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Abstract

We describe a state-space tracking approach based on a
Conditional Random Field (CRF) model, where the obser-
vation potentials are learned from data. We find functions
that embed both state and observation into a space where
similarity corresponds to Ly distance, and define an obser-
vation potential based on distance in this space. This po-
tential is extremely fast to compute and in conjunction with
a grid-filtering framework can be used to reduce a contin-
uous state estimation problem to a discrete one. We show
how a state temporal prior in the grid-filter can be com-
puted in a manner similar to a sparse HMM, resulting in
real-time system performance. The resulting system is used
for human pose tracking in video sequences.

1 Introduction

Tracking articulated objects (such as humans) is an exam-
ple of state estimation in a high-dimensional space with a
non-linear observation model that has been a focus of con-
siderable research attention. The combination of frequent
self-occlusion and unobservable degrees of freedom with
the large volume of the pose space make probabilistic meth-
ods appealing. The vast majority of probabilistic articulated
tracking methods are based on a generative model formula-
tion.

Current state-of-the-art generative tracking algorithms
use non-parametric density estimators, such as particle fil-
ters, due to their ability to model arbitrary multimodal dis-
tributions [18, 10]. Unfortunately, several properties con-
spire to make particle filtering extremely computationally
intensive. On one hand, a large number of particles is
needed in order to faithfully model the distributions in ques-
tion. On the other hand, a complex likelihood function
needs to be evaluated for each particle at every iteration
of the algorithm. A further drawback of generative-model
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based algorithms is that the likelihood function is too com-
plicated to be learned from data and is usually specified in
an ad-hoc fashion. Recently, the use of directed discrimina-
tive models with parameters learned directly from data have
been proposed [1, 27, 22].

In this work we pose state estimation as inference in an
undirected Conditional Random Field model (CRF) [17].
This allows us to replace the likelihood function with a
more general observation potential (compatibility) function
that can be automatically learned from training data. These
functions might be expensive to evaluate in general, but can
be made efficient at run-time if all state (pose) values at
which they can be evaluated are known in advance. In this
case much of the computation can be performed off-line,
thus greatly reducing run-time complexity.

This algorithm naturally operates on a discrete set of
samples, and we will show how we can estimate the pos-
terior probability in a continuous state space using grid fil-
tering methods. The idea underlying these methods is that if
the state-space can be partitioned into regions that are small
then the posterior can be well approximated by a constant
function within each region.

The direct application of grid filtering would, of course,
result in the need to evaluate the potential function in each
region in the partition, which is impossible to do in reason-
able time even with fast implementation. Fortunately this is
not necessary, since at a particular time-step, the prior state
probability would be negligible in the vast majority of the
regions, allowing us to concentrate only on locations with a
significant prior.

Our algorithm operates in a standard predict-update
framework: at every step we first estimate the temporal
prior probability of the state being in each of the regions
in the partition. We then evaluate the observation potential
only for regions with non-negligible prior. When the set of
cells is fixed, we can precompute the transition probabili-
ties between cells, and thus reduce the temporal prior com-



putation to a single sparse matrix/vector multiplication, in
a manner similar to HMMs [20], thus avoiding a sampling
step altogether.

After reviewing related prior work, we first describe the
CRF-based tracking formulation and describe a way to learn
a particular observation potential function based on image
embedding (Section 3). We then discuss a grid-filter-based
inference method which can be realized with a sparse HMM
computation (Section 4). The results of our method are
demonstrated and compared against competing algorithms
in Section 5.

2 Prior Work

Probabilistic articulated pose estimation is often ap-
proached using state-space methods. The majority of the
approaches have been based on a generative model formu-
lation, with varying assumptions about the forms of the
pose distribution and transition probabilities. Early meth-
ods [14, 21] assumed that both were Gaussian and used
Kalman filtering. Extended and Unscented [28] Kalman
filters enabled modeling of non-linear transitions, but still
constrained pose distribution to be Gaussian. These meth-
ods required a relatively small number of evaluations of the
likelihood function, but lost track due to restrictive distribu-
tion models.

The need to relax the unimodality assumption led first
to use of mixture models [11, 5], and then to Monte-Carlo
methods that represent distributions with sets of discrete
samples (particles) [18, 10, 25, 26]. While theoretically
sound, particle filtering methods are not very successful in
high dimensions [15] — they require large numbers of par-
ticles to faithfully represent the distribution, which entails
large computational costs of likelihood evaluation. Further-
more, the emission probability model used in likelihood
evaluation is very expensive to train, and is often hand-
designed in an ad-hoc fashion.

Several discriminative methods have been proposed for
visual pose tracking. These algorithms apply various re-
gression techniques while leveraging large number of anno-
tated image sequences. For example, one [1], or a mixture
[27] of simple experts were trained to predict current pose
based on the past pose estimates and the current observa-
tion. Robust regression combined with fast nearest neighbor
search was used for single frame pose estimation in [23].

In this paper we dispense with directed models alto-
gether and opt for a Conditional Random Field (CRF) [17]
model. The main advantage of this model over generative
models is that CRFs do not require specification (and eval-
uation) of the emission probability, but only similarity be-
tween state and observation(s). CRFs are also a more flexi-
ble model than the previously proposed regression methods.
They allow for modeling the relationship between the state

and an arbitrary subset of observations. They are also bet-
ter able to adjust to sequences not appearing in the training
data. For example the MEMM model (similar to one used
in [27]) has been shown to be subject to label bias problem
[17].

While in the present work we use a simple chain-
structured CRF (Figure 1(b)), which directly models the de-
pendency between concurrent state and observation, it can
be extended by introducing more general relationships be-
tween state and observations.

We learn the observation potential function for our
model using the parameter sensitive embedding introduced
in [23]. This algorithm allows us to learn a transformation
of images of humans into a space where the distance be-
tween embeddings of two images is likely to be small if
the poses are similar and large otherwise. The observation
potential of a particular pose is then determined by the dis-
tance between embeddings of the rendering of the figure in
this pose and the observed image.

If for every pose at which we would like to evaluate the
potential we had to render the corresponding image, our
method would be extremely slow. By discretizing the con-
tinuous pose space, we are able to precompute the embed-
dings of all discrete poses off-line, thus drastically reducing
run-time complexity. Fixing the set of poses at which ob-
servation potential can be computed would seem to be an
unreasonable restriction, since we are operating in a contin-
uous pose space, but we overcome this problem by using a
variant of the grid-filtering technique [6, 2].

The main idea underlying grid filtering is that sufficiently
discretized random variable is indistinguishable from a con-
tinuous one. That is, if the distribution can approximated by
a piece-wise constant function, then it is sufficient to evalu-
ate it only at one point in every “constancy region” (cell) [6].
This reduces a continuous estimation problem to a discrete
one (albeit with very large number of discrete points). We
show that in the case where both observation potential and
the temporal prior are constant in each cell, tracking can be
formulated as state estimation in an HMM framework, al-
lowing us to use existing inference algorithms; further, we
have found in practice that a manageable number of cells
suffices for realistic tracking tasks.

3 Tracking with Conditional Ran-
dom Fields

Figure 1(a) shows the dynamic generative model that is
commonly used in tracking applications. The state (pose')
at time t is denoted as %, and the observed images as I°*.
The full model is specified by the initial distribution p(6°),

'In this work we consider only first order Markov models of motion.
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Figure 1: Chain-structured generative (a), CRF (b), and MEMM (c) tracking models. In all models the state of the object
(pose) at time ¢ is specified by 0, and the observed image by I*. The generative model is described by transition probability

p(6%]0'~1) and the emission probability p(1t|0?)
#(0,0'~1) and the image compatibility function ¢ (6°)

by the conditional distribution p(6*|#*~1, I'*) as shown in (c).

the transition probability model p(6%|#*~1), and the emis-
sion distribution p(I*|6*). This model describes the joint
probability of the state(s) and observation(s)

(00 T Il T 00 H[p at ot 1 (It|0t)]

t=1
from which appropriate conditional distributions of the pose
parameters can be derived.

While reasonable approximations can be constructed
for the transition probability, p(6*|0*~1), the problem for
generative models lies in specifying the emission model
p(I*]6"). In practice, to evaluate the likelihood function at
a particular pose, a figure in this pose is first rendered as
an image, and this image is then compared with the obser-
vation using a certain metric[13]. Evaluating the likelihood
thus becomes computationally expensive.

The major difference between generative-model based
approaches and ours is that we formulate pose estimation
as inference in a Conditional Random Field (CRF) model,
and are able to learn a compact and efficient observation
and transition potentials from data.

A chain version of a CRF is shown in Figure 1(b).
While, apart from the lack of arrows, it is quite similar
to the generative model, the underlying computations are
quite different. This model is specified by the motion po-
tential ¢(6%,6*~1) and the observation potential ¢’ (6) =
@(It,6"). The observation potential function is the mea-
sure of compatibility between the latent state and the obser-
vation. Of course, one choice for it might be the genera-
tive model’s emission probability p(1?]|6?), but this does not
have to be the case. It can be modeled by any function that is
large when the latent pose corresponds to the one observed
in the image and small otherwise.

Rather than modeling the joint distribution of poses and
observations, the CRF directly models the distribution of
poses conditioned on observation,

H 9t at 1

t=1

p(0™T|1T) ACHIR

where Z is a normalization constant.

. The CRF model is described by motion compatibility (potential) function
= ¢(It, 0%). Note the contrast with the MEMM model [27], specified

Once the observation potential is defined, a chain-
structured CRF? can be used to perform on-line tracking

p(0t|1-1”T)O(¢Z(9t)/¢(0t’etfl)p(etfl|1—1“t71)d9t71. (1)

The main advantage of this model from our standpoint is
that the observation potential ¢%(6') may be significantly
simpler to learn and faster to evaluate than the emission
probability p(It|6%). Below we describe an model of such
potential based on similarity between images.

Suppose that we can measure the similarity S such that,
given two images I, and I, with underlying poses 6, and
0y, respectively, S(I,, I,) is with high probability small if
dg (0, 0y) is small, and large otherwise.® Suppose now that
we are interested in evaluating the potential ¢(I*,6), and
that we have access to an image I that corresponds to the
pose 6 (for instance, we can render it using computer graph-
ics). Then, we can define the observation potential based on
distance in the image embedding space:

o(I',0) = N(S(I',1%);0,0%). )

In this work, we follow the approach in [23] for learn-
ing a binary embedding H (I) of images such that the Lq
distance in the H space serves as a proxy for such a pose-
sensitive similarity S. Briefly, the learning algorithm is
based on formulating a classification problem on image
pairs (similar/dissimilar), and constructing an embedding
based on a labeled training set of such pairs.

Once the desired M-dimensional embedding H
[h1(I),...,har(I)] has been learned, the induced sim-
ilarity is the Hamming distance in H: S(I,, 1)
Zi\r{:1 |hm(Ia) - hm(Ib)|-

This potential could conceivably be used in a continuous
domain, for example by using Monte Carlo methods in the
CRF framework, as it captures features relevant to pose esti-
mation better than generic image similarity. Unfortunately
it would not reduce computational cost since it would re-
quire rendering the image 19 at runtime for every pose 6
which we would like to evaluate.

2While both transition and observation potentials in a CRF are often
trained jointly, it is possible to train them separately, as we do in this case.
3Here dg stands for the appropriate distance in pose space



This approach becomes particularly efficient when we
have a finite (albeit large) set of possible pose hypotheses
01,...,0n. In such a case we can render an image I; for
each pose in the set, and compute its embedding H (I;).
The only calculation required at runtime is computing the
embedding H (I') and calculating the Hamming distances
between the bit vectors. We capitalize on this efficiency in
the grid-filtering framework described in the next section.

4 Grid Filtering

In the previous section we have proposed a CRF tracking
framework where the observation potential is computed as
the distance between embeddings of state and observation
described in the previous section. Computing this potential
for an arbitrary pose and image is relatively slow since it
would involve rendering an image of a person in this pose
and then computing the embedding. This is part of the
problem with generative-model-based tracking which we
wanted to avoid.

Fortunately, if all of the poses where the observation po-
tential is to be evaluated are known in advance, then we can
precompute the appropriate embedding off-line, drastically
reducing runtime evaluation cost. We would then compute
a single embedding for the observed image, which would be
amortized when the potential is evaluated at multiple poses.

While fixing the poses in advance seems too restrictive
for continuous space inference, grid-based techniques pio-
neered by [4, 16] show that this can be a profitable approx-
imation. The main idea underlying these methods is that
many functions of interest can be approximated by piece-
wise constant functions, if the region of support for each
constant “piece” is small enough. As metioned above, we
follow the convention and denote such region of support as
a “cell”.

In our case, the function we are interested in is the pos-
terior probability of the pose conditioned on all previously
seen observations (including the current one). The poste-
rior is proportional to the product of the temporal prior (the
pose probability based on the estimate at the previous time-
step and the motion model) and the observation potential.
We would like to define the cells such that both of the com-
ponents are almost constant. The observation potential is
often sharply peaked, so the cells should be small in the re-
gions of pose space where we expect large appearance vari-
ations, but large in other regions. On the other hand the
motion models are usually (and our work is no exception)
very approximate and compensate for it by inflated dynamic
noise. Thus the temporal prior is broad and should also be
approximately constant on cells small enough for observa-
tion potential constancy. We derive the grid filter based on
the assumption that the partition of the pose space into cells
with the properties described above is available.

Let the space of all valid poses © be split into N dis-
joint (and not necessarily regular) cells C;, © = U?Ll(}i,
CiNCj =0,i # j, such that both likelihood and prior can
be approximated as constant within each cell. Furthermore,
let us have a sample 6; € C; in every cell. The set of sam-
ple points {6;}4 is referred to as “grid” in the grid-filtering
framework.

By virtue of our assumptions, the temporal prior can be
expressed as

p(0" € ;0" € Cy) :/ / (0%, 00" 1)do " 1det (3)
ciJey
~ $(0:,0;)|Ci]|C;1,

where |C;| is the volume of the ith cell, with the approxi-
mation valid when the noise covariance in the transition is
much wider than the volume of the cell. So the (time inde-
pendent) transition probability from jth to ith cell is

__ 9(6:,6))[Ci] .
sy @0k, 0;)|Cx]

The compatibility between observation and the pose be-
longing to a particular cell can be written as

“)

ij

64(C:) = / 6L (0)d0 ~ 6,(6,)(C]. 5)
C;

Combining eqs 1, 3, and 5, the posterior probability of
pose being in the ¢th cell is

N
1
p(0" € G = — g (0:)\Cil Y Tiyp(6'~H € 11
j=1
(6)
1 N
= quf’(ei) ZSijp(gt—l c Cj|]1..t71)’
j=1
where S;; = |C;|T;; is time independent and can be com-
puted offline.
If we denote
p(0t € Cy|I1) oL (61)
p(#" € ColI™) 64(02)
= : and "= _ 7
p(et c CN|II..t) QSZ(HN)

then the posterior can be written in vector form

1
t t—1 gt
=_—=5 Sk 7
T = sl (N
where .x is the element-wise product, and the scaling factor
W = N (Sxt=1. % I'), is necessary for probabilities to
sum up to unity.



Algorithm | CRP | CRPS | kNN | ICP | CND | ELMO
Seconds | 0.05 | 0.07 05 [ 0.1 120 8

Table 1: Average times required for algorithms tested to
process a single frame.

The final equation has striking resemblance to the
standard HMM update equations. It defines our on-
line CONDITIONAL RANDOM PERSON tracking algorithm
(CRP). We can also use standard HMM inference methods
[20] to define a batch version of CRP: CRP SMOOTHED
(CRPS) uses a forward-backward algorithm to find the pose
distribution at every time step conditioned on all observed
images. In addition, the most likely pose sequence can be
found by using Viterbi decoding and we call the resulting
method CRP VITERBI (CRPV).

S Implementation and Evaluation

We have implemented CRP and CRPS as described in the
previous sections. We have used the database of 300,000
pose exemplars generated from a large set of motion capture
data in order to cover a range of valid poses. The images
are synthetic, and were rendered, along with the foreground
segmentations masks, in Poser [7] for a fixed viewpoint.
The motion-capture sequences are available from [12] and
include large body rotations, complex motions, and self-
occlusions. The transition matrix was computed by locating
1000 nearest neighbors in joint position space for each ex-
emplar, and setting the probability of transitioning to each
neighbor to the be Gaussian with 0 = 0.25. The volume
of each cell was approximated as that of a ball with radius
equal to the median distance to 50 nearest neighbors.

We used the multiscale edge direction histogram
(EDH) [23] as the basic representation of images. The
binary embedding H is obtained by thresholding individ-
ual bins in the EDH. It was learned using a training set of
200,000 image pairs with similar underlying poses (we fol-
lowed an approach outlined in [29] for estimating false neg-
ative rate of a paired classifier without explicitly sampling
dissimilar pairs). This resulted in 2,575 binary dimensions.

The tracking algorithms are initialized by searching for
50 exemplars in the database closest to the first frame in the
sequence in the embedding space.

Due to the sizes of the database and the transition ma-
trix, both algorithms require large amounts of memory, so
we performed our tests on a computer with 3.4GHz Pen-
tium 4 processor and 2GB of RAM. The algorithms were
implemented in C++, and were able to achieve real-time
performance with average speeds of 20 frames per second
for CRP and 14 frames per second for CRPS.

5.1 Experiments with synthetic data

We have quantitatively evaluated the performance of our
tracking method on a set of motion sequences. These se-
quences were obtained in the similar way as the sequence
used for training our algorithm but were not included in the
training set.

We compared our online algorithm, CRP, and its batch
version CRPS (CRP SMOOTHED), to four state-of-the-art
pose estimation algorithms. The first baseline was a state-
less k-Nearest Neighbors (kNN) algorithm that at every
frame searches the whole database for 50 closest poses
based on the embedding distance. The remaining base-
line methods were incremental tracking algorithms: deter-
ministic gradient descent method using the Iterative Clos-
est Point (ICP) algorithm [8], CONDENSATION [25], and
ELMO [9]. The ICP algorithm directly maximizes the like-
lihood function at every frame, whereas CONDENSATION
and ELMO evaluated the full posterior distribution. In our
experiments, the posterior distribution in CONDENSATION
was modeled using 2000 particles. In ELMO, the poste-
rior distribution was modeled using a mixture of 5 Gaus-
sians. The likelihood function defined in ICP, CONDEN-
SATION and ELMO was based on the Euclidean distance
between the articulated model and the 3D (reconstructed)
points of the scene obtained from a real-time stereo system.
In contrast, both CRP and kNN algorithms require only sin-
gle view intensity images and foreground segmentation.

We have chosen to use the mean distance between es-
timated and true joint positions as an error metric [3]. In
Figure 2 we show the performance of 6 algorithms de-
scribed above on four synthetic sequences.* As can be seen,
both CRP and CRPS consistently outperform kNN, and
CONDENSATION?, and compare favorably to ICP. While
CRP produces somewhat worse results than ELMO, it does
not use stereo data, and is hundred and sixty times faster.
The timing information for all compared algorithms is pre-
sented in Table 1.°

5.2 Statistical analysis of results

In order to evaluate the statistical significance of these re-
sults we used the following methodology. We use the mean
joint position error as a measure of accuracy of pose predic-
tion on a given frame. Suppose that algorithms A and B are
both tested on the total of N frames, producing on the frame
i errors e;' and e, respectively. The quantity of interest is
the error difference di'~ % A — eB. Figure 3 shows

:ei

“#These results reflect correction of an error in earlier CRPS implemen-
tation.

SIncreasing the number of particles used for Conpensarion should im-
prove performance, but the computational costs would become prohibitive.

%We have used more iterations of gradient descent than the implemen-
tation described in [9].
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Figure 2: Comparing algorithm performance on four synthetic sequences: “applause” (a), “brush teeth”(b), “dryer” (c), and
“salute” (d). The error is measured as an average distance between true and estimated joint positions. The graphs are best
viewed in color.
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Figure 3: Distributions of improvements in joint position estimates of CRP (first row) and CRPS (second row) vs. kNN (first
column), ICP (second), CONDENSATION (third), and ELMO (fourth). Negative values along the x-axis mean lower error for
the proposed algorithm. Given for each comparison are the pgroportion of frames in which CRP/CRPS were better than the
alternative, and the average improvement in error. See text for results on statistical significance.



the distribution of these differences between our algorithms
(CRP and CPRS) and competing algorithms computed over
a large number of synthetic sequences. For example, the
top right plot shows the distribution of ¢ ~FLMO Neg-
ative value of d?‘B means that on frame ¢ the algorithm A
was better than the algorithm B. The lack of a parametric
model for the distribution of d4~% makes it difficult to ap-
ply thorough statistical testing to hypotheses involving the
mean of that distribution. Therefore, the anlysis below fo-
cuses on the median, which lends itslef more easily to non-
parametric tests.

One question we can ask is whether the results support
the conclusion that A is expected to be better more than half
the time. We answer this question using the binomial sign
test [24]. Intuitively, it is equivalent to modeling the out-
come of each comparison (on one frame) by a coin flip in
which “tails” means that the sign of d*~7 is negative. The
null hypothesis we wish to reject is that the coin is fair. We
applied this test to the data histogrammed in Figure 3, us-
ing p-value’ of p = 0.001. At this significance level, CRP
was better than kNN and CONDENSATION and worse than
ELMO. CRPS was better than ANN, CONDENSATION and
ICP and worse than ELMO; we could not establish signifi-
cant differences in error of CRP vs. ICP.

A more refined statistical evaluation of the difference in
performance between two estimation algorithms is based on
establishing a confidence interval on the median improve-
ment. Given the desired confidence value p we seek a value
D such that the probability of the median difference of the
errors being above D is less than p.

We apply the following procedure to perform this test.
Suppose that D is the g-upper quantile of the observed dis-
tribution of d4~ 5, i.e. ¢V values are above D. Under the
assumption that the true median of the distribution lies be-
low D, we have Pp = Pr(d4~2 > D) < 1/2. Now, we
define a random variable Zp that is the count of observed
values of d*~B that exceed D. Its distribution is binomial
with parameters Pp and /N. Consequently,

Pr(Zp > ¢N) = Bino(Zp; Pp,N) < Bino(Zp;1/2,N),

®)
where Binomial(z; p,n) = (7)p®(1 — p)"~*. Using De
Moivre-Laplace approximation [19],

Bino(Zp; 1/2,N) ~ N(Zp,N/2,vVN/2), (9

where N (z; p,0) = m}ﬂ exp(—(x — p)?/20?). Combin-
ing (8) and (9), and solving for the desired signifcance p,
we get

q=G 1(1 —p; N/2,VN/2)/N,

"The p-value is the probability of obtaining the observed data under
the null hypothesis; that hypothesis is rejected if the p-value falls below a
specified threshold, which determines the significance of the test.

Method ENN ICP CND ELMO
CRP vs. -1.5cm 0.04cm  -7.13cm  4.57cm
CRPS vs. | -1.75cm  -0.28cm -7.47cm  4.27cm

Table 2: Confidence intervals for median error reduction,
with p = 0.001: with probability 1 — p, the true median
of d4~ B falls below the value for row A and column B.
Negative values indicate cases where we are confident with
respect to the improvement (error reduction) achieved by
CRP/CRPS over competing methods.

where G is the inverse of the normal (gaussian) cumulutive
distribution function. In other words, if we choose the value
of D corresponding to such g, the probability of the true me-
dian being lower than D is at least 1 — p. Results of this test
for p = 0.001 are given in Table 2: there is a robust advan-
tage to both CRP methods over kNN and Condensation, but
not over ELMO.

A relatively large difference between estimated mean
(Figure 3) and median (Table 2) improvements of CRP vari-
ants over ICP can be explained by the fact that ICP is more
likely to completely loose track (thus producing large er-
rors) than CRP.

5.3 Experiments with real data

For the real data, segmentation masks were computed us-
ing color background subtraction. Sample frames from a
complicated real image motion sequence are shown in the
Figure 4 (the video of the original sequence and results of
our algorithm are available as supplementary material) and
Figure 5. The top right pane in the supplementary video
was obtained by smoothing CRPV output and rendering the
resulting pose sequence.

6 Conclusions and Discussion

We have presented CRP, an algorithm for tracking articu-
lated human motion in real-time. The main contributions
of this work are the discriminative CRF formulation of the
tracking problem; use of similarity preserving embedding
for modeling observation potential function; and the grid-
filter inference algorithm that transforms the continuous
density estimation problem into a discrete one. The result-
ing algorithm is capable of accurately tracking complicated
motions in real-time (20fps in our experiments for both syn-
thetic and real data).

As future work we are interested in using extra domain
knowledge to further improve the performance of the algo-
rithm in two ways. First, when the set of poses that need to
be tracked is restricted, then the size of the sample database



Figure 4: Sample frames from a gesture sequence (first row), segmentation masks (second row) and the corresponding frames
from a most likely sequence computed by CRPV algorithm (third row). See supplimentary material for the full video.

Figure 5: Sample frames from a gesture sequence (first row), segmentation masks (second row) and the corresponding frames
from a most likely sequence conputed by CRPV algorithm (third row)
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