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Abstract

We present an algorithm for c-approximate nearest neighbor problem in a d-dimensional
Euclidean space, achieving query time of O(dn1/c2+o(1)) and space O(dn+n1+1/c2+o(1)).

1 Introduction

A similarity search problem involves a collection of objects (documents, images, etc.)
that are characterized by a collection of relevant features and are represented as points
in a high-dimensional attribute space; given queries in the form of points in this space,
we are required to find the nearest (most similar) object to the query. A particularly
interesting and well-studied instance is d-dimensional Euclidean space. This problem is
of major importance to a variety of applications; some examples are: data compression,
databases and data mining, information retrieval, image and video databases, machine
learning, pattern recognition, statistics and data analysis. Typically, the features of
each object of interest (document, image, etc) are represented as a point in �d and
a distance metric is used to measure similarity of objects. The basic problem then is
to perform indexing or similarity searching for query objects. The number of features
(i.e., the dimensionality) ranges anywhere from tens to thousands.

The low-dimensional case (e.g., for d = 2) is well-solved, therefore the main issue
is that of dealing with a large number of dimensions. Despite decades of intensive
effort, the current solutions are not entirely satisfactory; in fact, for large enough d, in
theory or in practice, they often provide little improvement over a linear algorithm that
compares a query to each point from the database. This phenomenon is often called
“the curse of dimensionality”. In particular, it was shown in [WSB98] (both empirically
and theoretically) that all current indexing techniques (based on space partitioning)
degrade to linear search for sufficiently high dimensions.

In recent years, several researchers proposed to avoid the running time bottleneck
by using approximation (e.g., [AMN+94, Kle97, IM98, KOR98, HP01, KL04, HPM04,
DIIM04, Pan06], see also [DIS03]). This is due to the fact that, in many cases, ap-
proximate nearest neighbor is almost as good as the exact one; in particular, if the
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distance measure accurately captures the notion of user quality, then small differences
in the distance should not matter. Moreover, an efficient approximation algorithm can
be used to solve the exact nearest neighbor problem, by enumerating all approximate
nearest neighbors and choosing the closest point. For many data sets this approach
results in very efficient algorithms (see e.g., [ADI+05]).

In [IM98, GIM99], the authors introduced an approximate high-dimensional simi-
larity search scheme with provably sublinear dependence on the data size. It relied on a
new method called locality-sensitive hashing (LSH). The key idea is to hash the points
using several hash functions so as to ensure that, for each function, the probability of
collision is much higher for objects which are close to each other than for those which
are far apart. Then, one can determine near neighbors by hashing the query point
and retrieving elements stored in buckets containing that point. In [IM98, GIM99] the
authors provided such locality-sensitive hash functions for the case when the points
live in binary Hamming space1 {0, 1}d. In a followup work [DIIM04], the authors in-
troduced LSH functions that work directly in Euclidean space and result in a (slightly)
faster running time. The latter algorithm forms the basis of E2LSH package [AI04] for
high-dimensional similarity search, which has been used in several applied scenarios.
Further, [Pan06] proposed a somewhat different algorithm that exploits similar ideas.

The running times and space requirements achieved by those algorithms is depicted
in the following table.

Paper Metric Space Query time Comments

[IM98, GIM99] Hamming dn + n1+1/c dn1/c

[DIIM04] Euclidean dn + n1+ρ′(c) dnρ′(c) log n ρ′(c) < 1/c
[Pan06] Euclidean dn dnρ′′(c) ρ′′(c)/c → 2.09

this paper Euclidean dn + n1+1/c2+o(1) dn1/c2+o(1)

It was conjectured by the second author (e.g., in [Ind03]) that the exponent in the
query time can be further improved, to 1/c2. The conjecture was motivated by the fact
that an algorithm with such exponent exists for the closely related problem of finding
the furthest neighbor [Ind03].

In this paper we essentially resolve this conjecture by providing an algorithm with
query time dnρ(c) using space dn + n1+ρ(c), where ρ(c) = 1/c2 + f(n), f(n) = o(1).
This significantly improves over the earlier running time of [DIIM04]. In particular, for
c = 2, our exponent tends to 0.25, while the exponent in [DIIM04] was around 0.42.

Techniques. We obtain our result by carefully designing a family of locality-
sensitive hash functions in l2. The starting point of our construction is the method

1The algorithm can be extended to other norms, such as l2, by using embeddings. However, this extension
adds additional complexity to the algorithm.

2



of [DIIM04]. There, a point p was mapped into �1 by using random projection. Then,
the line �1 was partitioned into equal-length intervals of length w, where w is a pa-
rameter. The hash function for p returned the index of the interval containing the
projection of p.

An analysis in [DIIM04] showed that the query time exponent has an interesting
dependence on the parameter w. If w tends to infinity, the exponent tends to 1/c,
which yields no improvement over [IM98, GIM99]. However, for small values of w, the
exponent lies slightly below 1/c. In fact, the unique minimum exists for each c.

In this paper we utilize a ”multi-dimensional version” of the aforementioned ap-
proach. Specifically, we first perform random projection into �t, where t is super-
constant, but relatively small (i.e., t = o(log n)). Then we partition the space �t into
cells. The hash function function returns the index of the cell which contains projected
point p.

The partitioning of the space �t is somewhat more involved than its one-dimensional
counterpart. First, observe that the natural idea of partitioning using a grid does not
work. This is because this process roughly corresponds to hashing using concatenation
of several one-dimensional functions (as in [DIIM04]). Since the LSH algorithms per-
forms such concatenation anyway (see Preliminaries), grid partitioning does not result
in any improvement. Instead, we use the method of ”partitioning by balls”, introduced
in [CCG+98] in the context of embeddings into tree metrics. Its idea is as follows. Cre-
ate a sequence of balls B1, B2 . . ., each of radius w, with centers chosen independently
“at random”. Each ball Bi then defines a cell, containing points Bi − ∪j<iBj.

In order to apply this method in our context, we need to take care of a few issues.
First, we cannot use the method as given, since locating a cell containing a given point
could take a long time. Instead, we show that one can simulate the above procedure
by replacing each ball by a ”grid of balls”. It is not difficult then to observe that a
finite (albeit exponential in t) number of such grids suffices to cover all points in �t.
Since t is sub-logarithmic in log n, one can enumerate all grids in time no(1).

The second and the main issue is the choice of w. Again, it turns out that for large
w, the method yields only the exponent of 1/c. However, a careful analysis shows that,
as in the one-dimensional case, the minimum is achieved for finite w. In particular, for
proper w, the exponent tends to 1/c2 as t tends to infinity.

2 Preliminaries

2.1 Notation

Through the paper, we work in the Euclidean space. For a point p ∈ �d, we denote by
B(p, r) the ball centered at p with radius r. We also call Vold(r) the volume of a ball
with radius r in �d. Vold(r) is equal to 2πd/2

dΓ(d/2)r
d (see, for example, [Pis89], page 11).

2.2 Problem definition

In this paper, we solve the c-approximate near neighbor in l2, the Euclidean space.
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Definition 2.1 (c-approximate near neighbor, or c-NN). Given a set P of points
in a d-dimensional Euclidean space �d, and parameters R > 0, δ > 0, construct a data
structure which, given any query point q, does the following with probability 1 − δ: if
there exists an R-near neighbor of q in P , it reports some cR-near neighbor of q in P .

In the following, we will assume that δ is an absolute constant bounded away from
1. Note that the probability of success can be amplified by building and querying
several instances of the data structure.

Formally, an R-near neighbor of q is a point p such that ||p − q||2 ≤ R. Note that
we can scale down the coordinates of all points by R, in which case we need only to
solve the c-NN problem for R = 1. Thus, we will consider that R = 1 for the rest of
the paper.

2.3 Locality-Sensitive Hashing

To solve the c-approximate near neighbor, we use the Locality-sensitive hashing scheme
(LSH). LSH scheme was first proposed in [IM98] for c-NN in l1. Since l2 is efficiently
embeddable into l1, [IM98]’s algorithm also holds for l2. Later, however, [DIIM04]
found an improved LSH for l2.

Below we describe the general LSH scheme, which we use for the algorithm presented
in this paper. The LSH scheme relies on existence of locality-sensitive hash functions.
Consider a family H of hash functions mapping �d to some universe U .

Definition 2.2 (Locality-sensitive hashing). A family H is called (R, cR, p1, p2)-
sensitive if for any p, q ∈ �d

• if ‖p − q‖ ≤ R then PrH[h(q) = h(p)] ≥ p1,

• if ‖p − q‖ ≥ cR then PrH[h(q) = h(p)] ≤ p2.

In order for an LSH family to be useful, it has to satisfy p1 > p2. Thus, if the point
q is close to p, then q and p should likely fall in the same bucket. In contrast, if q is
far from p, then q and p should be less likely to fall in the same bucket.

An LSH family can be utilized as follows. Given a family H of hash functions
with parameters (R, cR, p1, p2) as in the definition above, we amplify the gap be-
tween the “high” probability p1 and “low” probability p2 by concatenating several
functions. In particular, for k and L specified later, we choose L functions gj(q) =
(h1,j(q), . . . , hk,j(q)), where ht,j(1 ≤ t ≤ k, 1 ≤ j ≤ L) are chosen independently and
uniformly at random from H. During preprocessing, we store each p ∈ P (input point
set) in the bucket gj(p), for j = 1, . . . , L. Since the total number of buckets may be
large, we retain only the non-empty buckets by resorting to standard hashing of the
hash values gj(p).

To process a query q, the algorithm searches the buckets g1(q), . . . , gL(q). For each
point v found in these buckets, the algorithm computes the distance from q to v and
reports the point v iff ||v − q|| ≤ cR. If the buckets g1(q), . . . , gL(q) contain too many
points (more than 3L), the algorithm stops after checking 3L points and reports that
no R-near neighbor was found. Query time is O (Lk · τ), assuming that computing one
LSH function ht,j takes O(τ) time.
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We choose k and L to be k = log1/p2
n and L = nρ, where ρ = log 1/p1

log 1/p2
. Then,

with constant probability, the algorithm will report a point v ∈ B(q, cR) if there
exists a point v∗ ∈ B(q,R). Furthermore, the query time becomes O (nρk · τ) and the
preprocessing time becomes O

(
n1+ρk · τ).

2.3.1 A family of locality-sensitive hash functions for Hamming met-
ric

As seen above, the core of the LSH scheme is an LSH family satisfying the definition
2.2. For illustration purposes, we describe next the LSH family of [IM98], designed
for the Hamming metric on {0, 1}d, yielding query time of O(n1/cd) and preprocessing
time of O(n1+1/cd). Note that LSH family is the only part of the algorithm which
explicitly depends on the metric.

We define a hash function h ∈ H as h(x) = xi, where i is a random index in the
range [1, d] and xi is the ith coordinate of x. Given this family, we can compute the
probability p1 as Pr[h(p) = h(q)] given that ||p − q||H ≤ R; this yields p1 ≥ 1 − R/d.
Similarly, we obtain p2 ≤ 1 − cR/d.

Now we can compute the query and preprocessing times. First, note that computing

a hash function h takes O(1) time, i.e., τ = O(1). Then, since nρ = n
log p1
log p2 = O(n1/c)

([IM98]), the query time becomes O(nρk · τ) = O(n1/cd). Similarly, the preprocessing
time becomes O(n1+ρk · τ) = O(n1+1/cd).

3 Main algorithm

Our new algorithm for c-NN uses a new family of LSH functions for l2, while reusing
the LSH scheme of section 2.3. This new family is presented below. Once we describe
the new family of LSH functions, we prove that the query time is O(n1/c2+o(1)) by
showing that L = nρ = O(n1/c2+o(1)), k = O(log n), and that τ = O(dno(1)).

3.1 LSH Family for l2

We first describe an “ideal” LSH family for l2. Although this approach has some
deficiencies, we show how to overcome them, and obtain a good family of LSH functions.
The final description of the LSH family is presented in the figure 3.1.

Ideal LSH family. Construct a hash function as follows. Consider Gd, a regular
infinite grid of balls in �d: each ball has radius w and has the center at 4w · �d. Let
Gd

i , for i positive integer, be the grid Gd shifted uniformly at random; in other words,
Gd

i = Gd + si, where si ∈ [0, 4w]d. Now we choose as many Gd
i ’s as are needed to

cover the entire space �d (i.e., until each point from �d belongs to at least one of the
balls). Suppose we need U such grids to cover the entire space with high probability.
In what follows, we formally denote by Gd

i the centers of the balls in the grid Gd
i , i.e.,

Gd
i = {(4w · x1, 4w · x2 . . . 4w · xd) + si | x1, x2 . . . xd ∈ �}.

We define h on a point p as a tuple (u, x1, x2, ...xd), u ∈ [1, U ] and (x1, ...xd) ∈
Gd

u. The tuple (u, x1, x2, ...xd) specifies the ball which contains the point p: p ∈
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Initialization of a hash function h ∈ H
1. For i = 1 to U , choose a random shift si ∈ [0, 4w]t, which specifies the grid Gt

i = Gt + si in
the t-dimensional Euclidean space.

2. Choose a matrix A ∈ Mt,d, where each element Aij is distributed according to the normal
distribution N(0, 1) times a scaling factor, 1√

t
. The matrix A represents a random projection

from �d to �t.

Computing h() on a point p ∈ �d

1. Let p′ = Ap be the projection of the point p onto a t-dimensional subspace.

2. For each u = 1, 2, . . .U

3. Check whether p′ ∈ B((x1, x2, . . . xt), w) for a (x1, x2, . . . xt) ∈ Gt
u.

4. Once we find such a ball, set h(p) = (u, x1, x2, . . . xt), and stop.

5. Return 0t+1 if we do not find any such ball.

Figure 1: Algorithms for initializing a hash function h from the LSH hash family, and for
computing h(p) for a point p ∈ �d.

B((x1, x2, . . . xn), w). If there are several balls that contain p, then we take the one
with the smallest value u.

Computing h(p) can be done in τ = O(U) time as follows. Iterate through all
Gd

1, G
d
2, ...G

d
U , and find the first Gd

u such that p is inside a ball with the center from Gd
u.

Intuitively, this family satisfies our locality-sensitive definition: the closer are the
points p, q, the higher is the probability that p, q belong to the same ball. Indeed, if
we choose a suitable radius w ≥ 1/2, then we will get L = nρ = O(n1/c2+o(1)).

However, the deficiency of this algorithm is that U might be very large, namely
Ω(2d) (see lemma 4.1). We show how to circumvent this deficiency next.

Actual LSH family. Our actual construction follows closely the “ideal” family
described above, with the exception of one additional step that we use to reduce U ,
the number of grids covering the space.

To this end, we use the technique of dimensionality reduction. Namely, we initially
project the entire space �d to a lower-dimensional space �t. The parameter t is o(log n),
and therefore factors exponential in t are still sub-linear in n. Subsequently, we choose
the grids Gt

1, G
t
2, ...G

t
U in the lower-dimensional space �t. Moreover, to compute h(p),

we also project the point p to a lower dimensional space �t, and then perform the
computation as before. Note that τ becomes τ = O(dt) + O(U t) corresponding to the
projection and the bucket-computation stages respectively.

Figure 3.1 describes the resulting algorithm for selecting a hash function h, and the
algorithm for computing h(p) on any point p.

4 Analysis of the LSH family

We start by bounding the number of grids needed to cover the whole space �t.
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Lemma 4.1. Consider a d-dimensional space �d. Let Gd be a regular infinite grid of
balls of radius w placed at coordinates 4w ·�d. Define Gd

i , for positive integer i, as Gd
i =

Gd + si, where si ∈ [0, 4w]d is a random shift of the grid Gd. If Ud = 2Ω(d log d) log n,
then, the grids Gd

1, G
d
2, . . . G

d
Ud

cover the entire space �d, w.h.p.

Proof. First, observe that the entire space is covered if and only if the hypercube
[0, 4w]d is covered by Gd

i ’s (due to the regularity of the grids).
To prove that [0, 4w]d is covered, we partition the hypercube [0, 4w]d into smaller

hypercubes and prove that each of them is covered with a high enough probability.
Specifically, we partition the hypercube [0, 4w]d into smaller hypercubes, each of size
w√
d
× w√

d
· · · × w√

d
. There are in total N = (4w)d

(w/
√

d)d
= (4

√
d)d such hypercubes. Let

x1 be the probability that a small hypercube is covered by one grid Gd
i . Then x1 ≥

(w/
√

d)d

(4w)d = 1/N because, for a small cube to be covered, it is sufficient that the center

of the ball B(0d + si, w) falls inside the cube, which happens with probability (w/
√

d)d

(4w)d .
Furthermore, if xn is the probability that a small hypercube is covered by any of the
Ud grids Gd

i , then xn ≥ 1 − (1 − x1)Ud .
Thus, we can compute the probability that there exists at least one uncovered small

hypercube, which is also the probability that the entire [0, 4w]d hypercube is uncovered:

Pr[not covered] ≤ N(1 − xn) ≤ N (1 − x1)
Ud ≤ N(1 − 1/N)Ud

Now, if we choose Ud ≥ a(N(log n+log N) for a suitable constant a, then we obtain

Pr[not covered] ≤ N(1 − 1/N)aN(log n+log N) ≤ N2− log n−log N ≤ 1/n

Concluding, w.h.p., we cover the entire space with the grids Gd
1, . . . G

d
Ud

, if we choose
Ud = Ω(N(log n + log N)) = 2Ω(d log d) log n.

The next lemma states the main technical result of this paper.

Lemma 4.2. Consider the hash function h described in the figure 3.1, and let p, q be
some points in �d. Let p1 be the probability that h(p) = h(q) given that ||p−q|| ≤ 1, and
let p2 be the probability that h(p) = h(q) given that ||p−q|| ≥ c. Then, for w = Θ

(
3
√

t
)
,

we obtain ρ = log 1/p1

log 1/p2
= 1/c2 + O

(
log t
t1/3

)
.

Proof. Our proof proceeds in three stages. First we show that the dimensionality
reduction onto �t does not distort the distance ‖p− q‖ too much. Second, we estimate
the probabilities p1, p2, and, finally, we compute ρ = log 1/p1

log 1/p2
.

We can estimate the probability that ‖p − q‖ is not distorted much as follows.
We consider the distortion to be “high” when either ‖p′ − q′‖ ≤ (1 − ε)‖p − q‖ or
‖p′ − q′‖ ≥ (1 + ε)‖p − q‖, where p′, q′ are the projections of p, q respectively, and
ε = Ω

(
1
w

)
is the distortion. Thus, if we call

−→
Δ = p − q, the probability of high
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distortion, called f , can be bounded as (see [DG99])

f = Pr [‖p′ − q′‖ ≤ (1 − ε)‖p − q‖] + Pr [‖p′ − q′‖ ≥ (1 + ε)‖p − q‖]
= Pr

[
‖A−→

Δ‖ ≤ (1 − ε)‖−→Δ‖
]

+ Pr
[
‖A−→

Δ‖ ≥ (1 + ε)‖−→Δ‖
]

≤ exp
[−O(tε2)

]
+ exp

[−O(tε2)
]

= exp
[−O(tε2)

] (1)

Therefore, with probability at least 1 − f , the distortion is not “high”, meaning
that if ‖−→Δ‖ ≤ 1, then ‖A−→

Δ‖ ≤ (1 + ε) and if ‖−→Δ‖ ≥ c, then ‖A−→
Δ‖ ≥ (1 − ε)c.

Next, we estimate the probabilities p1 and p2. For two points p′ = Ap, q′ = Aq ∈ �t,
at distance Δ′ = ‖p′ − q′‖, the probability of collision can be deduced as follows.
Consider the sequence of grids Gt

1, G
t
2, . . . , G

t
U , and let Gt

u be the first grid that contains
the ball B(x,w) such that either p′ ∈ B(x,w) or q′ ∈ B(x,w). Note that the position
of this ball defines whether h(p) = h(q) or not. In particular, if p′, q′ ∈ B(x, q) then
h(p) = h(q) and, otherwise, if exactly one of p′, q′ is in B(x, q) then h(p) 
= h(q).
Thus, we can conclude the probability of collision of points p, q that map to p′, q′ under
dimensionality reduction to be

Pr[h(p) = h(q)] = Pr[p′ ∈ B(x,w) ∧ q′ ∈ B(x,w) | p′ ∈ B(x,w) ∨ q′ ∈ B(x,w)]
= |B(p′,w)∩B(q′,w)|

|B(p′,w)∪B(q′,w)|
= 2C(Δ′,w)

2Volt(w)−2C(Δ′,w)

= I(Δ′,w)
1−I(Δ′,w)

(2)
where C(Δ′, w) = |B(p′,w)∩B(q′,w)|

2 is the volume of the cap of a ball of radius w,
with the cap being at distance Δ′/2 from the center of the ball; and I(Δ′, w) =
C(Δ′, w)/Volt(w) is the ratio of the volume of the cap to the volume of the entire
ball.

From inequality (2), we can thus bound the probabilities p1 and p2. For points p, q
at distance ‖p − q‖ ≤ 1, we have

p1 = Pr[h(p) = h(q)]
≥ Pr[h(p) = h(q) | Δ′ ≤ (1 + ε)] · Pr[Δ′ ≤ (1 + ε)]
≥ I(1+ε,w)

1−I(1+ε,w) · (1 − f)
(3)

For points p, q at distance ‖p − q‖ ≥ c,

p2 = Pr[h(p) = h(q)]
≤ Pr[h(p) = h(q) | Δ′ ≥ (1 − ε)c] + Pr[Δ′ ≤ (1 − ε)c]
≤ I((1−ε)c,w)

1−I((1−ε)c,w) + f
(4)

Further on, computing ρ = log 1/p1

log 1/p2
is only a matter of estimating I(Δ′, w) (the ratio

of the volume of the cap to the volume of the entire ball), and putting it together with
the inequalities (2), (3), and (4). This is precisely what we do next.
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The ratio I(Δ′, w), the ratio of the volume of the cap to the volume of the entire
ball, has the following form

I(Δ′, w) = C(Δ′, w) · (Volt(w))−1

= 2π
t−1
2

Γ( t−1
2

)(t−1)

w∫
Δ′/2

(w2 − y2)
t−1
2 dy ·

(
2πt/2

Γ(t/2)tw
t
)−1

= t√
π(t−1)

Γ(t/2)

Γ( t−1
2 )

1∫
Δ′
2w

(1 − y2)
t−1
2 dy

= Θ(
√

t) ·
1∫

Δ′
2w

(1 − y2)
t−1
2 dy

(5)

where the last step follows from the fact Γ(t/2)

Γ( t−1
2 ) = Θ(

√
t).

An upper bound for this quantity is

I(Δ′, w) ≤ Θ(
√

t)
1∫

Δ′
2w

e−
t−1
2

y2
dy

≤ Θ(
√

t)
√

2
t−1

∞∫
Δ′√(t−1)/2

2w

e−y2
dy

≤ Θ
(

2w

Δ′√(t−1)/2

)
exp

[
− t−1

2
Δ′2
4w2

]
≤ Au · o(1) · exp

[
− t−1

2
Δ′2
4w2

]
(6)

where Au is some constant. Note that in the third step we used the bound for the
tail of Gaussian distribution as in [Fel91], Chapter VII.1, Lemma 2.

Similarly, a lower bound is

I(Δ′, w) ≥ Al

√
t

Δ′
2w

+β∫
Δ′
2w

(1 − y2)
t−1
2 dy ≥

⎡
⎣Al

√
t

(
1 −

(
Δ′

2w
+ β

)2
) t−1

2

· β
⎤
⎦ (7)

where Al is a constant, and β ∈
[
0, 1 − Δ′

2w

]
is chosen below.

We can bound p1 further as follows. For ε = Ω
(√

1
t

)
, eqn. (1) implies f ≤ 1/2.

Then, for β = 2
Alt

,

p1 ≥ I(1+ε,w)
1−I(1+ε,w)(1 − f)

≥ I(1 + ε, w) · 1
2

≥ Al

√
tβ

2 ·
(
1 − (1+ε

2w + β
)2) t−1

2

= 1√
t

(
1 −

(
1+ε
2w + 2

Alt

)2
) t−1

2

(8)

Next, to bound p2, note that

I((1 − ε)c, w) ≤ Au · o(1) · exp
[
− t − 1

2
Δ′2

4w2

]
≤ 1/2
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Furthermore, if we set ε = Ω
(

1
w

)
, we obtain that

f ≤ exp
[−O(tε2)

] ≤ exp
[−O(t/w2)

] ≤ (1 − O(1/w2)
) t−1

2 ≤ Al

√
t

t
(1−O(1/w2+1/t))

t−1
2 ≤ I((1−ε)c, w)

(the last inequality uses the lower bound (7)).
Using the above two bounds, we obtain

p2 ≤ I((1−ε)c,w)
1−I((1−ε)c,w) + f

≤ 3I((1 − ε)c, w)
≤ A′

u · o(1) · exp
[
− t−1

2
((1−ε)c)2

4w2

] (9)

Finally, we can bound ρ using the formulas (8, 9):

ρ = − log p1

− log p2

≤
− log 1√

t

„
1−

“
1+ε
2w

+ 2
Alt

”2
« t−1

2

− log

»
A′

u·o(1)·exp

»
− t−1

2

“
(1−ε)c

2w

”2
––

≤
− log

„
1−

“
1+ε
2w

+ 2
Alt

”2
«

+O( log t
t )

“
(1−ε)c

2w

”2

=

“
1+ε
2w

+ 2
Alt

”2
+

“
1+ε
2w

+ 2
Alt

”4
/2+

“
1+ε
2w

+ 2
Alt

”6
/3+...+O( log t

t )“
(1−ε)c

2w

”2

=

“
1+ε
2w

+ 2
Alt

”2

“
(1−ε)c

2w

”2

(
1 +

(
1+ε
2w + 2

Alt

)2
/2 +

(
1+ε
2w + 2

Alt

)4
/3 + ... + O

(
w2 log t

t

))

≤ 1
c2

(
1+ε
1−ε + O(w2)

t

)(
1 + O

(
1

w2

)
+ O

(
1

w4

)
+ ... + O

(
w2 log t

t

))
≤ 1

c2

(
1 + O(ε) + O

(
1

w2

)
+ O

(
w2 log t

t

))
(10)

Replacing ε = Ω(1/w) and w = O
(

3
√

t
)

in the inequality from above, we obtain

ρ ≤ 1
c2

[
1 + O

(
1
w + 1

w2 + w2 log t
t

)]
≤ 1

c2
+ O

(
log t
t1/3

) (11)

Theorem 4.3. There exists an algorithm solving c-NN problem in ld2 that achieves
O(dn1/c2+o(1)) query time and O(dn1+1/c2+o(1)) space and preprocessing.

Proof. The result follows from lemmas 4.1 and 4.2 for t = log3/4 n. By lemma 4.2, we
have ρ = 1/c2 + O

(
log log n

log1/4 n

)
. Furthermore, k can be bound as (using eqn. (9))

k =
log n

log 1/p2
≤ log n

− log A′
u · o(1) · exp

[
− t−1

2
(c(1−ε))2

4w2

] = O

(
log n

t/w2 − log A′
u · o(1)

)
= O(log n)

Finally, τ = O(dt)+O(U t) = O(dt+2t log t log n) = O(dt)+2O(log3/4 n log log n) log n =
O(dno(1)). The theorem follows.

10
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