to areas in OSPF.

8

property does not hold for shortest paths between
access routers. While shortest paths between access
routers in two different PoPs traverse the backbone
(a property of backbone–like networks) and thus has
a hierarchy route reflector on it, the same property
does not hold for intra-PoP shortest paths which do
not traverse the backbone. We thus need to fully-
mesh all the access routers within a PoP.

IV. PROOF OF CORRECTNESS

In this section, we formally prove that the iBGP
configuration output by BGPSep algorithm satisfies
the properties P1 and P2 described in Section I. We
also prove that properties P1 and P2 hold in the
face of IGP link cost changes, node failures and
link failures.

A. Proof of Complete Visibility

Consider the IGP subgraph G induced by the BGP
routers of a network. Let V denote the set of BGP
routers. Let d denote any destination. Let Ed denote
the set egresses that have equally good routes (i.e.,
routes that have not been filtered in the steps of
comparing the local preference, AS path length and
MED values) to destination d. For every router A,
let Egressd(A) denote the egress router from Ed that
has the shortest IGP path cost from A. Let I denote
the set of iBGP sessions output by the BGPSep
algorithm.

For complete visibility to hold, we require that ev-
ery router A chooses the route via egress Egressd(A)
as its best route for destination d. We begin the proof
with the definition if a signaling chain.

Definition 3: A signaling chain between two
routers A and B is defined as a set of routers
A(= R0), R1, R2, . . . , Rr, B = (Rr+1) such that
(i) Ri is a route reflector and (ii) atleast one of
Ri+1 or Ri−1 is a route reflector client of Ri for
i = 1 . . . r.

Lemma 4: If there exists a signaling chain be-
tween routers A and B and B is an egress router
for a destination d, then A learns of the best route
via B for destination d.

Proof: For i = 1 . . . r, we claim that Ri

propagates the routes learned from Ri+1 to Ri−1.
This claim is true because, if Ri+1 is a route
reflector client of Ri, then Ri propagates the routes
learned from Ri+1 to Ri−1 because a route reflector
reflects routes learned from clients to all its peers.
On the other hand, if Ri−1 is a client of Ri, then the

claim is true because a route reflector reflects routes
learned from all peers to its clients. Thus the routes
learned at Rr+1 = B propagate along the “chain”
to Rr, Rr−1 . . . and eventually reach R0 = A.

Lemma 5: In the iBGP configuration output by
the BGPSep algorithm, for any destination d, ev-
ery router A ∈ V learns of the best route via
Egressd(A).

Proof: Let B = Egressd(A). If A and B
have an iBGP session with each other, then the
proof is trivial. Otherwise, consider the shortest
path between A and B in G. It follows from our
the construction in our BGPSep algorithm that this
shortest path should pass through a set of recur-
sively produced graph separators. Since the graph
separators are configured as route reflectors and the
components (separated by the separator) as route
reflector clients, it follows that there exist router
reflectors R1, . . . Rr on the shortest path (in that
order) such that A(= R0), R1, R2, . . . , Rr, B =
(Rr+1) is a signaling chain. Note that R1, . . . Rr

need not be adjacent to each other on the shortest
path. (As an example, A−R−B is a signaling chain
on the shortest path A − A1 − R − R1 − B1 − B
between A and B in Figure 4. Hence, it follows
from Lemma 4 that A learns of the route through
B.
The following theorem is a direct consequence of
Lemma 5.

Theorem 6: The iBGP configuration output by
our BGPSep algorithm satisfies the property of
complete visibility.

B. Proof of Loop–free forwarding

The proof in this section use the result of Theorem
6 to prove that the iBGP configuration output by our
BGPSep algorithm satisfies the property of loop–
free forwarding.

Theorem 7: The iBGP configuration output by
our BGPSep algorithm satisfies the property of
loop–free forwarding.

Proof: From Theorem 6, we know that every
router A learns of the best route to any destination
d via its closest egress B = Egressd(A). For
every router C on the shortest path from A to
B, Egressd(C) = Egressd(A) = B. Thus every
router on the shortest path between A and B also
chooses B as its egress router. So there are no
deflections when packets are forwarded along the
shortest path from A to B, thus guaranteeing loop–
free forwarding.

9

C. Proof of Robustness to IGP changes

Lemma 8: The iBGP configuration output by our
BGPSep algorithm is not affected by change in IGP
link costs.

Proof: The proof is trivial as Algorithm 1 does
not make use of the link costs in computing the IGP
configuration.

Lemma 9: The iBGP configuration output by our
BGPSep algorithm satisfies the properties of loop–
free forwarding and complete visibility in the face
of IGP failures (e.g., node and link failures).

Proof: The graph separator of a graph is a
separator of any IGP subgraph of the graph. Thus
when nodes and links fail, the properties of loop–
free forwarding and complete visibility hold on the
remaining graph by the same logic as they did on
the original IGP graph.
Note that in the proofs of this section are valid after
the IGP has converged following a link cost change
or failure.

D. Caveats of the algorithm

There is a class of failures, however, which
break the correctness properties of our algorithm—
iBGP failures, where only the iBGP configura-
tion changes, without changing the underlying IGP
topology (that is, when only the BGP function of a
router or a BGP session between a pair of routers
fails with the IP forwarding function still intact). In
such a case, we can no longer assume that the nodes
in the graph separators are all route reflectors, and
thus all our correctness guarantees break down. By
similar reasoning however, the correctness guaran-
tees of the full mesh iBGP also become invalid.

Through simulation, we have measured the proba-
bility of violation of loop–free forwarding and com-
plete visibility on the iBGP configurations output by
the BGPSep algorithm in the face of iBGP failures.
The results are presented in Section VI.

Also, the BGPSep algorithm is not an incremental
algorithm, and the algorithm must be re-run and new
separators computed when new nodes or links are
provisioned in the network.

V. IMPLEMENTATION

We implemented the BGPSep algorithm in about
100 lines of Matlab code. The program reads the
IGP graph from a file and outputs the iBGP sessions
to a file. We implemented the spectral partitioning
algorithm [19] to find graph separators. The run time

AS Name Number of nodes Number of edges
1221 Telstra 108 306
1239 Sprint 315 1944
1755 Ebone 87 322
3257 Tiscali 161 656
3967 Exodus 79 294
6461 Abovenet 138 748

Table I
ISP TOPOLOGIES USED.

of the spectral partitioning algorithm is linear in
the number of nodes in the graph. The algorithm
took between 5 seconds and 60 seconds to run for
real network topologies having between 80 and 300
nodes.

As part of future work, we propose to develop a
tool that takes the router configuration files as input,
infers the IGP topology from the configuration files
and outputs the lines of configuration code corre-
sponding to the iBGP sessions for each router. Thus,
our tool can ease the task of network configuration
and management.

VI. EVALUATION

In this section, we evaluate the performance of
the separator algorithm on various real–world and
synthetic topologies. For real–world topologies, we
used the backbone topologies of 6 ISPs annotated
with inferred link costs from the Rocketfuel project
[15]. The ISP backbone topologies are summarized
in Table I. We also evaluated our algorithm on syn-
thetic topologies generated using GT-ITM [4]. The
GT-ITM parameters in the graphs were set according
to the suggestions in [12]. The key aspects on which
we evaluated the iBGP configuration produced by
the BGPSep algorithm are (a) scalability in terms
of the number of iBGP sessions and the number of
route reflectors (b) robustness to iBGP failures.

A. Scalability

In this section, we show that the iBGP configura-
tion produced by our algorithm is scalable in terms
of the number of iBGP sessions and the number
of route reflectors. For each network, let n denote
the number of routers in the network and let Nibgp

denote the number of iBGP sessions produced by
the BGPSep algorithm.

1) Comparison with full mesh iBGP: In this sec-
tion, we compare Nibgp against the number of iBGP
sessions in the full mesh iBGP for various networks.

10

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

AS1221 AS1239 AS1755 AS3257 AS3967 AS6461

Nu
m

be
r o

f i
BG

P
Se

ss
io

ns

18.1%

26.1%

29.4%

38.6%

28.8%
30.1%

Full mesh iBGP
iBGP using graph separators

Figure 6. Comparison with full mesh - real ISP topologies.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

50 100 150 200 250 300 350 400 450 500 550 600

Nu
m

be
r o

f i
BG

P
Se

ss
io

ns

Number of Nodes

29.9% 21.7% 19.8% 17.6% 14.2% 12.6% 12.4%
11.9%

10.2% 10.5%

13.2% 12.8%

Full mesh iBGP
iBGP using graph separators

Figure 7. Comparison with full mesh - GT-ITM topologies.

We use the 6 ISP backbones from Rocketfuel and
synthetically generated internet topologies from GT-
ITM. We assume that all the nodes in the topology
are external BGP routers. The corresponding results
are shown in Figures 6 and 7. We see that the
iBGP configuration produced by BGPSep results
in a 2.5× to 5× reduction in the number of iBGP
sessions on Rocketfuel ISP topologies and a 5× to
10× reduction on GT-ITM topologies.8

2) Scaling of the number of iBGP sessions with
the number of nodes: We evaluate how Nibgp scales
with the number of routers, n. Let noriginal denote
the number of routers in a network. For each of the
network topologies, we picked 10 random subgraphs
with a n nodes where n =

noriginal

2i , i = 0 . . . 4,
and ran BGPSep on these subgraphs. The resulting
mean and standard deviation of the number of iBGP
sessions over 10 runs for AS 1239 and GT-ITM
topologies is shown in Figure 8 on a log–log scale.
The results for the other ISPs were similar. The
slope of this graph gives us the value of the k such
that Nibgp = O(nk). The value of this slope for
various ISPs is shown in Table II.

8Another interesting number to compare against would have
been the actual number of iBGP sessions in the iBGP config-
urations of these networks. However such figures are not made
public by the ISPs.

 10

 100

 1000

 10000

 100000

 10 100 1000

Nu
m

be
r o

f i
BG

P
Se

ss
io

ns

Number of Nodes

Standard deviation - AS1239
Mean - AS1239

Standard deviation - GT-ITM
Mean - GT-ITM

Figure 8. Number of iBGP sessions vs n: AS1239 and GT-ITM.

1221 1239 1755 3257 3967 6461 GT-ITM
1.75 1.74 1.82 2.11 1.95 1.73 1.69

Table II
SLOPE OF LOG(NUMBER OF IBGP SESSIONS) VS LOG(N).

THE TOP ROW SHOWS THE AS NUMBER OF THE ISP.

3) Number of route reflectors: Another key as-
pect of scalability is the number of route reflectors
and the number of levels in the route reflector hierar-
chy. Let Nrr, Ntoprr, and Nlevel denote the number
of route reflectors, top level route reflectors, and
the number of levels in the route reflector hierarchy
respectively. These values for various Rocketfuel
ISP topologies are listed in Table III. We report the
number of route reflectors at the top–most level of
the hierarchy, because the top–level route reflectors
have the largest number of clients. We observe that
although a substantial number of nodes are route
reflectors, the number of top–level route reflectors
(which have the most complex configuration) is
relatively small.

4) Scaling of the number of route reflectors:
In this section, we observe how the number of
route reflectors and the number of top–level route
reflectors scale with the number of nodes in the
network. As in Section VI-A.2, we construct various
subgraphs for the Rocketfuel topologies, varying

AS Nodes RRs Top RRs Levels
1221 108 34 5 6
1239 315 128 26 8
1755 87 56 3 5
3257 161 77 20 6
3967 79 45 4 5
6461 138 83 11 6

Table III
NUMBER OF ROUTE REFLECTORS IN ROCKETFUEL ISP

TOPOLOGIES

11

 1

 10

 100

 1000

 10 100 1000

N
u
m

b
e
r

o
f
iB

G
P

 S
e
ss

io
n
s

Number of Nodes

Standard deviation - Route reflectors
Mean - Route reflectors

Standard deviation - Top level route reflectors
Mean - Top level route reflectors

Figure 9. Number of route reflectors vs n - AS1239

Parameter Slope
Number of route reflectors 0.95
Number of top level route reflectors 0.53

Table IV
SLOPE OF NUMBER OF ROUTE REFLECTORS VS n FOR AS

1239

the number of nodes. We construct 10 random
subgraphs for each value of the number of nodes.
The mean and the standard deviation of the number
of route reflectors and the number of top–level route
reflectors is shown in Figure 9. The slope of these
graphs is shown in Table IV. We report the results
on the topology of AS1239. The results on the other
topologies were similar.

B. Robustness

As proved in Section IV, the iBGP configuration
produced by BGPSep is resilient to IGP failures
once the IGP converges to a loop–free topology.
It does not guarantee robustness in the face of
iBGP failures. We randomly simulate iBGP failures
on the iBGP configuration produced by BGPSep
and determine how often the properties of loop-
free forwarding and complete visibility are violated.
We evaluate the extent of violation of loop-free
forwarding by computing the fraction, fincorrect,
of forwarding paths that had a forwarding anomaly
(like deflections). For high values of failure rates,
we also observed instances of persistent forwarding
loops in our iBGP topology. We report the number
of configurations NFL that had a forwarding loop.
We evaluate the extent of violation of complete
visibility by computing the ratio, rcomplete, of the
path length taken by a packet to a destination with

Failure % rcomplete fincorrect NFL

0% 1 0 0
5% 1.0037 0.017 0
20% 1.0478 0.0911 4
40% 1.0839 0.1866 4
60% 1.1239 0.2773 3

Table V
ROBUSTNESS TO IBGP FAILURES

a given failure rate to the path length taken by
the packet in a configuration that satisfies complete
visibility. Note that, when complete visibility is
violated, the routers no longer choose their closest
egress available, and thus rcomplete exceeds 1.

The values of rcomplete, fincorrect and NFL, for
failure rates of 0%, 5%, 20%, 40% and 60%, using
the iBGP configuration produced on AS1221 of the
Rocketfuel data, are shown in Table V. We conclude
that while our iBGP configuration is tolerant to low
iBGP session failure rates, it is not resilient to very
high failure rates. We believe however, that this lack
of resilience is not a significant practical problem for
two reasons: first, such high failure rates are highly
unlikely, and second, we are no worse than the status
quo (as explained in Section IV).

VII. RELATED WORK

The possibility of the occurrence of forwarding
loops with Route reflection was first reported by
Dube et. al in [5]. The property of loop–free for-
warding was studied in detail by Griffin and Wilfong
[11] (it is called “forwarding correctness” by the
authors). The authors prove that verifying whether
an arbitrary iBGP configuration is forwarding cor-
rect is NP–hard. The authors also describe a set of
sufficient conditions so that an iBGP configuration is
free of deflections and forwarding loops – (i) route
reflectors should prefer client routes to non–client
routes and (ii) every shortest path between any two
routers should be a valid signaling path.9 The iBGP
configuration generated by our algorithm does not
satisfy either of the two sufficient conditions – (i) we
do not require that a route reflector prefer client
routes to non–client routes and (ii) the signaling
chain in our solution is only a subset of the shortest
path between any two routers. Yet, we guarantee
forwarding correctness. Thus, we believe that the

9A signal path, as defined in [11], is a more general version
of the signaling chain described in Section IV, and is defined as
a path along which a routing message can propagate.

12

correctness conditions in [11] are quite strong. Also,
unlike [11], our work presents a constructive algo-
rithm to generate iBGP configurations with correct-
ness guarantees.

Our work looks at the correctness properties of
iBGP after the path assignment has converged.
There are other aspects of correctness like conver-
gence of the BGP protocol itself that we have not
examined in our work. Basu et. al [1] study the
problem of route oscillations in iBGP with route re-
flection. They show that deciding whether an iBGP
configuration with route reflection can converge is
NP–Complete and propose a modification to iBGP
that guarantees convergence. Griffin and Wilfong
[11] study the conditions under which the BGP
configuration converges to a stable path assignment.
The authors also study the problem of oscillations
in BGP caused by the MED attribute [10].

Previous work [6], [7] has identified routing
anomalies like forwarding loops in iBGP configu-
rations. [8] identifies many open problems in inter–
domain routing, one of them being the the problem
of constructing scalable, yet correct iBGP configu-
rations.

The authors of [14] implement the idea of auto-
matically generating router configuration lines from
a network–wide specification of routing policies.
This idea is similar to our implementation scheme
of automatically generating the iBGP configuration
for configuring route reflectors.

VIII. CONCLUSION

Perhaps the most complex part of the interaction
between exterior and interior routing protocols on
the Internet today arises in the scalable dissem-
ination of external routes within an autonomous
system. Unless done with care, this dissemination
causes problems that include routing loops, forward-
ing loops, and forwarding path deflections, all of
which lead to packet losses and sub-optimal paths.
These problems are hard to diagnose and debug, and
networks with these problems are hard to manage.
For instance, a recent study of routing configurations
found iBGP signaling problems in many different
autonomous systems [7].

This paper develops sufficient conditions for two
important correctness properties, loop-free forward-
ing and complete visibility. (These conditions are
inspired by, but distinct from, the conditions devel-
oped in [11].) These sufficient conditions allow us

to develop and prove the correctness of a separator-
based iBGP configuration algorithm, BGPSep. The
algorithm takes an IGP topology as input, and
produces a set of route reflectors and clients of
route reflectors, such that the resulting iBGP con-
figuration provably satisfies these two correctness
properties. The resulting iBGP configuration retains
these correctness properties even in the face of node
and link failures. An evaluation of the algorithm on
real-world ISP topologies and synthetic networks
showed that BGPSep’s configurations achieve all
the correctness guarantees of a full-mesh iBGP
with a much smaller number of iBGP sessions.
In particular, BGPSep requires between 2.5× and
5× fewer iBGP sessions across six real-world ISP
topologies and between 3× and 10× fewer sessions
in the simulated topologies.

To our knowledge, BGPSep is the first algorithm
that constructs provably correct (in terms of prop-
erties P1 and P2) and scalable (compared to full-
mesh) iBGP configurations. The algorithm admits
an efficient and practical implementation, and can
easily be integrated into tools that produce router
configuration code. We believe that the algorithm
can eliminate various hard-to-debug network prob-
lems that network operators face today.

ACKNOWLEDGMENTS

We thank Nick Feamster, Robert Morris and Dina
Katabi for several useful discussions on this work
and for comments on drafts of this paper. This work
was based in part upon support from the National
Science Foundation under Cooperative Agreement
CNS-0225560 and a Cisco URP Grant. The views
expressed in this paper are not necessarily those of
the National Science Foundation or Cisco Systems.

REFERENCES

[1] Anindya Basu, Chih-Hao Luke Ong, April Rasala, F. Bruce
Shepherd, and Gordon Wilfong. Route Oscillations in I-
BGP with Route Reflection. In SIGCOMM ’02: Proceed-
ings of the 2002 conference on Applications, technologies,
architectures, and protocols for computer communications,
pages 235–247, New York, NY, USA, 2002. ACM Press.

[2] T. Bates, R. Chandra, and E. H. Chen. BGP route reflection
- an alternative to full mesh IBGP. RFC 2796, Internet
Engineering Task Force, April 2000.

[3] R. Callon. Use of OSI IS-IS for Routing in TCP/IP and
Dual Environments. IETF, December 1990. RFC 1195.

[4] Kenneth L. Calvert, Matthew B. Doar, and Ellen W. Ze-
gura. Modeling Internet Topology. IEEE Communications
Magazine, 35(6):160–163, June 1997.

[5] Rohit Dube. A Comparison of Scaling Techniques for
BGP. Computer Communications Review, 29(3):44–46,
July 1999.

13

[6] Nick Feamster and Hari Balakrishnan. Towards a Logic for
Wide-Area Internet Routing. In ACM SIGCOMM Workshop
on Future Directions in Network Architecture, pages 289–
300, Karlsruhe, Germany, August 2003.

[7] Nick Feamster and Hari Balakrishnan. Detecting BGP
Configuration Faults with Static Analysis. In 2nd Symp.
on Networked Systems Design and Implementation (NSDI),
pages 49–56, Boston, MA, May 2005.

[8] Nick Feamster, Hari Balakrishnan, and Jennifer Rexford.
Some Foundational Problems in Interdomain Routing. In
3rd ACM SIGCOMM Workshop on Hot Topics in Networks
(HotNets), pages 41–46, San Diego, CA, November 2004.

[9] Nick Feamster, Jared Winick, and Jennifer Rexford. A
Model of BGP Routing for Network Engineering. In ACM
Sigmetrics - Performance 2004, New York, NY, June 2004.

[10] Timothy Griffin and Gordon T. Wilfong. Analysis of
the MED Oscillation Problem in BGP. In ICNP ’02:
Proceedings of the 10th IEEE International Conference on
Network Protocols, pages 90–99, Washington, DC, USA,
2002. IEEE Computer Society.

[11] Timothy G. Griffin and Gordon Wilfong. On the correctness
of IBGP configuration. In SIGCOMM ’02: Proceedings of
the 2002 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, pages
17–29. ACM Press, 2002.

[12] Oliver Heckmann, Michael Piringer, Jens Schmitt, and Ralf
Steinmetz. On realistic network topologies for simulation.
In MoMeTools ’03: Proceedings of the ACM SIGCOMM
workshop on Models, Methods and Tools For Reproducible
Network Research, pages 28–32, New York, NY, USA,
2003. ACM Press.

[13] Enhanced IGRP. http://www.cisco.com/
univercd/cc/td/doc/cisintwk/ito_doc/
en_igrp.htm.

[14] Olaf Maennel, Anja Feldmann, Christian Reiser, Ruediger
Volk, and Hagen Boehm. Network-Wide Inter-Domain
Routing Policies: Design and Realiz ation. In NANOG 34,
Seattle, WA, May 2005.

[15] Ratul Mahajan, Neil Spring, David Wetherall, and Tom
Anderson. Inferring link weights using end-to-end mea-
surements. In IMW ’02: Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment, pages 231–
236, New York, NY, USA, 2002. ACM Press.

[16] G. Malkin. RIP Version 2. IETF, November 1998. RFC
2453.

[17] J. Moy. OSPF Version 2. IETF, April 1998. RFC 2328.
[18] Y. Rekhter and T. Li. A border gateway protocol 4 (BGP-4).

RFC 1771, IETF, March 1995.
[19] Daniel A. Spielman and Shang-Hua Teng. Spectral par-

titioning works: Planar graphs and finite element meshes.
In IEEE Symposium on Foundations of Computer Science,
pages 96–105, 1996.

[20] Neil Spring, Ratul Mahajan, David Wetherall, and Thomas
Anderson. Measuring ISP topologies with Rocketfuel.
IEEE/ACM Trans. Netw., 12(1):2–16, 2004.

[21] P. Traina, D. McPherson, and J. Scudder. Autonomous
System Confederations for BGP. IETF, February 2001.
RFC 3065.

