MIT/LCS/TM-50

AN ENCIPHERING MODULE
FOR
MULTICS

G. Gordon Benedict

July 1974



MAC TECHNICAL MEMORANDUM 50

AN ENCIPHERING MODULE FOR MULTICS

G. Gordon Benedict

July, 1974

This research was performed in the Computer Systems Research
Division of Project MAC, an M.I.T. Interdepartmental Laboratory,
and was sponsored in part by the Advanced Research Projects
Agency (ARPA) of the Department of Defense under ARPA Order

No. 2095 which was monitored by Office of Naval Research
Contract No. NO0014-70-A-0362-0006; in part by the Air Force
Information Systems Technology Applications Office and by ARPA

under ARPA Order No. 2641; and in part by Honeywell Information
Systems, Inc. .

This Technical Memorandum reproduces a June, 1974, M.I.T.

Electrical Engineering Department S. B. Thesis of the same
title.



An Inciphering Module for Multics page 2

ABSTRACT

Recently IBM Corporation has declassified an alocorithm
for encryption usable for computer-to-cormputer or
computer-to-terminal communications. Their algorithm was
implemented in a hardware device called Lucifer. A software
implenmentation of Lucifer for Multics is described. 2 proof
of the algorithm's reversibility for deciphering is
provided. A special hand-coded (assembly language) version
of Lucifer is described whose goal is to attain performance
as close as possible to that of the hardware device.
Performance measurenents of this program are given.
Questions addressed are: How complex is it to implement an
algorithm in software designed primarily for digital
hardware? Can such a program perform well enouch for use in

the I/0 system of a large time-sharing system?

Author: G. Gordon Benedict

Thesis Supervisor: Prof. Jerome H. Saltzer



An Enciphering Module for Multics

Title Page
Abstract
Contents
Figures
Tables
Overview
Section 1,

Section 2,

Section 3,
Section 4,
Section 5,
Appendix A,
Appendix B,
Appendix C,

Appendix D,

CONTENTS

Introduction to Enciphering
Enciphering Algorithms and Lucifer
in Particular
A Proof of Lucifer's Reversibility
The Multics Software Implementation
Timing Measurements and Conclusions
Operation of the Lucifer Hardware
The PL/I Implementation
The Assembly Language Implementation

Introduction to Multics Assembler

Bibliography

12

17

19

22

24

34

43

62

68

page 3



An Enciphering Module for Multics

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

FIGURES

Flowchart

Block Diagram

Bit Addresses in Registers
Hardware Schematic

Lxploded Key Bit Assignment
Key Bit Assignment
Convolution Registers

Postrotation Convolution Registers

25

26

44

47

48

page 4




An Enciphering Module for Multics

Table 1, Key Byte Access Schedule

Table 2, Four-bit Permutations

k3
&
!._)
©

3, Convolution Register Rotation Counts

31

33

51

page 5



An Enciphering Module for Multics page 6

OVERVIEW

This thesis examines the enciphering algorithm recently
released by IBM, Lucifer. This algorithm is described as a
hardware mechanism in “The Design of Lucifer, a
Cryptographic Device for Data Communications", by J. Lynn
Smith; this was the primary source document.

A proof of Lucifer's reversibility is given, that it
will in fact correctly decipher its previously-output
ciphertext when provided with the same key used for
enciphering. Two software implementations are described and
their performance measured,

This paper is divided into five sections and four
appendices, "Introduction to Enciphering" briefly explains
the wuses of enciphering in computer-to-computer and
computer-to-terminal communication as a security
enhancement. "Enciphering Algorithms and Lucifer in
Particular" lists some criteria for a good computer-oriented
cipher. The general operation of Lucifer is depicted
without much detail. Sufficient detail is however given for
understanding of "A Simple Proof of Lucifer's
Reversibility". This section provides an informal proof
that Lucifer works in that it correctly deciphers its own
ciphertext. "The Multics Software Implementation"
demonstrates how to use the enciphering programs. The final

section, "Timing and Conclusions", presents performance



An Enciphering Module for Multics page 7

Measurements of a PL/I and a Multics assembly language
version of Lucifer, Appendix A, "Operation of the Lucifer
Hardware", details the operation of the hardware device
described by Smith. Appendix B, "The PL/I Implementation",
details a software version in the PL/I language designed to
simulate closely the Lucifer hardware in its operation and
be readable and exportable. Appendix C, "The Assembly
Language Implementation”, details a version of Lucifer
optimized for execution time. For those readers unfamiliar
with the Multics hardware, "An 7I.troduction to Multics
Assembler" briefly explains those features of the Honeywell

model 6180 processor used by Lucifer.



An Enciphering Module for Multics page 8

INTRODUCTION TOC ENCIPHERING

Much attention has been paid recently to computer and
data security. Computer security consists of requlating the
use of computer facilities to only those people or those
tasks authorized to use them. This has been attempted by
such mechanisms as passwords, protection rings, and
privileged instructions. Data security is becoming more
important with the advent of government and corporate
personal-data files, This problem is magnified if the
computer system is available to many users via
telecommunications. Given the above facilities for
regulating computer facility use, access control is one
mechanism that is available for preventing unauthorized
access to data files. However, this mechanism fails when
data is transmitted over telephone lines, radio 1links, or
physical (mail or courier) shipments. Such communications
are easily tapped without the legitimite wuser's knowledge,
except for the case of a courier. Even more insidious than
the traditional reading of sensitive data is the insertion
of spurious data designed to confuse or misdirect the
operation of a system. One mechanism for minimizing this
problem is enciphering that data, which protects the data
itself rather than the medium of transmitting the data.

Enciphering is a process whereby transformations are

made on the message (cleartext), wusually on a bit or




An Enciphering Module for Multics page 9

character level. If the algorithm is known the cipher may
be breakable by analyzing the ciphertext, particularly if
sample cleartext for some of the ciphertext is available.
Since an enciphering algorithm must be reversible to be
useful, a key known by both the message originator and the
intended receiver is also used. Thus 1f the key is
intercepted or deduced the «cipher is now cracked. The
essence of successful cryptology is in devising an
enciphering algorithm which is not possible to crack in the
time-span of the message's useful.iess, and in keeping the
key secret.

Enciphering helps in preventing insertion of spurious
data to confuse a computer, as well as preventing reading of
secret data. This is because a random message inserted onto
the communication link will probably decipher to
unrecognizable garbage. The algorithm implemented in this
paper 1is so constructed that if one bit is changed in a
legitimate enciphered message, the deciphered text will
almost certainly be unrecognizable. This prevents the form
of interference wherein a saboteur records (taps) the
ciphertext, changes some bits randomly without even
understanding the message, and inserts the text onto the
telephone lines. Unrecognizable text can usuallv be
rejected by the computer. There still remains the problem
of the saboteur who records the ciphertext and replays it

unchanged later, This can be extremely damaging to



An Enciphering Module for Multics page 10

unrepeatable or irreversible processes, A method of
avoiding this problem is message chaining, whereby a part of
the previous data exchange 1is enciphered in this data
exchange, as a verification field. Thus +the same message
replayed tomorrow would contain an out-of-date verification
field and be rejected. The operation of such a system is
discussed at length in Smith's paper.

Enciphering can also be used for computer-to-terminal
communications, The terminal would contain a hardware
deciphering module; the algorithm described here was
designed with this purpose in mind. The user could have his
key on a magnetic card, or he could type it in on the
terminal, The computer would contain a central file of all
users' keys and a software or hardware version of the
enciphering module.

Enciphering can add some security to online files
against the possibility of random hardware or software
failures or physical stealing of backup tapes, disk packs,
etc. Enciphering in this application merely adds another
dimension of security.

This paper details an enciphering algorithm developed
by Feistel and Smith of IBM for computer~-to-terminal
communications, A software version has been prepared,
intended to be used as part of the input/output software or
the network interface of Multics., A command to encipher and

decipher online segments has also been written. A proof of




An Enciphering Module for Multics page 11l

the algorithm's reversibility is also given; this was hinted

at but not proved in the Smith and Feistel papers.




An Enciphering Module for Multics page 12

ENCIPHERING ALGORITHMS AND LUCIFER IN PARTICULAR

There are several desiderata in the design of an
enciphering algorithm. One 1is needed which is easily
implemented in hardware, yet would provide a great measure
of security against cryptanalysts =-- especially against
those armed with computers of their own.

Many traditional algorithms have operated by performing
one-for-one character substitutions based on the key.i For
example, the "Vignere=-Vernam" ciphers use a square array of
characters. To encipher, each character of cleartext is
used as a column index into this array; the character of the
key corresponding to this character of cleartext (i.e., the
nth character of.the key corresponds with the nth character
of cleartext) is used as a row index. The character at the
intersection is the corresponding ciphertext character. The
key 1is repeated as many times as necessary to exhaust all
characters of cleartext. The square array can contain
essentially any characters, These ciphers' weakness arise
from the key repitition and the simple substitution of a
very short message element (a character). Such ciphers are
subject to frequency analysis, particularly if a sample of
cleartext is available, This. oversimplified account is
drawn from "Cryptology, the Computer, and Data Privacy" by

M. B. Girdansky.

The algorithm developed by Smith and Feistel uses the




An Enciphering Module for Multics page 13

traditional enciphering mechanisms of substitution of
strings and modulo arithmetic on strings, However, by
repeated cycles, essentially a substitution is performed on
not small characters but 128-bit blocks. Thus such methods
as frequency analysis require computation time on the order
of the lifetime of the universe.

This algorithm, called Lucifer, has the added
advantages of simple hardware implementation with
shift-registers and easy reversibility. A general
description of the algorithm follows and then a proof of
its reversibility.

The Dbasic transformations used are one-to-one mappings
and exclusive-ors (mod-2 addition). The input is divided
into egqual-sized blocks; each block is processed completely
independently of the others. The following description
refers to one block only, It is thus desirable from a
cryptographic point of view to use as large a block size as
possible, since the more bits which affect a given bit of
ciphertext, the harder will be the job of the crvptanalyst.
As mentioned before, a basic weakness in many ciphers is the
small block size.

A block 1is broken into the top half and the bottom
half, Without changing the bottom half, it is broken into
easily manipulable units called bytes. Each byte undergoes
one of two one-to-one transformations depending upon a hit

of the key. This collection of transformed bytes is



An Enciphering Module for Multics page 14

referred to as confused bytes, and the operation is referred
to as confusion. Next, each bit of the confused bytes is
modulo-2 summed with a different bit of the kev. This
operation is referred to as interruption. Now these bytes
are modulo-2 summed with the top half of the cleartext, the
block previously unused. This is called diffusion. The two
halves are swapped; this operation is called interchange.
Sixteen such cycles occur, One complete
confusion-interruption~diffusion cycle 1is called a CID
cycle. The schedule for accessing key bits is so arranged
that every key bit is wused for both controlling the
confusion transformation and for interruption. The

interchange operation occurs on every cycle except the last.

wy



An Enciphering Module for Multics page 15

Figure l: Flowchart

¥

contusion

v

1n%{frur%foﬂ

4

Y
cinE‘FuS '{cm

€5

no

]nfequaﬂgﬁ

Figure 1 shows a flowchart of the operation. Thus the

algorithm consists of:

Figure 2: Block Diagram

CID cycle |—f inferchange—27 71 CTD cycle
0 0 n

The only difference between enciphering and deciphering
is the order in which the key bits are accessed. Within CID

cycle n during deciphering, key bits are accessed in the



An Enciphering Module for Multics page 16

same order as in CID cycle 15 - n in enciphering, These
operations, explained in general here, are fully detailed in
Appendix A - Operation of the Lucifer Hardware.

This leads to a simple proof of reversibility, as

explained in the next section,




An Enciphering Module for Multics page 17

A PROOF OF LUCIFER'S REVERSIBILITY

Assume there are n + 1 CID cycles and thus n
interchanges. Call output of the CID cycle n - 1 MO || M1
(where MO is the first half of the message, Ml is the second
half). Call the output of cycle n CO||Cl. The double
vertical bar represents concatenation. MO|| M1 is
transformed in the following manner by cycle n, which is the
last cycle (the first is numbered 0). Confusion: A
transformation T (M1l) is applied. Which transformation
depends on a bit of the key (one for each byte of M1) but
since the same key bits will be accessed for the same byte
positions during deciphering the specific transformations
selected is irrelevent, as long as they are all one-to-one.
Interruption: T (Ml) is exclusive-ored with specific key
bits KI. Diffusion: T (Ml) + KI is exclusive-ored with the
top half. The total message is thus T (Ml) + KI + MO || M1,
Remember that on c¢ycle n no interchange occurs., On
deciphering, this output will be fed into decipher cvcle 0,
which is the same as encipher cycle n. Since this cycle is
exactly the same as the last encipher cycle, confusion and
interruption will generate T (Ml) + KI just as before. When
this is exclusive~ored with the top half «consisting of T
(ML) + KI + MO the original MO will be regenerated.

Since the interchange before encipher cycle n occurs

after decipher cycle 0, the output from the interchange will



An Enciphering Module for Multics page 18

also match. Thus the entire n - 1 interchange and n CID for
encipher is equivalent to the 0 CID and 0 interchange.
Thus these cycles can now be effectively stripped off; the
same proof is applied to a Lucifer consisting of n CID
cycles and n - 1 interchanges. Eventually a Lucifer of one
CID cycle and zero interchanges remain; this has already
been demonstrated above to be reversible,

In the actual specific operation of Lucifer, the
diffusion operation does not consist of a simple
exclusive-or; instead the bits are permuted in a figed
fashion before diffusion. This does not affect the
reversibility, since the ciphertext will wundergo the same
permutation and thus each cycle will regenerate the input of
the corresponding encipher cycle. However, this permutation
is necessary for the cipher to be difficult to break., It
ensures that small differences, say a one-bit change, in a
given message block will propagate throughout all the bits
of that block of ciphertext. Each bit of cleartext
potentially affects every bit of ciphertext, within a

128=-bit block.



An Enciphering Module for Multics page 19

THE MULTICS SOFTWARE IMPLEMENTATION

Two programs were written as implementations of the IBM
hardware versions of Lucifer. One is a s*raightforward PL/I
program which manipulates the bits in essentially the same
fashion the hardware does., The other is a Multics assembly
language program optimized for speed of execution. Details
and listings of each may be found in the appendices.
Instructions on using them are given here.

First, a key must be supplied. This is done by calling
the set_key entry:

declare lucifer_ $set_key entry (bit (128));
call lucifer Sset key (key);

This entry saves the key in internal static., This key
will be wused for all future enciphering and deciphering
until set key is called again.

To encipher:

declare lucifer $encipher entry (dimension (¥*)

bit (128), dimension (*) bit (128), fixed binary precision

call 1lucifer_ Sencipher (cleartext, ciphertext,

code) ;
The packed bit array, cleartext, is enciphered and
deposited in the equal-sized array ciphertext. The code
argument will be set to 2zero unless the dimensions of

cleartext and ciphertext do not agree, in which case code



An Enciphering Module for Multics page 20

will be set to one and the enciphering not performed. The
ciphertext and cleartext may be the same variable.

To decipher:

call 1lucifer $decipher (ciphertext, cleartext,
code) ;

This entry is declared the same as encipher, and its
operation is similar,

One problem with this implementation is +that Lucifer
requires a 128-bit block to encipher each 128-bit block of
the cleartext. If the cleartext is not a multiple of 128
bits the 1last Dblock could be padded with zeroes, but the
output ciphertext corresponding to this block cannot be
truncated., ' If it 1is information will be lost and it will
not be deciphered correctly. This is because on decipher
the truncated block will be padded to 128 bits (with zeroes,
presumably) which is not identical to the original output of
encipher before truncation, Therefore the primitive
subroutines lucifer_$encipher and lucifer $decipher require
data to be passed in 128-bit blocks.

To make this more palatable to Multics users (to whom
data tends to come in multiples of 9-bit characters or
36-bit words anyway) a command.has been written to translate
an entire segment., To set the key, type:

set_key -key-
where =key- will be padded or truncated to 128 bits and is

an octal string,.



An Enciphering Module for Multics page 21

To encipher a segment, type:
encipher -cleartext- -ciphertext-

The segment whose relative pathname is -cleartext- will be
enciphered. If the optional argument - ciphertext- is not
given the original segment will be overwritten; otherwise
the ciphertext will be written onto the segment named
-ciphertext-,

The input will be padded to a mod 128 bit 1length with
zerces, and the output segment will be equal in length.
Note that no additional pages can ever be required by this

padding, since a page is 36*1024 bits long, a multiple of

128,
To decipher, type:
decipher -ciphertext- -cleartext-
This command operates in the same way as encipher. Since

the ciphertext segment must be a multiple of 128 bits long,
exactly as produced by encipher, the output deciphered text
will be exactly as long, This is because decipher has no
way of knowing how long the original was. This can damage
standard object segments which have significant words
expected to be found at the end of the segment. Note that a
better version of this command would encipher the original

cleartext length into the ciphertext segment.



An Enciphering Module for Multics page 22

TIMING MEASUREMENTS AND CONCLUSIONS

One of the important questions addressed by this paper
is "Is it possible to take an algorithm designed for easy
hardware implementation and efficiently translate it to
software?", Performance measurements by Feistel show +that
the Lucifer hardware module enciphered a 128-bit block in
about 165 microseconds. A version written in 360 assembly
langugage for the 360/67 required about 9 milliseconds. The
current Multics hardware, the Honeywell model 6180, executes
instructions at approximately the same rate as the IBM
360/67. The PL/I version, as expected, was extremely slow
and required 10.4 seconds to encipher 72 blocks of 128 bits
each, or 144 milliseconds/block. The assembly language
version required o4 seconds/72 blocks, or 5.5
milliseconds/block. Multiplying by ten the number of blocks
passed to lucifer_ did not substantially reduce the
time/block, suggesting that 5.5 milliseconds represents real
computation and not overhead. Since Multics characters are
nine bits 1long, Lucifer requires 5.5 * (9/128) = 390
microseconds per character enciphered. Currently the
Multics I/O system requires about 100 microseconds per
character for its processing; thus if Lucifer were used for
all I/O a severe performance degradation could occur.
However this speed probably suffices for the occasional use

to which it might be put.




An Enciphering Module for Multics page 23

There are some possibilities for further speed-up of

the assembly language version; this is discussed in Appendix

c.



An Enciphering Module for Multics page 24

APPENDIX A - OPERATION OF THE LUCIFER HARDWARE

This appendix explains the details of the opecration of
Lucifer as it was originally designed, as a hardware device.
This material is drawn from J. Lynn Smith's "The Design of
Lucifer, a Cryptographic Device for Data Communications".

A copy of the PL/I program which implements the
algorithm, duplicating very closely the exact bit flows
within the hardware, is shown and explained in Appendix B.

Several cautions must be made in reading the hardware
diagram given in figure 4, Individual bits of a given byte
are arrayed vertically across registers; bytes are numbered
right-to-left, bits of a byte top-to-bottom. Thus each
vertical column below represents one byte of eight bits.
Therefore if the bytes are adjacent (0, 1, 2...etc) the
storage order in memory (in a two-dimensional array) is
according to the ordered pairs in each bit position shown

below.



An Enciphering Module for Multics page 25

Figure 3: Bit Addresses in Registers




An Enciphering Module for Multics page 26

Figure 4: Hardware Schematic

JAT 193y OV IND
NOLLY W YOI SN Yy,

3]
|

AR AL A

CisTERS

OGN RE
=Y

ULV

5
7
3
g
g

CoN Y

o .

(U O , —

5 (Vg D “
i ] <
Z ki P ‘__
o

“ i EEQ_ o 5
N — -..A;J-_l_. _..,g é
?ﬁg; i;i IR En i:; ~ —
= A e
HULNBUINE
4 4 A w1
AR, 1
by o
o P W
¢ [ ¥e)
LRI —




An Enciphering Module for Multics nage 27

Note also that the author assumed that high-order bits
are transmitted first; the Smith paper does not specify
this. Thus bits are first loaded into position 0 of the
convolution registers (top half), then porition 1, 2 etc. on
to position 0 of the source registers (bottom half).

Each of the registers shown is connected as a circular
shift-register, 1In addition, bits can be shifted from the
convolution registers to the source registers and back for
the interchange operation.

A complete enciphering or decir.iering operation for one
128-bit block consists of sixteen
confusion-interruption-diffusion (CID) cycles, with an
interchange cycle in between each CID cvcle for a total of
15 interchange cycles.

At the start of a CID cycle, byte 0 of the key is
copied into the transformation-control register. This
register will supply eight bits for controlling the
confusion operation; each bit will correspond with one byte
of the source registers.

A CID cycle consists of eight shifts of the source,
convolution, and transformation-control register (TCR). The
TCR shifts vertically upward; other registers rotate
horizontally, byte n going to byte mod (n - 1, 8).

An individual shift of a CID cycle occurs as follows.
Byte 0 is taken from the source registers. It flows into

the confusion box along with bit 0 of the TCR. A one-to-one



An Enciphering Module for Multics page 28

transformation is applied to this byte, according to the bit
from the TCR, The output from the confusion box is an
eight-bit confused byte. Each bit of the confused byte is
exclusive-ored with some bit of the convolution registers;
note that no two bit positions are in the same byte, Each
of these result bits is exclusive-ored with some bit of the
rightmost byte of the key; this constitutes the interruption
function. The result of this operation is stored in the bit
position of the convolution registers to the right of the
pair of exclusive-or gates. Note that diffusion occurs
before interruption, but this is immaterial since mod 2
addition is commutative. As the result bit is stored in the
convolution registers, the convolution registers, source
registers, and TCR undergo a shift. Thus the bit that
previously was to the right of the exclusive-or gates in the
convolution registers is not destroyed; it is shifted right,
and the result of diffusion occupies its old position,

These shifts are executed eight times for each CID
cycle. In addition, during each shift the 1l6-byte key
registers each rotate right one position with one exception:
during the last shift of each CID cycle the key register is
not rotated during encipher; during decipher the key
registers rotate two positions after the last shift, Thus
seven key shifts occur per CID cycle on encipher and nine
key shifts occur per CID cycle on decipher. This, coupled

with an initial shift of nine positions before processing




An Enciphering Module for Multics page 29

any blocks, constitutes the only difference between
enciphering and deciphering.

When eight shifts of one CID cycle are complete, the
source registers will be back to their original position.
The convolution registers are also restored except that each
of its 64 bits has been exclusive-ored with exactly one key
bit exclusive-ored with exactly one source bit. This is
guaranteed by the placing of the gates in a different byte
position for each bit of the confused byte. The key
registers have been rotated eitier seven times (for
encipher) or nine times (for decipher). The TCR has yielded
all its bits. An interchange cycle now occurs, unless this
is the 1last CID cycle. °~ This consists of connecting
positions 0 and 7 of the source registers with positions 7
and 0 of the convolution registers, respectively; eicht
shifts now occur. This merely swaps the contents of the
registers,

Now the next CID cycle begins, A new key byte 1is
fetched into the TCR., On CID cycle 1 this will be byte 7
for encipher and byte 2 for decipher of the original key.

It is important that the key bits be accessed in the
reverse order (between CID cycles) when deciphering as
compared to enciphering, but in the same order within each
CID cycle, This 1is to ensure reversibility, as explained
earlier., In addition, for cryptographic strength each bit

of the key should be accessed an equal number of times:



An Enciphering Module for Multics page 30

eight times for interruption and once for transformation
control of one byte of the source registers. The following
method of accessing key bytes was thus devised. If there is
to be an encipher, the key is initialized by loading it into
the key registers. If a decipher is to be performed, the
key registers are then rotated so that the first CID cycle
will use bytes 9 to 0 rather than 0 to 7. After each CID
cycle there will be no key shifts on encipher, but there

will be two shifts during decipher. This will cause the key



An Enciphering Module for Multics page 31

bytes to be accessed as shown in table 1.

Table 1l: Key Byte Access Schedule

CID cycle encipher decipher
0 01 2 3 4 5 6 7 9 10 11 12 13 14 15 O
1 7 8 910 11 12 13 14 2 3 4 5 6 7 8 9
2 1415 0 1 2 3 4 5 11 12 13 14 15 0 1 2
3 5 6 7 8 9 10 11 12 4 5 6 7 8 910 11

4 12 131415 0 1 2 3 131415 0 1 2 3 4
5 3 4 5 6 7 8 910 6 7 8 9 10 11 12 13

6 10 11 12 13 14 15 0 1 15 0 1 2 3 4 5 6

10 6 7 8 9 10 11 12 13 3 4 5 6 7 8 910
11 131415 0 1 2 3 4 12 131415 0o 1 2 3
12 4 5 6 7 8 910 11 5 6 7 8 91011 12
13 11 12 13 14 15 0 1 2 1415 0 1 2 3 4 5
14 2 3 4 5 6 7 8 9 7 8 9 10 11 12 13 14
15 9 10 11 12 13 14 15 O o 1 2 3 4 5 6 7

The byte of the key used for transformation control is
in the left-hand column. Note that the decipher schedule is
the same as the encipher schedule read upsidedown, but
within a CID cycle, read horizontally, bytes are accessed in
the same order. Also note that the key registers will be so

positioned after sixteen CID cycles ready for the next



An Enciphering Module for Multics page 32

block: in byte 0 for encipher, byte 9 for decipher.

The exact nature of the confusion operation has not
been explained yet. It is not important particularly what
it 1is, as long as it is one=-to-one and sufficiently random.
It works as follows. Each byte to be confused (from the
source registers) is split into two four-bit halves., If the
key bit from the TCR for this byte is 1, the two halves are
exchanged; otherwise no operation is performed. ©Next, each
four-bit half undergoes a one-~to-one mapping. The method in
hardware wused decoders, encoders, and permuted wires, but
effectively a table loock-up was done to associate with each
of the sixteen bit combinations a unique four-bit
replacement. The two mappings for the +two halves are
different; the one for the top half is called S0 and the one
for the bottom half is S1, Finally an 8=bit byte is
generated by permuting the eight wires from these +two
mapping networks. The result of this entire confusion
operation (and the way it is done in the software versions)
is to consider the key bit concatenated with the source byte
as a nine-bit index into a 512 element table. Each element
is an eight-bit confused byte. This is explained in

Appendix B, the PL/I implementation,



An Enciphering Module for Multics

Table 2:
input
0000
0001
0o0lo
0011
0100
0101
0110
0lll
1000
1001
1010
1011
1100
1101
1110

1111

S0
1100
1111
0111
1010
1110
1101
1011
0000
0010
0110
0011
0001
1001
0100
0101

1000

Four-bit Permutations

S1
0111
0010
1110
1001
0011
1011
0000
0100
1100
1101
0001
1010
0110
1111
1000

0101

page 33




An Enciphering Module for Multics page 34

APPENDIX B - THE PL/I IMPLEMENTATION

The PL/I implementation is very similar to the hardware
design. However, instead of rotating data toward the low
address end of each register, index values into fixed arrays
are decremented and wrapped around to the high order end.
Note very carefully that each byte shown in the hardware
diagram, those bits arrayed vertically, are rows of
two~-dimensional arrays. Thus if a conventional PL/I array
is printed it will appear transposed as compared to the map
of the registers. For consistency within this document all
arrays will be transposed from the conventional order so
that they appear identical to the hardware bit orderings.

Instead of doing 15 interchanges (unlike most other
operations, a real movement of data occurs on interchange)
16 are done. This last interchange is undone by copying the
source registers first into the result block followed by the
convolution registers. This is to avoid checking within the
loop for the special case of the last execution. Similarly
rather than skipping a key=shift cycle on encipher and
performing an extra one on decipher each CID cycle, eight
increments of the key index interruption row are always
performed. After a CID cycle is complete, a fixup variable
either_one_or minus_one is added modulo 16 to
interruption_row; this variable is -1 for encipher and 1 for

decipher.



An Enciphering Module for Multics page 35

The program operates as follows. It copies the first
half of a given 128-bit block into the
convolution_registers; the second half is copied into
source_registers, The interchange_index loop counts the
CID-interchange cycles, sixteen in number. Within that loop
a CID cycle is performed by assigning interruption_row to
ks_row; interruption_row shows which byte of the kevy will
next be used for interruption, ks_row shows which byte will
be used for transformation control. This assignment is the
equivalent of copying the next byte of the key into the TCR
at the start of a CID cycle. Now the data_row loops eight
times, once for each byte in source_registers, The entire
confusion operation is implemented by a 512 byte table; the
first half for key bit = 0, the second half for key bit =1,
Thus the confused byte is found by indexing this table with
the key bit identifieq by ks_row and data_row concatenated
with the source byte identified by data_row. Now
convolution_index loops eight times, once for each bit in
the confused byte. Note that this is all done in parallel
in the hardware version and in the assembly language version
described in Appendix C. Each bit of the confused byte must
be exclusive-ored with some bit of the key byte identified
by interruption_row. Just as the key interruption wires
were permuted in the hardware, so key_table tells which bit
of that key byte is supplied for each bit of the confused

byte. This interrupted bit is now exclusive-ored with some



An Enciphering Module for Multics page 36

bit of the convolution registers. The register in which the
bit lies which will be diffused (the one to the right of the
exclusive-or gates) is the one corresponding to the source
register from which the interrupted bit was derived. The
number of this register, the column in the PL/I sense
(although it is horizontal on the diagrams) is therefore
convolution_index. The byte in which this bit lies is given
by a table, convolution table. These positions rotate right
around the registers, one position for each shift of the CID
cycle, once for each incrementing of data_row. Therefore
the correct convolution table entry for this bit of the
interrupted byte must be mod-8 summed with data _row; this
supplies the byte or row number of the target bit.

After this byte is complete, interruption row is
incremented mod 16 to simulate rotating the kev registers
once to the right. Now data_row is incremented to have the
effect of rotating the source, convolution, and
transformation-control registers.

After the eight loops of data_row, interruption_row
must be readjusted to simulate only seven key shifts on
encipher but nine shifts on decipher. As explained before,
a fixup variable either_one or minus one is mod 16 added to
interruption_row; this fixup variable is set at the entry
points. The two entry points also set the initial
interruption_row, either 0 for encipher or 9 for decipher.

After sixteen loops of interchange_index, sixteen



An Enciphering Module for Multics page 37

CID-interchange pairs have been performed. The block is now
copied into the result field; the source registers are
copied first to undo the effect of the extra interchange

cycle.



/¥ 5493151424 UOLIN|OAUOD U} UMW 03 SUVJISOU dIyq 2idh %/ ({ ¢ () UOlSUPw]p I[4EI ULLINOVAUVD 94e [ Dap

/+ 549151434 UO|IN[0AUDD puUk 9IAN0S SujUders duy Addow pIsn x/ H(nY) 11y gmumh;&ﬁlcgwu dde|o9p
e (9144 [) 49SI3uvd y0 Jndine =/ 1(8) iy 234y pasnjiuul wde | U9y
lAdedjy poXiy
/¥ doqud[99p duy [ TAdyu U9 AUy [- */ (9JOT SNUfw JdU 9UU 494119
[ dU S, | p-uv]lundddld] Jduy pasSIl Adq 40 MOd x/ ‘mMudTuol3dnadaliug]
/% (A2€y Qdempdrey) 91€d gyx SU]EJuUV 54915 dod UV INOAULVY 3u AUd Il yM »/ oA T U0 3N [OAUOD
Jx MOU BUA [UAULD ((|J) 94U audilp) 934y pesigdUd 40 Jiy G pqM ox [ “X@pulTUuINUAUOD
[ [VUA1UdU0 UV JRWAL,SURA] duy U5 MUU Auq S0 MOd JEyM x/ 1047 S Y
Je BUBUNW MOU 4915 jedd JU|JIHUAUVD JU GUAINS 3O MUl JegyM s/ LT TS W I th FEIW)
/¥ (ST - U) S9|2A2 @dueyudaoju| Sidnuvy x/ ‘Xopu| 94URyDdsIU|) AR |29y
/% A€y US pasSSdIuAd U dlS Indul U Slyy ¥/ Sy “nE)y Uuls|99dd Adedly peX|y uu|lsud 3xe9] dde | Iy

fpdus)peun () diy (L ¢ U) dolsugduly
[ (4184 UQY) S49]15jdad UO{IN[VAdVS */ (54915894 UL |IN|OVAUCD
/% (3124 wolloy) S49]5|S94 SILI0S 94] %/ 1549154947 924N0S) wAe | Jep

1413y (43s54Nns
‘suldls
pouw
pOX 14
‘up
W CCE
fAppe) Q4e|29p

[e MUV} S8]43UY SuUldOyd ISy pUR SUAIqU DU JOj SUOLIRAER[IIUY %/

. fuanjoed
{pua
{pu9
L(1 ‘1 + MuATRIep 4 M0dTSq x 9T ‘AoyTR) A43540s
/» 950dsdeal x/ = ([ ‘[ + ModTs4q ‘(rmoaTegep) Ady) 4154Nns
/¥ Ad4q 30U SM04 Nay) Qledal] =/ fp V1l ) = MOATSY Op
/% AB, 30 Suwi (WD Nyl wledol| »/ 1G] VI 0 = MmoaTEIER Up

£011€1S |2uda3d} (GT * y) duisuaulp (g) Ily A9y g4 | D9p
\-mmxpam:>¢x1\ uﬁmmﬁvungwuusm;mczcxlm @;m*umt

Jx 9SN VY Ad4 J@yM d9y pun| [ [9] U] pIdsh Ad3ue Siyl x/ {(A9y e) @4npadodd
. tA9 1S

/% gV 329004d 3O UO|S|A|p yvd4E2aSdy SWP1SAS 431NUwWLy 941 1B N /Yg/ny 49 jpIudy UUpdoy tu Ay 9p0D Ale]d]U]
Yl Ay pPUUIAGY SE Wy} |A0d | Suldoyu Jud ddy [N 9qd SIUBWI [Uw]| 9 [NpOW S|yl »/

\tuctattirtqaa««c««&uu«ﬁt#«aa¢«ici«uc«¢ut«;;qtc«tk¢««c:«&««tc««iﬂtcﬁ«i«««««««#*i«kttuic#c&acctc#kkai«

* ¥
* COU| ‘SwElSAS U llRwduzU] || 9MIUOy puE ¥
» AJUUUY2D] Ju 93Nl 15U| S119sN4aeSsSe,y “NL0T (2) 1yd | dAUVY »
» »

s;****#i*t«tu#t#«kt#«««iaﬁ«««««««tkft«ﬁ*««t«tIi«aicttutiit«lt*««;t&&#fﬁi«1«&«««&««utt«it«*k«c#iﬁii;«\

gg =ded SO NW 403 I [NpOY Fuadyd|dud uy



[T (D I+ moaTRIey “(mod75.4) Adyg) 43154ns)
/¥ UO[SN4U00 3P 0] 94e] Jd, un quu|

/% 91242 (1J 4I€d INUU] LU SBIAY 4 SSdIudU
[* 9I0AD (g sS4l ul Ju3dnadadld| Jdoy pasn
A94 50 ®3Ay IS4l SI [vd]uud duljewdugisued)

/* SI|2A0 QBURGOABIU| Y[ =/
(N9 ‘54 o+ UulRISOU AN

/¥ 201y 49 x/ {(yldud| PsLRSSIW > WU SUUTIXEY) I g BIT Ay 0 =

TSP VAD (UV]SIyy | p-Uv]JUNAA8 U] =u0SN,UU0) JiJ 91 wd i
T(IX91=d9q4d D

Ay pOSSQULIU S| DUy 4oEo

FALAVTUTR) dlsyns =
Ny YT o+ dufisodTaXel ‘AlAvTulTR) d43s4ns =

PIX1a) 914€1 UU|SN4zULD

%/ = JdIAy pesSlizuou

%/ TLwd oy o= nudTejen Op
%/ LA0dTUO L IANAA9TU] = 04 TSy

191 V3 [ Ay g = X9pu|T @sueyudslu| Op
(549154947 904NUS) Buidls
(54915 {8947 001N [VAUVD) Jujd]s

UO 3 ]S0dTIx9]) Op
"51594) Aw pde sdeded i | 985S S| |RJ9p 940U JO,

p9549Usdalu] S3[VAD BBuURYyIABIUL YT
40 ~de9 |0 dy A2w) 1x93 Indu| jo 120 |4

/*

314=8¢T 4288 2U|SSI0VUAU A[JUdpuUddapu] LUk A{93edRUes ;0 S35|SUUD S y] TSMOL |03 JOO| ulew Xy
wtcw
fuanjod
{1 = 9pudTe
f* S|4yl Je suaey x/ {Op U9yl 4loud| Ys¢SSow = dCT * (T “1n07R) wyp 41
/% ANUU Ul S|y L,u dogwiid x/ T8¢ ¥ (1 “YiTE) Wip = 4l4ud | TYBRSSIW
/% UO[199S UuwwL x/ tujol
/¥ BUpA94d DB Udym 95 U Ao 4u dIAY IS4G w/ ‘o o= MudTuLldNdUdR3uU |
/% FL2A2 (1l 4OED JUy WU 94U oD, UdyM AD. JU BIAY € Ul4S x/ 11 = 9u0TSNU W A0TeUO 49yl 19
{opuoTe ‘anuTe ‘uiTe) Auajus
/¥ wde JSdly S| 1X93494U D 9JOU -- AdJU9 Bupdaydadp =/ tdoydo9p
/* 9PUD UOWWUD ¥/ futul vjous
/% g 93Ay S| 9sSn 0] A9 ,0 93Ay IS4y %/ g = BcLlcc_uczgumuc_
/* 8144 1Se| SIsnsod 494U | 2Ud @sNeloy “M0AT UL} 1dN4d93U]
Q1 @943 () B J433u¢ ppe 0] JUNUWR x/ - = JUOTSNU JWTA0TBUO 49y | @
/% dpoo sSN3e1s x/ I(5¢) WO SIo9dd Adeujy peX]y dpLIT e d4e [ 29p
{(n¢) Jvulsjaedd Adeuajy PIX |4 4IJUI| 9deSSow dde | D9p
TPBUL QU (4lsud|Tesess9W) Jiq (((3n0TR) Appe) pasey A|A0T In0Te
C((d1Te) dppr) posey ApaoTu|Te) EFE MW
/# (494d[29p duy IX9JALI | 9) IAG AU | x/f fdoldweded (ge1) iy {(*) UU|SUlW|p (INU e
/% (494U |Dep 40y IXIIAIU (D) IXSIALI |0 x/ ‘ulTe) 94e | Doy
I(epulT e “1noTe ‘ulTe)y Adluas

J¥ AAJUD supdogd,oue x/ HEE VI NIV

191 4L UO SN uu0 apn|ou) ]

Flg) UOLS|Oudd Adeuly pox |, 91IRLS peddou] (g ‘L ‘L ‘¢ ‘y ‘n ‘o ‘Z) 1213y
f¥ UOIANAAIIU] A0y pdsSn Slly Ad4q ,u UOl3E}NWIYd SIA|d x/ (L ¢ Q) JOlSUdWip 9| ye] Aoy Ide [ dap
T(§) UO|S|09dd Aded]y pax|, |RJ4B]u| “132ds (¢ 0 s T8 9 ‘L) (B1llug

g @4y

SOpILN duj 9 NP0y duldegdjouy uy



’

Jid
duy

T(S493s[deATUOIN [VAULD) g
(54915 18947 90anus)

59 +

15 = (ny
menﬁ:u

T(4935 18047 UwWel) dujdls =

1((=) SA935 18947 U0 N [VAULD) BUjAIS =

C((%) $49351494790410S) GUida]s

(91
/¥ L 4]4S ‘dogdjoep 9IAY [ joey uws

(9T ‘T + MOATUO | JUNAd9]U])

/¥ pdnodededia yllm 914y A8, Ix9Uu duy I rre =/

o ysoud Ixe)
‘T + UullgsodTIxen

(A9 7195 pus
udanjed
apuuTe
{pus

.\Cﬂ

\>_>clu:c?mv 431S4ns
‘ApaoTInoTey disyns

{pua

((*) mLmuw“naLlcc—u:_C>cch dujdals
((*) sd493s

19947 904N0S)  BUld]s
= (4935|894  dwel) dujdls

/% S491S|da4 UOIN|OAUOD pue 324anus dems */

\mcclm::_slgcitcclLaiy_m + MOdTUU3dNA493U ) pow
\Ltic_bﬁa Ju o/ =

A04TUO 3dNAa U
fpua

POw

= ModTUOIUNddR3Uy

u\C@

SC40ULTuy (40T LUy ‘(I “T+ XQpU | T Uu| N [UAULD
“(M0ATUU 3N (0AUOD) 54935 | 894TU0 IN VAWLD) J]Syns

(T I+ X@pUu|TUuo|In [UAULD ‘9344 IS LULD) U3SyNs) {00y

(1
S(MVATUO 1A a9
“(MLATUO N (VAULD)

= ([ “I+ X9puU| UO|3IN[OAULY

T+ (X9pU|TUU I [VAULY) 9| qel Ay
} A94) 4disyns)
54938 149dTUV AN [UAUVY) 43S 4NS

Lovy

(8 ‘modTelep 4 (X9pu)Tuolgn fuauuD) 9(MEITUOIN [VAULIY) pow

/* S49]1s1434 puUnode a3ejo4 SUVIS0d YO INVAULD
9940 yoes uuy x/

/* 91A4 pasnjiuoo 40 A1y 4orI A |OAULD x/ LoVl g

MOATUOIN [ OAUUD

XOpdlTUO N UAULD Lp

S0 b f(ruaTelep) S49315 1 dod” 904nus

Oy Qwed

S2L3n 404 9npoy dujdaeydiouy uy




‘qGUUO00LO0Luy,
"4, 000U00T0,,
“4,u000T000,,
4,0000000u0,
“4,TT00TT00,
‘q,11000T00,,
‘4, TL00T000,
‘4, TTU00000,
\I_.OﬁCQHHCCZ
‘4n01000T00,,
‘Y L00VTITTO,
\L:HCCCCmHC._
‘Y LO0uuT00u,
“YuTuvu0o0uy,
Y TTUULULO.
\;:ﬁﬁccocﬁc:
“9a0TouL0Tuy,
TMuUTUUU0TY,
4 U0UUTTOY,,
1:cccccﬁ0c:
‘MaLLUULTTO,
“anlTUUUTTuy,
‘Y4 [00UTO Ty,
“ynluluootyy,
\;:_gccﬁﬁccz
,..:ﬁCCccﬂoc:
“qn0Tudl00uy,
“4uuluu000u,
“YyUT0OLTTO,,
“Gu0T0UUTTuy,
\chcccﬁHH;:
1:occgoﬁﬂo:
Y, 0000L0T0y
“4u0U0000TO,y,
‘400001000,
‘400000000,
‘Y4aTToulToy,,
“YuTT00UTO0Uy,
CanTTOUT000,,
‘S ITOU00Quy,
‘9yUTU0TT0u,
“quuTO0UUT0Uy,
‘4 LOUUTTTU,
-r_:ﬂOCCr,_ﬁHL:
Y [000T000y,
9, LU0U0U0Y,
“qulLOuTuluy
[ TOUUUTU,,

‘4 0UTT00TY,
‘4, 000TT0TL,
“YuUuLTOU0U,,
‘4 U0ulTo0T,,
‘4 TTTT0T0u,,
My TTOLLITIOL,,
‘Y TTTT0000.
YaTTOTT00T,,
‘4 0TTTOLO0U,,
~£:cﬁcﬁ~HcH:

rzncHﬁcHHc:
“4T00LTLTLL,

I..ﬂCﬁﬁDODC..

Y LOUTTO00T,,
UG LTTTI00Tu,
‘Y TTuLlTulL,
‘quuTTTouluy,
YU TOTIOTL,,
\;:coﬂﬁcﬁcc:

YyW00ITI0T,
‘4 ITLTO0ITu,

‘GuITULILLL,

‘4 TUTTO0UTU,
‘ynTOUITOTLTL,
~;:ﬂcﬁﬁcﬁcc:

;:mocﬁﬁﬁcﬂ:
r.__c_“._“ﬁcccc__

‘qyuTuTTO00L,

‘YUTTIOTTYy,
YyUTUTTITL,
‘4UUTIOTTY,
‘YyuOUTLTILITL,
‘YuUO0TI00TYy,
4000TT0TT,,
‘qn00TT0000,,
“4a00uTT00Ty,
GuTITI0TO0U,
N TTUTTIOL,
Yy LTTT000U,
‘YuLTulT00L,
‘Y O0TTTIOTO0U,
‘GuUTUITIOT,,
“YuLULTOTTY,
YuTOULTITIT,,
My LuTTI000U,
“quLOULLooTL,
‘G lTTL00TY,,
‘Y LIULIOTT,

‘YaUUTOUU LUy
“9u00TTluTuy
‘4, 00T0000Uy,
.L:coﬁﬁﬂocc:

::ﬁﬁﬁccﬁcc:
YNTTITTITIuYy,
::Hﬁﬁcccgc:

Ay TTTTTIUOU,
“Yy0TT0UTUYy,
‘G OTTITT00,,
‘Y TUTOUTTO,,
Yy TUTTTL LUy,
‘Y TOT0U0UU,
\r..:ﬂCﬁ.HﬂCCC__
“HaTTT000TUY
YnITITTUTUy,
‘4u0TT00U Ty,

::cahﬁﬁcﬁg:
;:ccﬁccﬁcc:
L._:c.ﬁﬂh.ﬁcc:

‘YalTTO0UL LU,
\x_.,_”HHﬂH.HﬂC__
‘GnT0T00UTUy,
‘M TUTLTuloy,
“YuTuTouluyy,
‘YylulTliTuuy,
MpUTT0000Uy,
.&:cﬂﬁﬁﬂccc:

L:oﬂﬁccﬂﬁc:
YOTTTITTIU,
“Yn00LUUT Ty

“Y0UTTLTLUy,
“4u00T0UUTUy,
4W00TTTUTO,
‘4 U0TOULUUY,
‘4u00TTTU0Y,
‘Y4uTTT00T00,,
Yy TTLTTIT0Y,,
‘YuLTT0U00U,
‘YnTILITT00U,
“YuULL00T0U,,
YWUTLTTIOU,,
9y TuTOUTTUy,
\r_:ﬁCHHHmHL:
“YuTuTO00uYy,
“YuTOTTLUUU,
“YuLLTUUUTuy,
Ty TTTILUTU,

“4uU0UTTUTOy,
W00 LuTully
“YuuLUTTUUO,
“9u,00T0TUuL,,
“x:HHcHﬂHccz
YuTTTUTTUT,
Y TTUTTUUUy,
4 TLLUTuuT,,
“Yn0TUTTTO0,
\:.:CnﬂCﬁ_”r_H:
YnTUOTITIUY,
Yy TUTullIT,
‘4 TOUTTUUUy,
‘Y TuTuTuul,,
“4uTTUTLUTYy,
‘AW TITULUITy,
‘L:

TOTLuluy
;:cﬂﬁcﬁcﬁﬁ:
4:cccﬁrwcc:
J:ccﬁchﬁrﬁz
fynllulliiuy,
“AnTILlulllly,

‘ynTuultuluy,
g TUlululTy,
s,._._ﬁCr_H._._..CC..
‘UnTululluly,
‘quuluTivudy
‘GUUETULUUT,,
HizcﬁCHﬁﬁﬁc:
GyUTTUTITT,
‘4qU0ULTituy
fYqUULULLTT,
‘Y OUULTUTUy,
si..ODMCFCHH:
ﬁ’:_cCcﬂ._”CC::
“4,00T0T00T,,
‘qulT0TI1uU,
‘MW LLLULTOL,
‘Y LTULLUOU,
‘GuTTTOLuuL,
YuuTOTTTI0U,
\I_.CHHC—.ﬁC._._—
‘YuTOUITITU,
“YuTUTUILT Ly,
‘“YulUulluuuy,
‘Y TUTUTVUT,,
‘qulLulluluy,
‘MO TLTULULTy,

u

‘Yu0uulouluy,
“4u0U00TULTy,
‘Y U00TUUYO,,
4, 0000L0UT,,

‘4 TTUTU LUy,

‘MuTTU0T LTy,
“YuTT0TuuUuy,
“anLTUUTUUT,,
‘YyOTUTUTUU,
\(:CHCGHHCH:
‘Y TOuTulluy,
‘G TUUOLTLT,
“4uT00TOUYL,,
Y LO0UTOIT,
‘qaTToTuuloy
Y TLUOTLuILT,
‘MaULUTOUTU,
‘ywUTOUTUTT,
H;:ccc"cﬁcc:
4uU0uU LLul,
‘4 TTUTOT LUy,
‘Y LTUUTILT,
“YuTOuTuuTyy,
“Yul00UTULT,,
‘Y LOVTUTUU,
"M T0UULTVL,
Yl HCHCCCC__
‘YyUTO00TUUTy,
“;:=Hc~chmc:
SUTUUTITLL,
‘Ya00UTOTTuy,
‘4uU0UOLLLTy,
4u000TU0TO,
\L:C‘DCCﬁCHH._
“4a0U0TU0ULy,
“4u0000TUUT,
‘YnTLULOLuyy,
‘Y TLOOLLUTL,
‘Y LTUTO0UY,
“YuTLOOTUUT,
‘4 0TOTUTOO,,
“4quT00TTUL,
‘Y TOUTUTITU,
‘yuluOULLLL,
“quTU0T000U,
‘4 T00UTUUT,
“yulluluuloy,
‘qnllUuluLLy,

/*

tdaylon

Jded

“GuuOuTuully,
“4u00LTouTTy
“YU0uTO0dTy,
“400TTUOO0T,
\L:._..HCﬁCﬂC.m_.
Y LITTUTUT,
“qulT0TuuoT,
Yy TLITOUUT,
“YuTUTuToLy,
“quOLLTOTU T,
“YaTOUTVITT,,
‘MO LUTTUIIT,
“YnlOULUUU T,
“YuTulTuuuly,
sr_..ﬁwc‘ﬁcc_nﬁ..
‘S TTTTOULT,,
MpuT0TOulTy,
MuOLLLOUTTL,
MpJUUTululy
MaWOTTULUTy,
S TTOTOTTT,
‘yn LTLLULLT,
‘9 TOUTUULT,,
‘Y TULTuulL,
‘Y L00TLTu Ly,
‘N lOTTuIvy,
“9uuTuTuuuT,
‘qaUTLIUOUT,
‘qauluTuiiTy,
SMWUITIVITT,
AgUUTUllT,
“;:ccﬂﬁcﬁﬁﬁz
YyuduTuoTIT,
“Y00TTOULT,
“4u0V0TUUUT,,
“Yu00TTO0UT,,
‘U llolulut,
‘4 TITIUTOTL,
‘Y TTuTOUUT,
“quTTTTOUUT,,
‘4 UTOTUTUT,
Yy OTTTIUIUT,
“4nl00TUTT L,
“YuTOLLULLL,
4 TO0UTUUUT,
‘yuLOLTUOUT,
‘qallulnully,
MO TITLUOLTL,

s
.
‘
’
s

[y d9y1ony
40 UUIBI9UO JOISI4U0D
"9 4Ll uv|

Ly’

4, 00T000TT,
“YWOULTITULT,
“4,00T0000T,,
‘9, 00TTTUOT,,
Y TITUUTUT,
Y TTTITITUT,
‘quTTTU0UOT,,
S TTIITUuT,,
“4u0TI00TUT,
"GGuTTTTIUT,
“YuTUTO00TTL,
Yy TUTTITILT,,
Y4, TOT0000T,,
“YuTUTTIUUT,,
‘yaLLTO0OTT,
‘YW LTTTITULT,
\;=Cﬁﬁcccﬁﬂ:

r:cﬁﬂﬂﬁcﬂﬁz
My Udi0UTOT,,

“4nOUTTLLOT,
G TTTOUTTL,,
“YuLTLITTILL,
‘4 TUTO0VOLT,,
“YuLUTLTULL,
‘Y TOTO0TUT,
“izﬂcﬁﬁﬁﬁcﬂz
SuULTUUOUT,,
sI__c_“._”H.nCGH_.
CHWUTLOUTITL,
YuOTTTITIT,
“Y4y0uT00TILT,,
‘MaOUTITITT,
‘YuuuTouoIT,
“YyUOLLLULT,
‘4,00T0000T,
“YyUOLTTUOT,,
“yy LITODTOT,,
G LTTTITTOT,
‘Y LTT0000L,
‘Y TTTTTIUO0T,,
‘YUTTO00TOT,,
‘Y OLLLLTUT,
‘Y LUTOUTTT,,
‘MG LUTTTTILIL,
“4uTOTOU0UT,
G lULTIouT,
‘G LLT00UTT,,
‘4 [TILTOIT,,
) LRl

L9}

91y

Ay pos

4, 00000011,
“Y4yUUTO0TUTY,,
‘4 0000000T,,
Y4, u0TUTU00,,
‘Q,TT000T0T,,
‘Y TTTUTTUO,
‘4, TT0000UT,,
Yy TTTulau,
‘YuuT000TUT,,
“YuuTTuTTuuy,
“GuTO00UTTT,
‘4 TOTUTITITY,
Y4, T0000LOT,
‘Y TuIuT0UU,
“4uTT0000TT,,
‘4 ITIVIuTO,
.::c~ccc¢HH

_cﬁmcﬂCﬁc.
;:cccccﬁCH:

‘Y OuTOTTO0,
‘Y4 LT00UITIT,
GuTTTullTuy
‘4 TU00UUTT,,
Yulululutuy,
“4uT0000LuT,
YuTuTuTTuuy
“Yuluuluuiy,
\L:CHHC.ﬁcCQ:
“;:cﬂcgcﬂﬁﬁz
‘L:cﬂﬁcﬂﬁﬂc:

L..GCCOC.ﬁﬂH:
“4u0UTOTTITU,,
400000011,
‘400 LoTuluy,
‘4,0000000T,,
‘4, 00TUTOUU,,
‘4, TT000T0T,,
‘YuTTTUTITUU,
“Y4uLT0000UT,
Y TTTUTOUU,
‘4, 0T000TUT,
YUl TulTul,
“4a10000TIT,,
‘G LUTOTTITuy,
‘4, 10000001,
“YuTULUTUuUU,,
4y LTOUDULT,,
Ny TTTOTO0TY,,
el Jo|[Sniuud

N ooy ALuo p|

9431 SIUBWI |Jwl

SN4u0d 513

SO13Ny 404 9| NpOW Buid

9ae | Doy
noys 1|

sidl
Junldnl */f

9qdouy uy



¥ LLUT12d 79 14RITU0S0,a00 4714 UiTdd] UG ¥/

ucp.—mum |BUud]u} nﬁmm H cu r_CmmCt{m.r. twct——mcz ﬁxv 1ly n
(:_C_.Cc_nr_ﬁ.rv._ si..LHHHCCHL: si..CﬁHCCCHC.. \(_:;ﬂCﬁ.ﬁCHQ: \I._CﬁC_HCC‘—‘.C.. sI..ChCHCCFH._ \L:CHMCCCﬁH: \r__:ﬁﬁcccchﬁ..
“9uuluvU0Ton "YU TuTTOTT,y ‘S 0TTTI0T0 ‘MU ITULULLy “MyUEUOTULT,, “MyuITTUUIT, “NMyUTTTEO0LT, ‘YWUILOLUTU,
“HyuU00TTUU, "4 00TTOT00 “Y4400TUUTUUN “4yUO00LTTIU0, “4u0u0TUTUY, “HWU00TUTUT, “Y4400T00TUT, ‘4,00000TUT,
“900000T00y “4000TTTOT, “Hy00TTLTUU, “Y4,00TUT10T, “Y40000LTULl, “Y4yUOTTUTUT, ‘Y4uUUTLTIUT, ‘Y4,00T0TLUO,
“YuTLuvITTu, “Y4uTTITOTTY, “HgTIT00TTO0 “MgITULLLLuy “Y4oTTO0TOTLuy, ‘Y4yLTUTULTT, ‘Y4,TTLI00TIT, ‘4,TT00UTTIT,
‘MG TTGOUTTU, “MgTTOTTTIL, ‘MuTITITETY, “MgTLLOILTL, “4yTTOOTLTT, ‘9ETITOTIL, ‘Y9 ITITITIT, ‘Y4,ITIOILTO,
‘4, T0uuT0T0y “HuTuITO0T0, “4,TUTOUUTUy “MyTOUTLOLO, “44L00TOULI0, “4,TO0O0TUUIT, ‘4Y4uTOLO0UTT, ‘4,TU00UUTLL,
“4T00000T0, 4y TUUTTOTT, "4 TOTTTOTOY  “MuTOTUTUTT, “44L000TUTT, “NMgTUTTOULL, ‘YaTOLTTOLT, ‘4yWTOTOTUTO,
‘4, T000TT00, ‘Y TUTTOTO00, “4yTOT00TUU, “S4uTOUTLTUU, ‘Y4, T00TUT00, “Y44T00L0TOT, ‘4,10T00TOTL, ‘4,T0000T0T,
4410000100y, ‘4 TO0TTTOT, “YyTUTTITO0, “4,TUTOTTOT,, “YuTO00TTUT, ‘YuTOLIOTUTL, ‘Y4,T0TTILITOT, ‘4,T0TUTT00,
“4UTUUT000, 79, 0TTTI0000, ‘Y44y0TT000U0, ‘4y0TUTTO0U, ‘Y4WUIOL00UU. “Yy0TOTOUOT, “4,0TT0000T,, “4,0I00000T,,
“40100000uy “4u0TOTTO0T, ‘Y0ETTT000, ‘440TTUTUOT, ‘YuUIO0TUOT, ‘Y4u0TTLUOVL, “4u0TITTVO0T,, “Y4,0IT10TI00U,,
‘4nUT00TTITO,, "MWOTTTOTTUy “My0TTOUIT0, “4u0TUTLTI0, “YyuI0TOTTY, ‘4y0TUTUTITIT, ‘Y4,0ET00TIL, ‘4,UT000TTT,,
‘L:cﬂcgcﬁﬂc: MWOTOTTTTL, “9OTTTTTT0, “My0TTOITTT, “MyuTOULLLT, ‘9 O0LTTULLL,, “YOTTTITTITT,, ‘4,0TTUTTTU,,
MuUUOUTTTuy 4 0uTTOTTU, "4, 00T00TTUN “4u000TITTO, “4000T0TTU, “MyUOOTOLLT, ‘400T00TET,, “4,,0V000TIT,,
“MWU00UUTTON “Y0UOLTITTy “My00TTTTTuy “Y0UTOLTILL, “4,0000TTLT, “4WOUTTOET T, "4y00ITTTICT,, “4,00TUTTTIU,

L N

Zn @4ed SO Ny 4Uy 9[NPy Yuldoyd|dug uy



An Enciphering Module for Multics page 43

APPENDIX C - THE ASSEMBLY LANGUACE IMPLEMENTATION

The basic philosophy of the Multics assembly language
version of Lucifer was to produce a program which could
encipher or decipher at the highest speed. This does not
contribute to the readibility of the program; therefore this
explanation is quite detailed. If the reader is unfamiliar
with Multics assenbly language, a short introduction is
given in Appendix D.

The set key entry does more than store the key in
internal static. During ciphering the key is used in two
places: transformation control and interruption. For
reasons explained later, each purpose requires the key to be
in a different format for optimal operation. To avoid key
manipulation during ciphering, set_key stores the key in two
variables, key and exploded key.

In exploded_key each bit of the key is given its own
nine~bit byte. The high-order bit of each byte contains the
key bit; the low order eight bits are zero. This key is for
transformation control. In the diagram below showing the
storage assignment, the ordered pair in each byte position
gives the byte of the key number and the bit within the
byte. As in the hardware diagrams adjacent bits of a byte
are arrayed vertically, althoﬁgh it is more conventional to

show memory words horizontally. Thus each byte of the key



An Enciphering Module for Multics page 44

requires two words; thirty-two words for 128 bits.
Figure 5: Exploded Key Bit Assignment

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

1201112|104| 96 | 88| 80| 72| 64| 56 | 48 | 40| 32 | 24| 16 8

121(113|105| 97 | 89| 81| 73| 65| 57| 49 | 41| 33| 25| 17 9

1221114106 98 | 90 | 82| 74| 66| 58| 50| 42! 34| 26| 18| 10

123{115|107| 99| 91| 83| 75| 67| 59| 51| 43| 35| 27| 19| 11

1241116108100 | 92| 84| 76| 68| 60| 52| 44| 36| 28| 20| 12

1251117109101 | 93| 85| 77| 69| 61| 53| 45| 37| 29| 21| 13

126(118{110|102 | 94| 86| 78| 70| 62| 54| 46| 38| 30| 22| 14

127{119|111|103 | 95| 87| 79| 71| 63| 55| 47} 39| 31| 23| 15

For interruption, the key bits within a key byte are
not accessed in the same order as the confused byte's bits,
0, 1, 2...7. Rather they are accessed 2, 5, 4, 0, 3, 1, 7,
6 as given in key_table of the PL/I program or as shown by
the wiring of the hardware. To avoid the use of such a
table and lookup time during ciphering, the key bytes are
preéorted by set_key. Each 8-bit byte of the kev is stored
in the high order part of a Multics 9-bit byte, the

remaining bit being zero. Thus the storage assignment is as



An Enciphering Module for Multics page 45

shown in the diagram below,
Figure 6: Key Bit Assignment
£
)
5 4 21 0 WIKr
- ’ 0
4 0 {12 8 4 0 0

5 113 9 5 1 1

6 2 |14 |10 6 2 2

7 ISPES N1Y 7 3 3

Words 0 and 1 are copied into words 4 and 5. This is
to permit directly addressing eight bytes starting at any
byte Dbetween 0 and 15 without programming a complicated
wraparound routine,

The basic idea underlying this program is to process
all 64 bits of the source and convolution registers at once,
each CID cycle. In order to do this, the key bits must be
SO0 arranged that each of its bits lies in the bit position
corresponding to that of the source register bit with which
it will be exclusive-ored during interruption. This
explains the rearranging above.

When the encipher entry is called, it sets
interruption row (held in index register 2) to zero as in
the PL/I program. Since an entire CID cycle is done in
parallel, interruption_row will never be incremented along
the horizontal 1line of the key byte access schedule given
earlier. Instead it will be incremented each CID cycle to
assume the values given in the schedule's left-hand column.

Examining the schedule it can be seen that interruption row



An Enciphering Module for Multics page 46

should thus be incremented by 7 for encipher and -7 for
decipher, modulo 16, Thus each entry also sets the variable
either_7_pr_minus_7 to the appropriate value, This is added
to X2 mod 16 each CID cycle.

After the argument extents are calculated and pointers
to the strings fetched (bp =) input string, bb -> output
string), the main loop is entered.

As in the PL/I program, the first 64 bits of each
128-bit block are placed into convolution_registers, the
next 64 into source_registers. As with the key, each 8-bit
byte is placed in the high order eight bits of a Multics
9-bit byte. Thisg unpacking is accomplished by unpack_loop.
This loop depends on the fact that the assembler will assign
source_registers a location after convolution registers
because it is declared afterward. The low order (high
address) bytes are unpacked first.

Once this is complete, sixteen CID-interchange pairs
are executed,

First, the convolution registers are prepared for the
diffusion operation. Referring to the hardware diagram, one
can see that each bit of a confused, interrupted byte
(vertically arrayed) corresponds to a different byte but the
same bit (i.e., horizontal register) of the convolution
registers, As seen 1in the PL/I program, if a source
register bit has address [i, 3J] (byte i, bit j) the

convolution register bit corresponding to it is



An Enciphering Module for Multics page 47

[mod (i + convolution_ table [j], 8), jl
where convolution_table is [7, 6, 2, 1, 5, O, 3, 4].
Instead of looping through each bit as the PL/I program
does, the convolution registers are rotated so the bit
positions for diffusions line up, corresponding with those
of the source registers.,

Since the horizontal registers are the bits to rotate,
the bits to rotate are not adjacent. Thus the bit addresses
within the two-word convolution registers of each bit before
rotation is as follows:

Figure 7: Convolution Registers

7 6 5 4 3 2 1 0 i

63 {54 |45 |36 |27 [18 |.9 0 0

64 |55 |46 |37 |28 |19 |10 1 1

65 |56 |47 |38 |29 |20 |11 2 2

66 |57 148 [39 |30 |21 |12 3 3

67 |58 [ 49 |40 |31 |22 |13 4 4

68 |59 |50 {41 |32 |23 |14 5 5

69 |60 |51 [42 133 |24 |15 e 6

70 |61 |52 |43 |34 |25 |16 7 7

Notice that bits 8, 17, 26... 71 do not appear assigned
on the matrix. This is due to the unpacking of each 8-bit
byte to a 9-bit byte. The unassigned offsets are those of
the pad bits, The purpose of this rotation is to align
all the exclusive-or positions on the right edge of the

matrix., Looking at the hardware schematic, the desired



An Enciphering Module for Multics page 48

position of each bit is as follows:
Figure 8: Postrotation Convolution Registers

7 6 5 4 3 2 1 0 i

6,0 5,0 4,0[3,0|2,0f(1,0[0,0[7,0] o0

5,1 4,1 |3,1}2,1|1,1|0,1/|7,1{6,1 1

(3,7 2,7|1,7(0,7|7,7|6,7|5,7| 4,7 7

This rotation is accomplished as follows. Row 0 (bits
0, 9, 18... 63) must be rotated right on the diagram (left
in the AQ register as it happens) seven positions or 63
bits. Row 1 (bits 1, 10, 19... 64) must be rotated 6§
positions or 54 bits, etc. An array of masks, and_masks,
has been prepared with a 1l-bit in each bit nposition for a
given register. They are ordered according to the number of
positions of rotation needed, Since register 5 needs no
rotation (because the exclusive-or gate is already in byte
0), the mask for it occurs first. It consists of four
zeroes, a one, eight zeroes, a one, eight zeroes... Thus,
when convolution registers is loaded into the AQ register
and is ANDed with this mask, only bits 5, 14, 23.,.. 63 will
remain. This register is rotated 0 bits left and then ORed

into a previously =zeroed doubleword, named "normalized".




An Enciphering Module for Multics page 49

Next, register 3 must be rotated left one position or nine
bits. Thus the second mask has a one in bit 3 and a one
every nine bits thereafter. After ANDing the
convolution registers with this mask only bits 3, 12, 21...
66 remain. The AQ is rotated left nine bits, and ORed into
"normalized".

There is a pointer to and_masks called and_masks ptr,
It 1is referenced by using the add-delta (AD) type indirect
reference., When an indirect reference is made through this
word, after completion of the specified operation the
contents of the delta field (here 2) will be added to the
address field. Thus the next time the AQ is ANDed the next
doubleword mask will be used., Similarly an AD word controls
the shift count. The first time through the loop the AQ
must Dbe shifted zero bits so the address field of this word
contains zero. After every indirect reference the address
field will be incremented by the delta field, here nine.
Thus the rotate counts will be 0, 9, 18... 63. In addition
this word 1is wused to control the number of times the loop
will execute. After an add-delta reference is made the
tally field of the word is decremented by one; if it reaches
zero the tally runout indicator is set. This tally field is
set to eight before beginning_the loop. Thus the loop will
iterate eight times, due to the transfer-tallv=-runout-flag

off instruction at the end.

After preparing the convolution registers, the



An Enciphering Module for Multics page 50

confusion operation is performed on the source registers,
This is done by loading the source registers into the AQ and
shifting right one bit position. Now each 8-bit byte
appears right justified in each Multics 9-bit byte of the
AQ. The AQ is now ORed with some doubleword of
exploded_key. Each bit of exploded _key occupies the high
order bit of a 9-bit byte; thus each bit to be used for
transformation control now resides to the left of the
corresponding byte of the source.

The doubleword of exploded key to use for
‘transformation control is equal to the byte of the key
addressed by interruption_row. This is because each byte of
the key wuses a doubleword of exploded key, and because
interruption_row (in x2) always addresses the first byte of
the key to use for interruption this CID cycle which is also
the byte to use for transformation control. Since even the
doubleword instructions address in word indexes,
interruption_row must be doubled., This is done by adding it
in twice, once in the epplb instruction and once in the orag
instruction itself.

The AQ is stored and translated by the mvt instruction.
The confusion_table used here is identical to the one in the
PL/I program, except that each 8-bit result byte is as usual
left justified within a 9-bit byte,

These confused bytes are now interrupted by

exclusive-oring with the eight bytes of the key addressed by



An Enciphering Module for Multics page 51

interruption_row. Diffusion is obtained by exclusive-oring
with the prerotated convolution registers stored in
"normalized".

The interchange operation must, as well as swapping the
source and conveolution (now stored in "normalized"),
unrotate the convolution registers to undo the effect of
lining up the exclusive-or gates described above. This 1is
done via a very similar loop to rotate_ loop. A
subtract-delta modifier references through and_masks_ptr.
Since this modifier subtracts delta before indirecting the
masks will be used in the reverse order. The shift counts
needed are shown below; the add-delta word for shifting
again supplies loop control,

Table 3: Ceonvolution Register Rotation Counts

Row Previous Rotation Post-Rotation
5 0 72
3 9 63
2 18 54
6 27 45
7 36 36
4 45 27
1 53 18
0 63 9

The register accesses and rotate counts for the prerotating
should be read down; for postrotation the table should be

read up.




An Enciphering Module for Multics page 52

After sixteen CID-interchange pairs, one more
interchange has been done than desired. This is undone by
swapping the two registers. The bytes are now packed into
the result field,

Some possibilities still exist for speeding up this
program. The two loops controlled by tally words only loop
eight times; they could be exploded into eight copies.
Since the address of and_masks and the rotate counts would
in each copy be known at compile time no indirect words
would be needed. 1In addition the loop control instruction
ttf would be eliminated. Counting ttf as two memory
accesses and each of the tally references as one, four
memory accesses could be saved each rotation. Since eight
are required in the loop, and there are two loops, 64 memory
accesses would be saved, Eight more would be saved by
eliminating the tally word setup instructions at the
beginning of each loop, for a total of 72. Since there are
sixteen CID cycles a total of 72 times 16 = 1152 memory
cycles might be saved. This may total as much as a
millisecond, thus saving about twenty percent of the cipher
time for a given block. This demonstrates how sensitive a
program's performance can be to minor changes in coding
style, Other experiments are suggested, such as completely
rewriting the program with all arrays transposed (so that
the bits of a byte are not stored sequentially), or

eliminating the padding bit on each byte.



S 99 3Isnw y3jog ‘dodas 21 x-yo3eWw Yy38ua | ou zZul

yidua| Ixay bdwd
Aedue 9|oym Jo si1q uy yidus| = 8CT = l S|b
(1 “Ino"e) wip = 1 + LP‘1 bpe
"tr(anoTe) punoqy - 1]dq bqs
‘Tr(InoTe) punogy Zldq bp|
4031d140S3p 03 43d 1938 *(0’2sapTino e |de dqdda
yiysua|TIxa) bls
Aedue aloym 4o s3)q uj YI2ua| = gz1 =« i s|b
(T “ur™e) wip = 1 + P’ bpe
...ﬂc_lmw punoq| - T1dq bgs
‘TT(uype) punoqy zldq bpy
401041 40s3p 03 43d 39%F x0 ‘0sap u|Te|de dqdda
11 di%s ({|m am os gx uy J3d Syl 30 yisua| Ind ‘sak b4 oxea
ou 212 zuy
41d Aetdsip e 349y3l s np’g £ xdwd
QA13L42d0 S| UOJIJWNSSEe J| Sn S| |33 yDd|ym apod 313% 0jde Lix]
Is|| d4e uyp a3d Ae|ds|p ou awnsse 0 gxea
S91242 Q|) 9T 49338 UO|3|pUOD UO|IPU|WI] an|eAT|eyy1u] ZX1s
: iujofr
491e| 404 3se| ueyl aaow fTsSnujwTao s a0y 19 [ X3S
L MOJ UO0IIANAIBIUL Y3 |M D[24D G|) ydea 1uie]s L~ LXea
(£33 jJ0 33149 yluju) mou uojildnaaajuyl (ejiju) 6 Zxea
ysnd
taayd|oap
2| ’x=ujof eJ3
{TsSnuwTa0T ey |9 [X3s
AL242 (1) yoea Jo@]je Aay u| s3lAq [ pJemuoy of l [ Xea
MOJ uoO|ldnadaiuy (ej1jul 0 Zxea
ysnd
tJ4aydioua
an{eaA  [ei11uy dwaj
P8Z | |PWAOU‘S3]1 AT Pasnjuod “ad34nos‘uoin|oAuod pdway
Uuozium_zm\hlm:c_E!Lolhlecu_msco_u_mcaluxwu\:uw:wkluxmu dwajy
0T “2sap~ Ino e nba
g’osap u|e nba
9‘apod~e nba
fh4Ino"e nba
Zu"e nba
¢’anow nba
Jdayd |dap‘aaydioua“hay3as Aajud

IV 12370U4d 3O UO|SIA|P yDUedsSdY SwalsAg J93ndwo)y ayy ie "

121pausg uopdog g ., 961 ‘1 Aep papo) "

*A114N2Sq0 40y S|4 Yl M 339dwod plnod sweaSoud Ma4 |,

"A1N2INnb A43A unua o3 pPoud|sap 42319n7 JO uo|Suaa |e|dads e s weddoud syyp

"OU| “SWwalSAS uollewiojuf | [9mAdUOH "

pue Asclouyoa] Jo 83Injisu| silasnydessely Aq w{6T (2) IySi144doy i

¢g aded SO|3[Ny 404 3| npol Fuiraayd|duj uy



sd€ INd3InNno 031 43d 199 ¥ 1no e |de yydda
sde 3jnduy) 0l J43d 393 ¥»‘ul e|de dydde

15 98U SO} N 403 8| NpPO Bujdayd|dougd Uy



Ol w=g+d 4] UO|SN4U0D yde

g “S93Ay pIdSNHu0d RGOS
3 S93AY pPIsnjuod eposay
(UOSN,U0D) B4Rl 2lA 3Je|Sucd] (4d) “(4d) 1AW
S93AY pASNHU0D vels
91Ay 9I4N0S JU 1|y 49pdu yd |y U] Ad4 MOd=5Y 30 1ly 4oL nd X014l bedo
I4d |4 O pealsu| 3IAY ORI 40 ILpd Jy9| e  I0d 1 141
do9d 904n0s 194 824nus bep|
SPA0Mm A9y 4u dppe ARy | |M "
YAppe S|yl vl pupp€ S| X UdyMm  gx‘Aeq papo|uxald] ygdda

QUAN0S 95N4U0D AUU *$dpd puly Jyd{d 94] UO paus| e dE SIJeT yoX 243 LIe ILY]
pEIEILL OS UWNLOD yIed YI|M SII]S[Fad
UO [N [OAU0D 30 AdUD © pIZ| LWIOU U] ARy mMOu

"
"
"

(AL1el 995) 53wl g up 2] ‘s=duu| 9312104 331

PAOM pdg Moy T+p@2Z] |CWAOU bsuao

S1ly S,p40m 3Sd{y u} Ind P9z} |ewdou 2sSJ40

*038t gl U4l ‘p U9yl Yy AY 3541y 1slus PRIPIOMTI L yS ALl

C f¢ 9 ‘L ‘T Y ueyd ‘g SuWn LD ANy | e de3 |2 pe’aldTsysew pue|d] beue
(9 - g S3IiY) SBAJ UU|IN[VAULD 9d[Jud 394 U0 | IN [OAULD vep|

tdoo| @3je30d

(9W]l YDEB p SIUGWIAIUL) Fu|l3|4S 403 pdOM gV pAOMT 4| YS e3s
b o= Y9y 0 = IN[EA eI U] ¥ = AL(e] P IL0TlvuO= ey
Jujdu AUy 0dRZ dqvw POZ | |BwdOu vels

(Qupn|¥) uv V49Z o Pl

rdoo|Tasueyv43u]
*So|2AD J|D YT puUB BFueyOUdIIU] ST OP Mmou
UOLIN[UALOD U| g “Qu4nus J| g i

‘pejledun ade salAy gl (|3Iun 9NU | Juud 21 ‘==Uou | yoedun 1da
3984e) A0j Quwes P’6 BYysS
93AY 1|ly4y-g 489M0| Ixeou 03 V3 lPp’g bys
4,0, ¢ U0 fo13S pdl 9344 JlYy-6 & V""" pfUVINLOAULD 4osap
Teralhy Jly-g UL GAvw 87014y gosap
(0) LLLs (@A0u) oy (B ad) T (b7ad) 152
tdoo] joedun
§491S 1894 u| {20y 1ly4y-b ISE| 0 1953340 194 trG*sT ep|
ADOLG S143 U] 93A4 Jiy-y ISE| 4O UULIIs0d 3199 1P 8»S1 bpe

SJud (UBAULD SULJVNAISU] Si4 Ay UO[le|NdjuBW S¥HLW SI4l
420y F14-6 SALILM ¥ JO STy

g A49p40 ysly Yl S$8[dN2I0 Iy I14y-8

Goea 34l 4ons 20|y Iiu-ggI 3IXBU ydedun

udnjed ‘us 4| D1 ¥ =r0UTUANIAA 1d3

dUidls U] [ |€ pOpdey 3| 995 yadue| 1x93 Ldw

Je) OS padssSeoudd Junowe 39d uo|3sudTIxe) Dyl
1doo| T 3I%39)]

A€y VS pdSSJIIUIU VARZ uuflsudT3xe] Z1s

rApelededas JdALDUD pur HOO LY JI4-8LT |,

yoed J| pRId "HUISSIL0Ld doO| ulew ulaay

Gq @ded SO INY 44Uy LNpPOL Buladydidu4 uy



420y 3] <4=-8¢1 Ix8u 01 us O} ‘z-dou|T1x2] 24l

Uy fx-doo | ord tday

S93AY Jly- 490 IX9u 0L v3 P 2ys

87014y Yyosep

6 U0l IngoAuLD 4osap

(U) L LYs“(RALw) [y (D 4d)‘(|e’ad) 2]

93AY AP0 IXIU vl LI 1r’g vys
tdoo| T yoed

yoed 03 S¥IAY Dly-H YT hthmm«o e

uojlisod 3xa) b1s

l¥ “8¢1 pbpe

49Uy 1|4-8¢1 1X3u 03 Vi uolapsod 39l L

WO |31 | OAULD oels

pazZ| |ewiou bep|

224NVUS beis

JO 1IN OAUQD bep|

paz| |BwWAOU veis

UO| 3N [OAUUD pue 204105 4UBRYIXD 304NUS bep|

94015 puUB 3DLdWOEL 42014 I14=8Z1 SI1Yd Yyilm uop

O] ‘x-duo|T@dueyodalul zuj

AUV Y Slyl pR14RIS i 949 gyM 0] qlky oneAT e[ ju] Zxdwd

gl pow np‘/1o= ixue

Aoy Mgl pdeMidey 40 paRMAVy VG [T Shujw 107 /7 a9y3 |8 IXpe

ol “x=dou|T@3e304un 413

pAOM plg I+224N08S bsao

@Jdnos ovjlu| ind 904NUS BsJ40

junowe 3jejddoddde Ay 131yS pefpdomnTId L ysS 411

pRIRIOL 9y O3 UWR 0D ley] 3Ny [|[e 3IN0 pue psa1dTsysew pue|d| beue

549150694 UOJIN|OAUOD PS4 |p 40U pYzZ | |Rwdou ve |
tdoo|Te3e304un

g 30 ALl 40ey 3nd pPAOM 14| 4S e31s

b o= PN[RA [e]Iu] “p o= BIjdp ‘g = ALLd TT0T00TLO0UYL= ep|

924NuUs bels

Uj 4U]40 dwj 324N0S 1IN0 04BZ o Pi4

HAOM 40 4By SUO Uu 3N [OAUOD bels

I24nus bep|

9| 2A2 d¥uURYLIIIU| Op MOu

pdOM pug [+po2]| [ BwWAOU bsdia

UO Sy ip pIZ} lewdou ©s.1a

uo | 3dnaaglu] S91A4 pasSN U0 beaa

g7593A4 pasSN4uU0D egosap

BRIy |d | eROSIY

UO|[JUNAABIU] dG,; pdSh Adyg 40 MOd 194 Agckxnwxxgcu 4w
SY1AG pISNHUVD bep|

yg <Qused SOE3|N,{ 404 J|NPOK HUlaayd oLy Uy




ol T-w=doo|Tuo 1R INWARd Jwl

np ‘g1 0 xdwd
0% ‘1 oxea
X1 Ixea
1y W49Z 3se| U[YS “4I0|y 3|4=-§ duo plp
V] fs=douTUvleINWAId Wl
dOOL S|yl yI|M suup np’y ZXdwo
AdJue 9 yeld uuflelnwddd Ixau X1 xea
IINSdd AD4 40 1]y IXdU VY OF X1 Ixea
(YOO 3V pU9 Je SJUNVI AQUO) Jiy Y © YI|M ped ¢RIy Uy 4osayp
T'uldy 4osop
(U) LEbs “(9A0w) (V04" (TX 7Ad) “(gx‘ad) Ls2
d9quiniu 3y J|4]I9ds Jod ZX*9|4e3 uojienuaad cxpe
A9 40 UWN|OY AdUD ux ‘g ¢xXea
rdoo|Tuojlenuasd
U ixea
0 Ixea
Adiy 40 UWN VY 354, 0 oxea

MOd Ji4=-b © U3 HOO|Y pRINWABY I|y-g 4O€I Jpo|dXs MOU |,

Y} fx-dou|Tepo | dXxa |w3

(Lel = 91 + £CT = 91) Sy LIe Ndy) Jdens saby om ‘4 .| Np ‘9T 0 xdwd

dUUU]BBY SNUIAIIY wWOd, [ 1385330 “Slly LZ[ 49e4 sh 3nd 0XLeI- pxes
ARME 11y 9UU Ju[]de1S ‘UWN 0D XU VY MOU *S3|y ¥ 40 UWN[0D BUO paysjuly asni

Juup 2 ‘w=-dou|Topo|dxa w3l

UWN |03 S|yl Yl|M QUOp 4| 995 RIVREFAN pxdwd

Aeme S1iy g ‘A43U9 UWN[UD IXIU w4e] Ux‘91 gxea

A3 pap0|UXd 40 93AY 3IXBU 95N Bw|] IXdU 1x‘6 xea

93144 31Y4=G B 4O 34 U0} 943 vi*°* 6 ‘Ao papo dxald| 4osayp

*rUAYY 40 1)y QU0 Bavw 170 1dy 4osap

(0) LLla " (@n0w) [Ooy(TX 4d) (X 4d) Ls2

tdoo|Tapo|dxa

Aoq popO|dXd U BIAY 1S4y 0 Ixea
A3 30 3y IS4y 0 pxe?a
91AYy Jiy-p € 30 J|y 1S4l3 94l S9|dNIDO 3|y yIEI 0OS “
‘3] @sodsued] pue A9 9yl pojdxa |
A9q S| yolgym dUldls Jly=-yggl 49 Adppe 393 x»’7de dydda
tAay 398
fdey{on| O3 S| |B2 1UeNuesyns J0y A94 94yl 19S 03 ‘AA3ud A9y 3as

uanijad
¥ ‘9,007 k| de 23s
10U UANYed

uanjou
»‘9podTe|de bas
Udnled 01 Qpud IPL bp|
GuBS JOu INdINno pue JNduj 40 Syl¥ud| fyuduy, ty23ew yydua | Tou

[§ 9ded SV 404 B [Npoy Fupdayd|ouy uy



9*yT dae

L*91 dae
(£ b ads
e¥y1 d4e
U*9T dJe
91 4@
G+Y1 dae
¢*91 gde
UO[3dNA4R3U] 4053 pasSN SUWN U A9 40 SUOIRINWAId SIA[L,, t9lykl uUoplelnwaad

udniad 340ys

43d7sysew pue|d es40
sysew pue|dy eea
SASRuW=-pUR UMOP Jujuund 104 pasn plom Ap|e3 |e]1}ju] @4l dn 38s "
+Aoy|d] bejls
Aoy |d| bep|

SWd[4Oodd punoJdeGRIM JUDASLd 03 pud 3B A9y 40 SMOJ g 3SJly 93eD] [dnp

g§g 9ded SOI3|NW 404 9Npop Julaayddul uy




g 9a3ed

uoj3vesTagequ] /Ul L/

L1464 T/621 /65146
/6°1/6°1/0°1/6°
1/6‘1/6°1/6°1/6°
1/6°1/6°1/6°1/6°
I/6‘1/6°1/6°1/6°
1/6°1/6°1/0°1/6°
1/6°1/6°1/6°1/6°
17671/6:/6°L/6"

AdepuUunoy p40oM UIAL® U0
¢ 30

1/6°1/6°1/6°1/1
1/6°1/6°1/6°1/2
1/6°1/6°1/6°1/5
1/6°T/6°1/6°1/8
1/6°T/0°1/6°1/L
1/6°1/6°1/6°1/¢
1/6°1/6°1/6°1L/4
I/6°1/6°1/6°1/9

paau,,
ey |op z

2¢‘Aay popo|dxa
g ‘A9

uo3199s  @gejul |

941 uUo|sSnNjuod

pua
utorl
P3n
P3A
P3A
P3A
PIA
PaA
PIA
P3A .
Psyseuw pue
uaAs
o9p
143d7sysew pue
S5
Ssq
uane
asn

apnou|
$9 143 UOISN4uU0D

S213 Ny 404 I|NPOW duldayd|du] uy




D0%/00 09L/96°0L5/96 Ug g e
c:m\ec\cmn\cC\chm\cm.“wm“mW\umM“mm‘CMW\CmHCBN\Cc“cmm\cc
coh“c:uc¢g\cc‘CHN\co.Cmu\OC.czm\Cm\mMu“mm.me“mm.mmw“m@
UIU/Q60EU/Ou 0T /96 “Udu/Vui0L0/on” 57 e
VOU/O0 090 /90 0LulYb fus A P A M s ML LA
S S L S e
JOL/Yp93s/007°9LT /06" ‘gng 9¢ ; ; el
R Ve B S P et e
J0u/96 7990 /96 9Lu /06 a5t [0 ° ‘ HALE b
5 y b 9/ O0 gL /06 ‘YL /0’
ML/06 NET /O nTT/06 MY T1/06° 0T ] s riht
) 6 MZT/V6 n¢s /06 015/06° .
:ch\c:\:mw\CcﬁqhH\co,;mU\c.\ IR
g 6 UNS/00 LS /06 TNLG/06 g
ENe/Ob Zee/OL eTE/06¢Y95/06°228/96 " Z1 P
e 6 CLE/OG LLLIOGETLIO6 "
CO/O0 CHL/OB LLE/O6LSL/06 " ¢ ‘i S cc ot
¢ y K B ENLIOL LSl /O LLLl06 ;
Cha/067CC0 /v NHC\Cm‘th\c.\ i P A
K3 67200/ 20 /06 LT /087 5
GOU/Ou 2an/0 ZLU/06 LS /08 1 ; AL
) / 4 CaN/OB T EEn V6 ELN/06 72
YNE/06°956/06 9LL /06 3¢ . fog A S Ay
mc“\cc\wuu\CC\mhmwcm\“M““mm.mNm“um.mmw“uw“www“ca\ocw\ca
UNE/06 e /00 NTZ/06 092 /0671 ¢ 5 i6e n
:cm\o=\;mu\cc\ahw\om\;mmucw~“MM“mM‘me“mmH“Mw“wm\:cm\Cm
UNT/O6 ‘0ET/00 0TT /96 ‘09T /967021 /96 e
: : 6°021/96°025/96 " < )
00T/96°095/06°0LT/06°055/06" P E D A g
i /auacc o ats s soS e oL Ly o0 Lt 0eet
£/06°99L/0679LC/06 Y84 /06°9HL/0679¢ ‘ &/t
CNESOGTCLL /06 212 /067¢92/086" ' @‘m»h\Cm\mhh\om\me\cm
NCA\Om\qu\Ca.mhw\Cm~mmm\om.Mmm“w”.h&m\cm~wﬁc\omuwaw\om
N:H\ca.NMH\Cm\NﬁH\0¢\wwﬁ\cc.mmﬂ\cﬁ\wmw\mm.hh¢\cm.Nmm\o¢
mcﬁ\cc‘ﬂmm\cm.Nhﬁ\cm.Nmm\c@\w:m\cm.wmm“cw\MMM“NM‘MMW“Wm
Mh0/06 “heu /06 NT10/96 “H9u /06’ 5 :
6 6°M¢0/06 ngh /up 5 ¢ .
M00/00 h94 /06 ‘L0 /96 ‘5N /06 L 6 1Ln/06 18000
)/ 6N /06 hgn/up ! ]
e /06 e /0p HTE /06 n9¢ /06" PTG
. 6Mee/OB NZL/06 0T L/06 7 5
HOL/O6 N9, /06 0L /06 0SL /067 ; e
. /06 b L /06 gL /o6’ < .
ONE/96°08¢/90°UTE/06Ud5 /06" R sas A
. 6°02£/96°02L /96" ;
U0E/06709L/96°0L6/96°05L/067 Yoghoes Yt
. ) 6 0NL/O6 0CL/V6ULLIOG” 5
UNe/0u 02/ 002 /96°092/06°0¢ S 1on <Gos fon
y 602¢/967029/96 0g* y
00€/90 uY9/06 ULL/06°069/0p RS I
Z b 0N9/06°089/96°0£9 /06 )
Un0/00 Ugu/0670TU/O0 7090/ 0% 5 R
) 0cu/o6’0En/o6 01N /06’
000/96709N /96 0LU/06705 6 5 Dih ot o for
R R R B e T
90L/907999/06 9LT/06°9655/9679105/0p i
6°9N5/06°9¢45/0b 95 /0p 7 ;
910/06°950/969Tu/06 ‘990 /96 * 579 M ok o
! B920/96 9N /ve 9T /06’ 5
900/9u 990 /96 “9L0/06°g5h /o’ ! A b
G 9NN /06 9EN /06 9L fop? )
ANT/06 NET/O6 T T/06 “H9L /06 0e ; Yibd LA,
i ‘ 6 NET/06 nZS /06 TG /067
HOT/O0IN99/06 ‘0L 1/06°0G5/06° G /06 g6 VBl
N;M\om~NMM\cm\NMm\om.mwm“mw.mmw“wo.qmm\ccnamm\Cc.:mﬁ\cc
NEM\cc.NwN\C¢.th\om\th\ccsm:h\cwnNwh\cm.mﬂh\coumch\oa
Nacxce.mmcxcm.NHc\ca\ch\cc~NmC\o‘\hMN\cm.whh\cﬁ 3 HA
Ncc\co,ww:\cv\nhc\ca.mm;\ccsw:*\cw‘ﬁma\cmxwﬁz\cmﬁwc=\0¢
mqw\cc\mmm\cm,wﬂm\cosamm\om.cNM\Cm\nm:\cf\mh;\0¢ i
90Z/96999/96°922/057959/06° 9. PR S L 0L
6 YNI /0B “Yey/067Y9L9/067962/96

Wi U8, 10N wody pa|ed @

. 4 KQuo no

doy|ony doy Uu13eJAd0 UUSNIUOD By] mu:wEmﬂhehr_M ,u_
WiETLOULTa4e3TUO SN4uuDd 374 wczqwu#

Pan
PIA
P3A
PIA
PaA
P
P3A
P3A
HAA
P3A
e
P4A
PaA
e
Pah
Pah
Pah
PIA
P3h
KA
Pda
Pdh
PaA
PdA
pdA
P
Pan
PIA
P
paa
pIn
PiA
P3A
PaA
pPaa
H3A
Pan
I
PIA
[F I
B3A
S
pia
ET
PIA
pIA
P3A
Pan
k3

"
"
"

Uy eaeu 5 2
S2131NW 403 8 (Npoy Fu|d3ydiouy uy



wWle*® |ou} 9 4e3TuoIsniuod 3714 FANTINT UN3F

/06 M€ /06NTE/06 M98/067022/96129/069T9/06009/06 P3A
HOZ/961M99/06 ‘MLE/06MS9/06 M09 /06 EY/06 L9/061SE /06 P4A
OT/06°0ST/960T1/96°09T/96702T1/96°0¢5/9670T5/967005/06 Pan
UOT/06°096/96°0LT/967055/06uns/0670£5/06°0L5/0670ST/96 P4A
9 ¢ /06 79¢¢/06°91¢/96799¢/96792¢/06°YZL/0679TL/06790L/06 PIA
90$/06799L/0679L¢/069GL/06°90L/0679€L/0679LL/067395¢/06 P4A
CNL/0672Ce/06CTL/006729¢/007¢¢e/Ob¢TI/O67¢T9/067¢09 /v P4A
CUC/O0 L99/06 LLL/O67289/907 89 /067¢E9/96°C2L9/967¢6T/96 P4A
ZNT/00 el /06 CTT/067231/967¢¢T/06%¢¢5/967215/96°2us/9%6 P4A
COT/967¢9S/96CLT/06%25G5/P07¢NG/0067¢es/0672L6/00¢ST/06 P4A
A00/0061¢0/06 ‘NT0/006 190/06M20/06 Mgn/06  MIN/%0 0 /06 P4a
HOU/ 009N /06 ' HL0/06 hsh/Ou /O /06 /06 NS0/ V6 PFA
e /O0 e /06 MTE/00 M9 /00 Mee/O6 MTL/06  NTL/O6 M0L/06 P3A
HOS/OL MIL/OG MLE/O0 HSL/OL UNL/V6 NSL/O6 NLL/ICb NGE /06 pPaA
0hs/0b70€E/06 UTC/06709¢/067088/06UTL/O670TL/O6700L/96 PEY

[y @sed SD13|Ny 404 INPOoy BuUpaaqd|dugd uy



An Enciphering Module for Multics page 62

APPENDIX D -~ INTRCDUCTION TO MULTICS ASSEMBLER

This section is intended to be a guick introduction to
the Honeywell model 6180 processor for those who are
unfamiliar with its machine language.

The 6180 is a word-addressed machine with a 36=bit
word; it also possesses some very powerful bit string and
character string handling instructions. There are two major
arithmetic registers of 36 bits each, the accumulator (A)
and the quotient (Q) registers. These may be coupled to
form a double length register, the AQ. Instructions ending
in A, Q, or AQ operate on the corresponding registers,

There are in addition eight index registers of eighteen
bits each. Instructions ending in xN where N is an octal
digit operate on these registers. Most index register
instructions take a storage operand in the +top half of a
word, except for sxlN (store xN in lower half) and 1x1N
(lcad index N from lower half).

There exist eight pointer registers for generating
segment number - word number pairs. These registers contain
a character offset and a bit offset from the addressed word
for the use of character string and bhit string instructions.
" The names of these registers (in numeric address order) are
ap, ab, bp, bb, 1lp, 1lb, sp and sb. The ap points to a
procedure's argument list., The lp points to the procedure's

linkage section where internal static variables are kept,



An Enciphering Module for Multics page 63

such as the key. The sp points at the stack frame, in which
automatic variables are kept. Variables declared in a
“temp" or "tempd" pseudoop are placed in the stack frame by
the assembler and are given one or two words each
respectively., A temp variable may also be given a subscript
in which case it will be assigned that many words.,
Declaration in a temp or tempd implies an sp reference. The
other pointer registers are used for spare registers; for
example, the bp points at the input string and the bb points
at the output string.

A sample instruction would be

ldqg 1pifoo
This instruction will load the Q register with the internal
static (because of the 1p reference) variable foo.

adg 15*8,41
will add 120 to the ¢Q register. The dl address modifier
causes the address field to act 1like a memory operand,
padded on the left with zeroes. The du modifier pads on the
right with zeroes.

The following strange~looking multiword instructions
are the special character string and bit string
instructions; this one performs boolean operations on bit
strings. Here a simple move is indicated.

csl (pr,ql),(pr,al),fill(o),bool(move}
deschb bpj| 0,8

desch convolution,$S



An Enciphering Module for Multics page 64

will move eight bits from the address bp|0+ql to a 9-bit
field (padding with a zero bit) at convolution (plus
implicit sp reference) + al. The offset modifiers gl and al

refer to the bottom of the Q and A.

mvt (pr), (pr)

desc9a confused bytes,8
desc9a confused bytes,8

arg confusion_table+3-%*,ic

will translate the eight 9-bit bytes at confused bytes
(first argument) according to the table at confusion table
(third argument) and deposit the resultant eight 9-bit bytes
in confused_bytes (second argument). The lookup is done by
treating each character as an index into the table.

A list of most of the instructions used in Lucifer and

their meaning follows,

ada, g, xN add to A, Q, xN

ana, g, %N and to A, Q, xN

anag and to AQ (two words)

arg zero opcode (used for mvt table and
constants)

cmpa, g, XN compare A, Q, xN

csl combine bit strings left (three

word instruction)
descb a pseudoop which generates a bit

string descriptor for a csl



An Enciphering Module for Multics page 65

instruction.

desc9a generates a 9-bit character descriptor
eaa, XN effective address to A (top half), =N
eppN effective pointer to pointer

register N

era, g, ag, xN exclusive or A, Q, AQ, xN

ersa, ersqg exclusive or A, Q to storage

lda, g, ag load A, Q, AQ

1llr long (AQ) left rotate

1ls long (AQ) left shift

irl long (AQ) right logical shift

1x1N load xN from lower half

mlr move character string left to righ*

(three word instruction)
mvt move with translation

(four word instruction)

ora, g, agq OR &, Q, AQ

orsa, ¢ OR A, Q to storage

agls Q left shift

sba, g, xN subtract A, Q, xN

sta, g, ag store A, Q, AQ

StxN store XN

stz store zero

tmi transfer on minus

tnz transfer on not zero

tpl transfer on plus (including zero)



An Enciphering Module for Multics page 66

tra

ttf

unconditional transfer

transfer tally-runout flag off

Address modifiers appear after a comma in an address

field. For example

ldg

bp|0,x2

causes indexing by x2.

XN

XN*

As well
used whenever
au

al

qu

gl

ic

du

dl

or

or

as

XN

index by index register N

indirect

*N indirect then index (i.e., add
index register to address in
indirect word).

N¥ index then indirect

XN index modification, the following can be

appears above:
top of A
bottom of A
top of Q
bottom of Q
instruction counter
direct to upper

direct to lower



An Enciphering Module for Multics page 67

The indirect and tally modifiers add-delta (AD) and
subtract-delta (SD) take an indirect word. Add-delta
causes, after the instruction is executed on the operand
pointed to by the address field (bits 0 - 17; the operand
lies in the same segment as the AD word), the delta
(rightmost six bits) to be added to the address field. The
tally (bits 18 to 29) is decremented by one. If the tally
reaches zero the tally-runout indicator is set, but no fault
occurs., Subtract-delta, before executing the instruction,
subtracts the delta from the address field and increments

the tally by one.



An Enciphering Module for Multics page 68

BIBLIOGRAPHY

[ Girdansky, M. B. "Cryptology, The Computer, and Data
Privacy," Computers and Automation, April, 1972, pp. 12-19,

2. Smith, J. L., "The Design of Lucifer, a Cryptographic
Device for Data Communications," IBM Research Report RC
3326, April 15, 1971,

3. Honeywell Information Systems, Inc. Honeywell 645
Processor Manual.

Related material:

4. Smith, J. L., Notz, W. A., and Osseck, P. R., "An
Experimental Application of Cryptography to a Remotely
Accessed Data System," IBM Research Report RC 3508, August
18, 1971. (Also Proc ACM 25th Nat Conf., August, 1972, PP
282-297.)

5. Feistel, H., "Cryptographic Coding for Databank Privacy,"
IBM Research Report RC 2827, March 18, 1970,

6, Feistel, H., Notz, W, A., and Smith, J. L.,
"Cryptographic Techniques for Machine to Machine Data
Communications,” IBM Research Report RC 3663, December 27,
1971.




MIT/LCS/TM-50

AN ENCIPHERING MODULE
FOR
MULTICS

G. Gordon Benedict

July 1974






MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

PUBLICATIONS TR/TM FORM

Title of Thesis or Report:

An Enciphering Module for Multics

Author(s):

G. Gordon Benedict

No. Assignec:

MAC TM-50

Technical Renort:
Technical Memoranda: /

If Thesis, type:

S.B. Thesis (June 1974)
Department:

EE Dept. Systems Research - Division II

, s\\ LA /igil //f;ij&iTKC“"

ignature of MAC Group Leader







PUBLICATIONS DISTRIBUTION
PROJECT MAC, ROOM 417A
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
545 TECHNOLOGY SQUARE
CAMBRIDGE, MA 02139

L ] - -

253-5894

July 1974

We have recently issued Project MAC Technical Memoradum 50:
An Enciphering Module for Multics

Benedict, G. Gordom (This Technical Memorandum
reproduces a June 1974, M.I.T. Electrical
Engineering Department S.B. Thesis of the same
title)

AD 782-658

ABSTRACT

Recently IBM Corporation has declassified an algorithm
for encryption usable for computer-to-computer or computer-
to-terminal communications. Their algorithm was implemented
in a hardware device called Lucifer. A software implementation
of Lucifer for Multics is described. A proof of the algorithm's
reversibility for deciphering is provided. A special hand-coded
(assembly language) version of Lucifer is described whose goal
is to attain performance as close as possible to that of the
hardware device. Performance measurements of this program are
given. Questions addressed are: How complex is it to impelment
an algorithm in software designed primarily for digital hard-
ware? Can such a program perform well enough for use in the

I/0 system of a large time-sharing system?








