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Abstract. The theory of reversible computing is based on invertible
primitives and composition rules that preserve invertibility. With these con-
straints, one can still satisfactorily deal with both functional and structural
aspects of computing processes; at the same time, one attains a closer cor-
respondence between the behavior of abstract computing systems and the
microscopic physical laws (which are presumed to be strictly reversible) that
underly'any concrete implementation of such systems.

Here, we integrate into a comprehensive picture a variety of concepts
and results. According to a physical interpretation, the central result of this
paper is that it is ideally possible to build sequential circuits with sero internal
power dissipation. Even when these circuits are interfaced with conventional
ones, power dissipation at the interface would be at most proportional to

the number of input/output lines, rather than to the number of logic gates
as in conventional computers.

Keywords, Reversible computing, computation universality,
automata, computing networks, physical computing.

1. Introduction

Mathematical models of computation are abstract constructions, by their
nature unfettered by physical laws. However, if these models are to give in-
dications that are relevant to concrete computing, they must somehow capture,
albeit in a selective and stylized way, certain general physical restrictions to
which all concrete computing processes are subjected. For instance, the Turing
machine, which embodies in a heuristic form the axioms of computability theory,
avowedly accounts in its design[24] for the fact that the speed of propagation
of information is bounded, and that the amount of information which can be
encoded in the state of a finite system is bounded. However, other physical
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principles of comparable importance, such as the reversibility at a microscopic
level of the dynamical laws (which imposes severe constraints on the operation of
concrete computing primitives[12,23]) and the fact that the topology of spacetime
is locally Euclidean (which severely limits the range of interconnection patterns
for concrete computing structures[19]), are not yet adequately represented in
the theory of computing. Conceivably, a better match between the abstract
constructs of the theory and its applications would be attained if a suitable
counterpart of these principles were incorporated in the theory.

Here, we shall be concerned with the issue of reversibility. Intuitively, a
dynamical system is reversible if from any point of its state set one can uniquely
trace a trajectory backward as well as forward in time. For a time-discrete
system such as an automaton, this is equivalent to saying that its transition
function is invertible, that is, bijective. The concept of reversibility has its
origins in physics, and, in particular, in the study of continuous systems, such
as those characterized by a differential equation, rather than discrete systems,
which are characterized by a transition function. In the continuous case, a more
technical definition is necessary; namely, a dynamical system is reversible if
its dynamical semigroup can be expanded to a group[14]. The connection be-
tween these two definitions is immediate, since in the discrete case the transition
function coincides with the generator of the system’'s semigroup.

It should be noted that reversibility does not imply invariance under time
reversal; the latter is a more specialized notion which is definable in a nontrivial
way only for dynamical systems having additional structure.

In the past, some misgivings were expressed concerning the computing
capabilities of reversible automata. Such misgivings were cleared by the work of
Bennett (reversible Turing machines[4]), Priese (reversible computers embedded
in Thue systems([17]), Fredkin (conservative logic[7]), and Toffoli (reversible cel-
lular automata[20]). Today, the concept of reversible computing appears to be
not only productive from a theoretical viewpoint but also promising in terms
of technological applications(8].

In fact, one of the strongest motivations for the study of reversible comput-
ing comes from the desire to reduce heat dissipation in computing machinery,
and thus achieve higher density and speed. Briefly, while the laws of physics
are presumed to be strictly reversible, abstract computing is usually thought of
as an irreversible process, since it may involve the evaluation of many-to-one
functions. Thus, as one proceeds down from an abstract computing task to a
formal realization by means of a digital network and finally to an implementation
in a physical system, at some level of this modeling hierarchy there must take
place the transition from the irreversibility of the given computing process to
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the reversibility of the physical laws. In the customary approach, this transition
occurs at a very low level and is hidden—so to speak—in the “physics” of the
individual digital gate;* as a consequence of this approach, the details of the
work-to-heat conversion process are put beyond the reach of the conceptual
model of computation that is used.

On the other hand, it is possible to formulate a more general conceptual
model of computation such that the gap between the irreversibility of the desired
behavior and the reversibility of a given underlying mechanism is bridged in an
explici¢ way within the model itself. This we shall do in the present paper.

An important advantage of our approach is that any operations (such as
the clearing of a register) that in conventional logic lead to the destruction of
macroscopic information, and thus entail energy dissipation, here can be planned
at the whole-circuit level rather than at the gate level, and most of the time
can be replaced by an information-lossless variant. As a consequence, it appears
possible to design circuits whose internal power dissipation, under ideal physical
circumstances, is zero. The power dissipation that would arise at the interface
between such circuits and the outside world would be at most proportional to
the number of input/output lines, rather than to the number of logic gates.

2. Terminology and notation

A lunction ¢: X—Y is finiteif X and Y are finite sets. A finite automaton is

a dynamical system characterized by a transition function of the form 7: X X
Q — Q X Y, where 7 is finite.

Without loss of generality, one may assume that such sets as X, Y, and

Q above be explicitly given as indexed Cartesian products of sets. We shall

occasionally call lines the individual variables associated with the individual

- factors of such products. By convention, the Cartesian product of zero factors

is identified with the dummy set {\} consisting of the empty word \. In what

follows, we shall assume once and for all that all factors of the aforementioned

Cartesian products be identical copies of the Boolean set B = {0,1}. This

assumption entails little loss of generality, and—at any rate—the theory of

reversible computing could be developed along essentially the same lines if such
assumption were dropped.

¥Typically, the computation is logically organized around computing primitives
that are not invertible, such as the NAND gate; in turn, these are realized by physical
devices which, while by their nature obeying reversible microscopic laws, are made
macroscopically irreversible by allowing them to convert some work to heat.
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The concept of “function composition” is a fundamental one in the theory of
computing. According to the ordinary rules for function composition, an output
variable of one function may be substituted for any number of input variables of
other functions, i.e., arbitrary“fan-out” of lines is allowed. However, the process
of generating multiple copies of a given signal must be treated with particular
* care when reversibility is an issue (moreover, from a physical viewpoint this
process is far from trivial). For this reason, in all that follows we shall restrict the
meaning of the term “function composition” to one-to-one composition, where
any substitution of output variables for input variables is one-to-one (in other
words, no fan-out of lines is allowed). Any fan-out node in a given function-
composition scheme will have to be treated as an explicit occurrence of & fan-out
function of the form (z) + (z, ..., 2). Intuitively, the responsibility for providing
fan-out is shifted from the composition rules to the computing primitives.

We shall be dealing with various classes of abstract computers (such as com-
binational networks, finite automata, Turing machines, and cellular automata)
which constitute the main paradigms of the theory of computing. An abstract
computer is, in essence, a function-composition scheme,* and a computation is
a particular solution (which may be required to satisly certain boundary condi-
tions or other constraints) of such a scheme. While finite composition schemes
are adequate for dealing with the most elementary aspects of computing, many
computing processes of interest require an unbounded amount of resources and
are more conveniently represented as taking place in infinite schemes.

It is customary to express a function-composition scheme in graphical form
as a causality network (or functional-dependence network). This is basically an
acyclic directed graph whose nodes are labeled by associating with each of them
a particular finite function and whose arcs are colored by associating with each
of them a particular variable. (Here, we can safely ignore certain slight technical
differences between a causality network and a directed graph.)

By construction, causality networks are “loop-free,” i.c., they contain no
cyclic paths. A combinational network is a causality network that contains no
infinite paths. Note that a finite causality network is always a combinational
one.

With certain additional conventions, causality networks having a particular
iterative structure can be represented more compactly as sequential networks
(cf. Section 7).

We shall assume familiarity with the concept of “realization” of finite func-

¥In what follows, we shall restrict our attention to function-composition schemes
based on finite primitives.



tions and automata by means of, respectively, combinational and sequential
networks. In what follows, a “realization” will always mean a componentwise
one; that is, to each input (or output) line of a finite function there will cor-
respond an input (or output) line in the combinational network that realizes it,
and similarly for the realization of automata by sequential networks.

A causality network is reversible if it is obtained by composition of inver-
tible primitives. Note that a reversible combinational network always defines an
invertible function. Thus, in the case of combinational networks the structural
aspect of “reversibility” and the functional aspect of “invertibility” coincide.
A sequential network is reversible if its combinational part (i.e., the combina-
tional network obtained by deleting the delay elements and thus breaking the
corresponding arcs) is reversible.

3. Introductory concepts

As explained in Section 1, our overall goal is to develop an explicit realiza-
tion of computing processes within the context of reversible systems. For the
moment, the processes we shall deal with will be those described by finite func-
tions, and the systems used for their realization will be reversible combinational
networks. Later on, we shall consider sequential processes, characterized by the
presence of internal states in addition to input and output states, and we shall
study their realization by means of reversible sequential networks.

As an introduction, let us consider two simple functions, namely, ran-ouT
(3.1a) and xor (3.1b):
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Neither of these functions is invertible. (Indeed, Pan-our is not surjective, since,
for instance, the output (0, 1) cannot be obtained for any input value; and xor




is not injective, since, for instance, the output 0 can be obtained from two dis-
tinct input values, (0,0) and (1,1)). Yet, both functions admit of an invertible
lizati

To see this, consider the invertible function XOR/FAN-oUT defined by the
table

-1
10~ 10 (3:2)
11 o1

which we have copied over with different headings in (3.3a), (3.3b), and (3.8b).
Then, ran-ouT can be realized by means of this function® as in (3.3a) (where
we have outlined the relevant table entries), by assigning a value of 0 to the
auxiliary input component ¢; and xor can be realized by means of the same
function as in (3.3b), by simply disregarding the auxiliary output component
g- In more technical terms, (3.1a) is obtained from (3.3a) by componentwise
restriction, and (3.1b) from (3.3b) by projection.
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In what follows, we shall collectively call ¢he source the auxiliary input
components that have been used in a realization, such as component ¢ in (3.3a),
and the sink the auxiliary output components such as g in (3.3b). The remaining
input components will be collectively called the argument, and the remaining
output components, the result.

In general, both source and sink lines will have to be introduced in order

*Ordinarily, one speaks of a realization by a network.” Note, though, that a
finite function by itself constitutes a trivial case of combinational network.




to construct an invertible realization of a given function.
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For example, from the invertible function AnD/NAND defined by the table

(3.5)
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the anp function (3.4a) can be realized as in (3.8a) with one source line and two
sink lines.
cnn vam
o[0][0] [0]o 0 J
gl (9ot £e &
o [0 i mi
51 TR R
101 101 T 1
110 110
111 611
e i
3 ey > y=I1T) I - f_--- y=7
Ip —=— i
K ‘
' al==) )
al==n)




Observe that in order to obtain the desired result the source lines must be
fed with specified constant values, i.c., with values that do not depend on the
argument. As for the sink lines, some may yield values that do depend on the
argument—as in (3.8a)—and thus cannot be used as input constants for a new
computation; these will be called garbage lines. On the other hand, some sink
lines may return constant values; indeed, this happens whenever the functional
relationship between argument and result is itself an invertible one. To give a
trivial example, suppose that the nor function (3.4b), which is invertible, were
not available as a primitive. In this case one could still realize it starting from
another invertible function, e.g., from the xoRr/FAN-ouT function as in (3.8b);
note that here the sink, ¢, returns in any case the value present at the source, c.
In general, if there exists between a set of source lines and a set of sink lines an
invertible functional relationship that is independent of the value of all other
input lines, then this pair of sets will be called (for reasons that will be made
clear in Section 5) a temporary-storage channel.

Using the terminology just established, we shall say that the above realiza-
tion of the ran-out function by means of an invertible combinational function
is & realization with constants, that of the xor function, with garbage, that of
the anp function, with constants and garbage, and that of the not function,
with ¢emporary storage (for the sake of nomenclature, the source lines that are
part of a temporary-storage channel will not be counted as lines of constants).
In referring fo a realization, features that are not explicitly mentioned will be
assumed not to have been used; thus, a realization “with temporary storage”
is one without constants or garbage. A realization that does not require any
source or sink lines will be called an isomorphic realization.

4. The fundamental theorem

In the light of the particular examples discussed in the previous section, this
section establishes a general method for realizing an arbitrary finite function ¢
by means of an invertible finite function f.

Here, we are concerned with realizations in the sense defined in Section 2.
In more general mathematical parlance, a realization of a function ¢ consists of
a new function f together with two mappings u and v (respectively, the encoder
and the decoder) such that ¢ = yfu. In this context, our plan is to obtain
a realization vfu of ¢ such that f is invertible and the mappings u and v are
essentially independent of ¢ and contain as little “computing power” as possible.
. More precisely, though the form of 4 and v must obviously reflect the number
of input and output components of ¢, and thus the format of ¢'s truth table,



we want them to be otherwise independent of the particular contents of such
truth table as ¢ is made to range over the set of all combinatorial functions.

In general, given any finite function one obtains a new one by assigning
specified values to certain distinguished input lines (source) and disregarding
certain distinguished output lines (sink). According to the following theorem,
any finite function can be realized in this way starting from a suitable invertible
one,

Tusorem 4.1 For every finite function ¢: B™— B" there exists an inver-
tible finite function f: B" X B™ — B" X B™™ ", with r < n, such that

r

O 0yt = bl G=Leym). (A1)

Proof. Let ¢ be defined by a binary table of the following form

m n

X | = Y],

where X denotes a listing of all 2™ m-tuples over B and Y denotes a listing
of the corresponding values of ¢, which are n-tuples over B. We shall define a
function f: B*+™ — B™ "™ by means of the following table

n m n m
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where each block of the form k (0 < k < 2") consists of 2™ identical n-tuples
each representing the integer k written in base 2, while each block of the form
Y 4k (0 < k << 2") consists of the 2™ entries of Y each treated as a base-
2 integer and incremenied by kmod2". (So the sequence of “Y 4 k" blocks
differs from the “k” sequence only by a circular permutation.) By construction,
each side of this table contains each element of B*™ exactly once. Thus, f is
invertible. Moreover, equation (4.1), with r == n, holds by construction.




The meaning of Theorem 4.1 is illustrated in Figure 4.1 below. The opera-
tions of restriction and projection mentioned in Section 3 are respectively per-
formed by an input encoder p and an output decoder v. While letting through
the argument (zy,...,z,,) unchanged, the encoder supplies the r source lines
with constant values, i.e., with values that do not depend on the argument itself.
On the other hand, while letting through the result (1, ...,y unchanged, the
decoder absorbs whatever values come out of the the m - r — n sink lines.

.
F il o
0 {->-- B
result
0 4--»=-— T
K f v
> | === 7
argument;
' — —a— -7

Fie. 4.1 Any finite function ¢ can be written as the product of a érivial .
encoder u, an invertible finite function f, and a trivial decoder v,

Intuitively, such a realization of ¢ by means of an invertible function [ is “fair,”
in the sense that neither 4 nor v contribute to the “computing power” of f.

Since p does not interact with the input signals, it will be more convenient
to visualize it as a separate source of constant input values, as in Figure 4.2b
rather than as an input encoder, as in Figure 4.1; likewise, v is more conveniently

visualized as a separate sink of output values rather than as an output decoder.
* To sum up, whatever can be computed by an arbitrary finite function according

to the schema of Figure 4.2a can also be computed by an invertible finite function
according to the schema of Figure 4.2b.
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Fic. 4.2 Any finite function (a) can be realized as an invertible finite
function (b) having a number of auxiliary input lines which are fed with
constants and a number of auxiliary output lines whose values are dis-
regarded.

Remark. The construction in the proof of Theorem 4.1 does not necessarily
lead to a minimal realization, as often the number of source lines can be made
strictly less than n and, correspondingly, the number of sink lines strictly less
than m. Intuitively, in many cases the given function ¢ is such that much of
the information contained in the argument is retained in the result, so that in

order to guaranteee invertibility f need only preserve in the garbage signals a
fraction of the total information.

5. Invertible primitives and reversible networks

In the previous section, each given ¢ was realized by a reversible combina-
tional network consisting of a single occurrence of an ad hoc primitive f. In this
section, we shall study the realization of arbitrary finite functions by means
of reversible combinational networks constructed from given primitives; in par-
ticular, from a certain finite set U of very simple primitives.

If the given function ¢ is defined by means of an arbitrary combinational
network (in what follows, we shall assume for simplicity that this network be
based on the nAND element), a reversible realization of ¢ based on the set U can
be obtained in a very simple way by subjecting the given network to straightfor-
ward translation rules. However, the reversible realization that is obtained in
this way in general requires many more sink lines (and, consequently, many more
source lines) than the realization of Section 4. On the other hand, starting from
the same set U of primitives but using more sophisticated synthesis techniques it
is possible to obtain a reversible realization of ¢ that does not require any more
garbage lines than when realizing ¢ by means of an ad hoc primitive f. In fact,
[ itself—or, for that matter, any invertible finite function—can be synthesized
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from U without garbage, though possibly with temporary storage.

In this synthesis, the peculiar constraints dictated by the reversibility con-
text force one to pay attention to a number of issues, such as fan-out, temporary
storage, and the handling of constants and garbage, which do not arise—or, at
any rate, are not critical—when these constraints are not present. As a counter-
part, the structure of the networks that are thus obtained provides more realistic
indications of what an efficient physical implementation of the corresponding
computing processes would have to be like.

It is well known that, under the ordinary rules of function composition,
the two-input NAND element constitutes a universal primitive for the set of all
combinational functions.

In the theory of reversible computing, a similar role is played by the Anp/NnaND
element, defined by (3.5) and graphically represented as in Figure 5.1c. Referring
to (3.8a), observe that y = z;3; (anD function) when ¢ = 0, and y = zj7; (~anD
function) when ¢ = 1. Thus, as long as one supplies a value of 1 to input ¢ and
disregards outputs g; and gy, the AND/NAND element can be substituted for any
occurence of a NAND, gate in an ordinary combinational network.

In spite of having ruled out fan-out as an intrinsic feature provided by the
composition rules, one can still achieve it as a function realized by means of
an invertible primitive, such as the xor/FAN-ouT element defined by (3.2) and
graphically represented as in Figure 5.1b. In (3.3a), observe that Yi=p==zx
when ¢ = 0 (ran-out function); and in (3.3b), that y = z; Pz (xor function).

Finally, recall that finite composition always yields invertible functions when
applied to invertible functions (cf. Section 2).

Therefore, using the set of invertible primitives consisting of the Anp/naND
element and the xor/Fan-our element, any combinational network can be im-
mediately translated into a reversible one which, when provided with appropriate
input constants, will reproduce the behavior of the original network. Indeed,
even the set U consisting of the single element AND/NAND is sufficient for this
purpose, since XoR/FAN-ouT can be obtained from AND/NAND, with one line of
temporarty storage, by taking advantage of the mapping (1, p, q) — (L, p, rPqg).)

The element-by-element substitution procedure outlined above for construct-
ing a reversible-network realization of a given combinational function is wasteful,
in the sense that the number of source and sink lines that are introduced by this
construction is roughly proportional to the number of computing elements that
make up the network, and therefore in general much larger than the minimum
required to compensate for the noninvertibility of the given function (cl. Section
4).
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From the viewpoint of a physical implementation, where signals are encoded
in some form of energy, each constant input entails the supply of energy of
predictable form, or work, and each garbage output entails the removal of energy
of unpredictable form, or heat. In this context, a realization with fewer source
and sink lines might point the way to a physical implementation that dissipates
less energy.

Our plan to achieve a less wasteful realization will be based on the following
concept. While it is true that each garbage signal is “random,” in the sense
that it is not predictable without knowing the value of the argument, yet it will
be correlated with other signals in the network. Taking advantage of this, one
can augment the network in such a way as to make correlated signals interfere
with one another and produce a number of constant signals instead of garbage.
These constants can be used as source signals in other parts of the network. In
this way, the overall number of both source and sink lines can be reduced. This
process is analogous to the destructive interference of, say, sound waves. It is
well-known that by superposing two correlated random signals one may obtain
an overall signal which is less “noisy” that either component.

In the remainder of this section we shall show how, in the abstract mntext
of reversible computing, destructive interference of correlated signals can be
achieved in a systematic way. For a similar process of destructive interference
to take place in concrete computers (thus leading to greatly reduced power
dissipation), one would have to match the abstract invertible primitives with
digital gates taht are macroscopically—as well as microscopically—reversible.
The arguments in [7,8,23] strongly suggest that such gates are indeed physically
realizable.

Returning to our mathematical exposition, we shall first show that any in-
vertible finite function can be realized isomorphically from certain generalized
AND/NAND primitives. Then, we shall show that any of these primitives can be
realized from the anp/NAND element possibly with temporary storage but with
no garbage.

For convenience, we shall say that an invertible finite function is of order n
if it has n input lines and n output lines.

Dermarion 5.1 Consider the set B = {0,1} with the usual structure of
Boolean ring, with “@" (exclusive-or) denoting the addition operator, “©"
the additive-inverse operator (which in this case coincides with the identity
operator), and juxtaposition (anp) the multiplication operator. For any n > 0,
the generalized Anp/NAND function of order n, denoted by #™: B" — B"®, is

13




defined by

%) | \
n n

okl =] ; (5.1)
Tn—1 In—1

Zn Otn ® 2122+ Tn—y1)

Remark. (a) The © sign in (5.1), which is redundant (since Sz,, = z,,), has
been introduced for ease of comparison with the arguments of [23]. (b) For any
n > 0, 6" is invertible and coincides with its inverse. () Fors = 1,2, ...,n—1,
the s-th component of 8("), i.e., HS“:', coincides with the projection operator for
the corresponding argument, i.e., ((zy,...,2,) = z;. (d) The last component
of 8, ie., 6, coincides with the Nor function for n = 1 (note that, by
convention, zj:--z; = 1 when ¢ = 0), and with the exclusive-or of its two
arguments for n = 2. (¢) For all other values of n, 6" is still linear in the n-
th argument, but is nonlinear in the first n— 1 arguments.

We have already encountered 6(*) under the name of the Not element, 8@
under the name of the xor/pan-our element, and 8 under the name of the
AND/NAND element. The generalized ANp/NAND functions are graphically repre-
sented as in Figure 5.1d.

(2 (5) 7 p—
——

s -t-+—T—¢-——"" -
: 1|"1'F ooy .L—:” —_—
55 — Birma
I o i I
[ Eb 4 : Ea ! l._\.{ﬂ\/:
L..__.: f._-__ll g i ‘\-,.L/'-.-i o
NOT XOR/FAN-OUT AND/NAND generalized AND/NAND

Fic. 5.1 Graphic representation of the generalised Anp/NaAND functions.
Wanning: This representation is offered only as a mnemonic aid in recalling
a function’s truth table, and is not meant to imply any “internal structure”

for the function, or suggest any particular implementation mechanism.

(a) 61, which coincides with the Nor element; (b) @), which coincides
with the xor/FaN-ouUT e!emeni;'{:; ), which coincides with the AND/NAND
element; and, in general, (d) 8\, the generalized AnpD/NAND function of
order n. The bilateral symmetry of these symbols recalls the fact that each
of the corresponding functions coincides with its inverse.
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An invertible function acts as a permutation on the elements of its domain,
and it is well known that any permutation can be written as a product of elemen-
tary permutations, i.e., of permutations that exchange exactly two elements.
In our attempt to synthesize arbitrary invertible functions of order n we shall
consider, as building blocks, elementary permutations on B™ and even more
basic permutations on B™ called atomic permutations.

Dermirion 5.2 In the truth table for the Anp/naND element (3.5), observe
that the only difference between the left- and the right-hand side of the table
is that exactly two rows (namely, (0,1, 1) and (L, 1, 1)) which have a Hamming
distanceof 1 (i.e., differ in exactly one position) have been exchanged. An atomic
permuter is any function having this property.

Any atomic permuter of order n can be constructed from the generalized
AND/NAND element of order n by appending noT elements to some of the input
lines and to each of the corresponding output lines, asin Figure 5.2a. Graphically,
this permuter will be represented as in Figure 5.2b, where some of the inputs
to the anp-gate symbol are negated (as denoted by a little circle).

@ i | (b)

o=l =——y

d
1

[

g

I
|
1
L
| o o __-_'--'l_']'

Fic. 5.2 (a) Consiruction and (b) graphic representation of a particular
atomic permuter.

Treorem 5.1 Any invertible finite function of order n can be obtained by
composition of atomic permuters of order n, and therefore by composition of
generalized anp/NanD functions of order < n.

Proof. It will be sufficient to show that one can obtain any elementary
permutation on B™.

In a table of all elemenis of B", a sequence of table entries a;, ay, . . . , 6; (these
are all n-tuples) are said to form a Gray-code path if any two entries that are
adjacent in this sequence are related by an atomic permutation. Consider the
pair of entries z and y that we wish to exchange, and consider a Gray-code path
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from z to y (such a path exists for any pair z, y). It is easy to verify that by
means of sequence of atomic permutations item z can be moved to the end of
the path, while the remainder of the path is shifted one position to the left but
is otherwise unchanged. In a similar way, y can be brought to the beginning
of the path. Thus z and y can be exchanged by means of a sequence of atomic
permutations without affecting the rest of the table.j

Remark. Note that the realization referred to by Theorem 5.1 is an isomor-
phic one (unlike that of Section 4, which makes use of source and sink lines).

Tueorem 5.2 There exist invertible finite functions of order n which cannot

be obtained by composition of generalized AND/NAND functions of order strictly
less than n.

Proof. In the context of the proof of Theorem 5.1, when &) is applied to
. any ¢ components of B” this set is divided into 2"—* disjoint collections of 2°
n-tuples, and each collection is permuted by & in an identical fashion. Thus,
only even permutations can be obtained when i < n. Since the product of even
permutations is even, only even permutations can be obtained by one-to-one
composition of any number of anp/NAND functions of order less than n.J

Remark. According to this theorem, the AND/NAND primitive is not sufficient
for the isomorphic reversible realization of arbitrary invertible finite functions
of larger order. This result can be generalized to any finite set of invertible
primitives, as implicit in the proofl argument. Thus, one must turn to a less
restrictive realization schema involving source and sink lines.

Tueorem 5.3  Any invertible finite function can be realized, possibly with
temporary storage, [but with no garbage!] by means of a reversible combina-

tional network using as primitives the generalizsed AND/NAND elements of order
<3.

Proof. In view of Theorem 5.1, it will be sufficient to realize (possibly with
temporary storage), for each n, all atomic permuters of order n. Since these can
be realized isomorphically from 6(!) and 8™ (cI. Figure 5.2), it will be sufficient
to realize 8 itsell. We shall proceed by recursion; namely, given 8("—1), g(m)
can be realized with one line of temporary storage as follows.

Construct the network of Figure 5.3, which contains two occurrences of
#"—1) and one occurrence of (). Observe that ¢ = ¢, since every generalized
AND/NAND element coincides with its inverse (and thus the second occurrence of
#"—1) cancels the effect of the first). Therefore, the pair ({c}, {¢'}) constitutes
a temporary-storage channel. When ¢ == 0, the remaining variables behave as
the corresponding ones of #™.J
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Fic.5.3 Realization with temporary storage of 0™ from 6("—1) (and ).
In this network, when c = 0, also ¢ = 0, and the remaining components
behave as the corresponding ones of 6",

In the above construction, it is clear that one line of temporary storage is
added every time that one realizes the AND/NAND function of the next higher
order. Thence the following theorem.

Tueorem 5.4. In Theorem 5.3, let n be the order of the given invertible
function, and m the number of source (as well as sink) lines required required for
temporary-storage channels in the realization. Then m need not exceed n — 3.
If only 6 is given as a primitive, then m need not exceed 3n — 3.

Remark. The second part of this theorem reflects the fact that additional
temporary-storage lines are needed to realize ot from anp/NanD (cf. (3.8)).

The proof of Theorem 5.3 establishes a general mechanisms for bringing
about destructive interference of garbage. With reference to Figure 5.3, which
can serve as an outline for the general case, observe that the left portion of
the network is accompanied by its “mirror image” on the right. The left por-
tion computes an intermediate result (on the line running from ¢ to ¢) that is
needed as an input to the lower portion and is returned by it unchanged. Having
performed its function, this intermediate result is then “undone” by the right
portion, so that no garbage is left.

The reader may refer to [3,7] for more specific examples of destructive in-
terference of garbage.

Taken together, Theorems 5.3 and 5.4 have an interesting interpretation
from the viewpoint of complexity theory. They imply a trade-off between the
number of available primitives and the availability of an appropriate amount of
a resource that, as we shall presently explain, can be intuitively identified with
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temporary storage (hence the term “temporary-storage channel” introduced in
Section 3.)

Following the lines of the proof of Theorem 5.3, any invertible function f
(Fligure 5.4a) can be realized by a network of the kind illustrated in Figure 5.4b
(where only some relevant details have been indicated).

@ (b £
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F1e.5.4 If instead of an ad hoc reversible mechanism (a) for the invertible
function f one seeks a mechanism based on the AND/NAND primitive, as in

(b), auxiliary constant input signals are required. Such signals are returned
unchanged at the output. '

Let us consider the process of traversing the box of Figure 5.4b from left to
right. Each line running through the box represents the evolution of a binary
storage element. In general, all the constants entering the box will be repeatedly
written over as they traverse the box itself; yet, they will emerge from the box
with the original values. In this context, a temporary storage channel (such as
the pair ({cy,...,c},{c],...,c.})) represents a “scratchpad” register which is
initialized to an assigned state (say, all 0's) and is invariably restored to the
original state before the end of the computation. (Though more general, this
behavior is analogous to that of the reversible Turing machines described by
Bennett[4] and briefly discussed in Section 7.)

In this context, Theorem 5.2 can be interpreted as saying that, for & given
choice of reversible primitives, it may be impossible to carry out the computation
of a given invertible finite function if one is restricted to working on a register of
size just enough to contain the argument (cf. the limitations of linear-bounded
automata). On the other hand, Theorem 5.3 says that this dificulty disappears
as soon as one permits the use of an auxiliary temporary-storage register of
appropriate size.

The following list (cf. Figure 5.5) sums up in a schematic way the
input/output resources of which a reversible network must avail itself in order
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to be able to compute a finite function ¢.

(a) argument - = result
(b) constants -  »- garbage

(c) - temporary storage channels -»-
(d) constants -«- I““ garbage

Fia. 5.5 Classification of input and output lines in a reversible combina-
tional network, according to their function. (a) Argument and result of the
intended computation. (b) Constant and garbage lines to account for the
noninvertibility of the given function. (c) “Temporary storage” registers
required when only a restricted set of primitives is available. (d) Additional
constant and garbage lines required when in designing the network one
chooses not to take full advantage of the correlation between internal

streams of data, and thus looses opportunities to bring about destructive
interference of garbage.

(a) If ¢ is invertible, and the use of ad hoc primitives is allowed, then no
source or sink lines are necessary.

(b) If ¢ is not invertible, it is necessary to provide source lines to be fed with
specified constants and/or sink lines which will produce garbage.

(c) Independently of the invertibility of ¢, if only a restricted set of primi-
tives is allowed it may be necessary to supply temporary-storage channels (i.e,
additional source lines to be fed with constants and an equal number of sink
lines which will return constants).

(d) If, in order to simplify the mechanism, one chooses to ignore that cer-
tain streams of garbage within the mechanism are correlated and thus could be
subjected to destructive interference, then further source and sink lines will be
required, as in (b).

8. Conservative logic

In view of the considerable exertions that were necessary in the previous
sections in order to obtain a bona fide realization of mechanisms having universal
logic capabilities and at the same time satisfying the reversibility constraint,
one might wonder whether nontrivial computation would be possible at all if
substantial further constraints were imposed.

_ Actually, it turns out that universal logic capabilities can still be obtained
even if one restricts one's attention to combinational networks that, in addition
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to being reversible, conserve in the output the number of 0's and 1's that are
present at the input. The study of such networks is part of a discipline called
. conservative logic* 7] (also cf. [11]). As a matter of fact, most of the results

of Sections 4 and 5 were originally derived by Fredkin and associates in the
context of conservative logic.

In conservative logic, all data processing is ultimately reduced to conditional
routing of signals. Roughly speaking, signals are treated as unalterable objects
that can be moved around in the course of a computation but never created or
destroyed. The physical significance of this principle will be discussed shortly.

The basic primitive of conservative logic is the Fredkin gate (cf. [76]), defined
by the table

(8.1)
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 This computing element can be visualized as a device that performs conditional
crossover of two data signals a and b according to the value of a control signal

¢ (Figure 8.1a). When ¢ = 1 the two data signals follow parallel paths, while
when ¢ == @ they cross over (Figure 8.1b).

(a) (b)
C - = 1 = — 1 0 > =

@ >—jc--=r

—— a-= —0 0 - b
b 7 b = —b b --><-4-- a
Fic. 8.1 (a) Symbol and (b) operation of the Fredkin gate.

In order to prove the universality of this gate as a logic primitive for reversible
computing, it is sufficient to observe that anp can be obtained from the mapping

*Besides a combinational primitive (the Fredkin gate discussed below), conserva-
tive logic also posits a communication/memory primitive (the unit wire). Together,
these two primitives are sufficient to account for sequential computation. Moreover,
they provide a basis for a theory of computation complexity which incorporates
certain important physical-like constraints that are usually neglected.
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(v, q,0) = (p, pq, Bg), and NoT and PaN-ouT from the mapping (p, 1,0) ~ (p, p, B)-

There exists only one other 3-input, 3-output conservative-logic element that
can be used as a universal primitive; this is the symmetric majority/parity gate
(smP) defined by

z Yy z 7y 4
000 000
001 100
011 110
100 2010 (8.2)
101 011
110 101
111 111

Intuitively, in the smp gate the three signals are rotated in one direction if their
overall parity is even, and in the other direction if it is odd. While the smp gate
can be realized isomorphically by means of Fredkin gates, a realization of the
latter by the former requires a temporary-storage channel. In this sense, the
Fredkin gate is the most elementary conservative-logic primitive—since no 2-
input, 2-output invertible function is universal.®

Finally, the Fredkin gate can be realised isomorphically by means of
AND/NAND gates, as shown in Figure 6.2.

£

T %
Bl

U vy

F1c.6.2 Isomorphic realisation of the Fredkin gate by means of AND/NAND
gates,

It is important to realize that, far from representing merely an elegant tour
de-forcein the theory of reversible computing, conservative logic provides an es-
sential connection between that theory and the physics of computing circuits. In

* ¥An even more elementary conservative-logic primitive, namely, the interaction
gate{7], can be obtained if one considers invertible function whose domain and
codomain coincide with a proper subset of a set of the form B™.
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fact, while in any reversible system whatsoever there are a number of conserved
quantities, in physical system many of these quantities are required to have a
special structure. For instance, energy, momemtum, and angular momentum
are additive (this reflects certain symmetries of space and time). Intuitively,
reversibility by itself is not sufficient to give enough physical “Bavor” toa theory
of computing. .

In a conservative logic circuit, the number of 1's, which is conserved in the
operation of the circuit, is the sum of the number of 1's in diferent parts of
the circuit. Thus, this quantity is additive, and can be shown to play a formal
role analogous to that of energy in physical systems. Other connections between
conservative logic and physics will discussed in more detail in [7]

In conclusion, conservative logic represents a substantial step in the develop-
ment of a model of computation that adequately reflects the basic laws of physics.

7. Reversible sequential computing

In Sections 4 and 5, we started from a certain computing object (viz., a
finite function), and we discussed the conditions for its reversible realization
first (a) as an object of the same nature (viz., an invertible finite function)
treated as a “lumped” system, thus stressing functional aspects, and then (b) as
a “distributed” system (viz., a reversible combinational network), thus stressing
structural aspects and paving the way for a natural physical implementation.

By and large, we shall follow a similar plan in dealing with the more com-
plex computing objects that constitute the paradigms of sequential computing,
namely, finite automata (in the present section), Turing machines (Section 8),
and cellular automata (Section 8).

First, we shall make a few commemts on sequential computing in general.

In Section 2, we defined an abstract computer as a function-composition
scheme. Some of these schemes possess a regular structure of a certain kind,
namely, they are time-iterative,* and with appropriate conventions can be rep-
resented much more compactly in terms of sequential networks (cf. [9]).

*If the partiaForder relation between arcs that is induced by the function-
composition operation is interpreted as a causal relationship between signals, then
certain other relations between arcs are naturally interpreted as referring to spatial
and temporal relationships. In this context, a causal network may possess certain
automorphisms that may be interpreted as time shifts, and in this case the network
is time-iterative; similarly, it may possess automorphisms corresponding to spatial
shifts, and in this case it is space-iterative.
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Consider, for definiteness, the iterative function-composition scheme

Gi+1=%; Dy 3
{y;+1 —By <<t 71

explicitly represented by the infinite causal network of Figure 7.1.

Y
Fic.7.1 A function-composition scheme having a time-iterative structure.

The same scheme can be represented by the finite sequential network of Figure
7.2. By comparing this figure with Figure 7.1, it is clear that the role of the so-
called “delay elements” in a sequential network is to mark out those places that

correspond fo the boundary between one stage and the next in the equivalent
time-iterative combinational network.

I

y

9
delay]

Fi1c.7.2 The same function-composition scheme as represented by a finite
sequential network.

In the previous sections, for the sake of realization arguments we have treated
a finite function as a combinational network consisting of a single node. Similarly,
we shall treat a finite automaton as a sequential network whose combinational
part consists of a single node, representing the automaton's transition function.
Thus, for example, the network of Figure 7.2 can be identified with the finite
automaton (z,9) = (D ¢,z D g).
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Finally, recalling that a computation is a solution of a function-composition
scheme (cf. Section 2), let us note that one is usually not interested in arbitrary
solutions; rather, one seeks solutions corresponding to particular boundary con-
ditions (defined, for instance, by assigning specified values to the input lines).
Moreover, in the case of a time-iterative scheme, one is usually interested only
in that portion of the scheme whose elements are indexed by ¢+ > 1 (for an
arbitrary ). The assignment of specified values to the new input lines that
are created in this way (i.e., by “cutting” the network in hall) corresponds to
initializing the delay elements in the sequential-network representation.

By definition, a finite automaton is reversible if its transition function is
invertible. Thus, in order to realize a finite automaton by means of a reversible
sequential network, it will be sufficient to take its transition function, construct
a reversible realization of it, and use this as the combinational part of the desired
sequential network. The problem of reversibly realizing an arbitrary finite func-
tion has been solved in Section 4. Thus, we have the following theorem.

Teorem 7.1. For every finite automaton r: X X Q@—=Q XY, where X =
B™, Y == B", and Q = B", there exists a reversible finite automaton ¢ : (B" X
B™) X B*—B" X (B" X B"™™"), with r < n - u, such ¢that

r

ti(':':’ln-uﬂmﬁn---nqu)-‘rl'{fh---:‘wﬂ:---:%)r (i- l:---r“+“)-

In other words, whatever can be computed by an arbitrary finite automaton
according to the scheme of Figure 7.3a can also be computed by a reversible
finite automaton according to the schema of Figure 7.3b.
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Fic. 7.3 Any finite automaton (a) can be realized as a reversible finite
automaton (b) having a number of auxiliary input lines (source) which are
fed with constants and a number of auxiliary output lines (sink) whose
values are disregarded.

The following theorem, which from a mathematical viewpoint is trivial, is
a restatement of the second law of thermodynamics. Recall that an automaton
is closed if X = {\} (i.e., there are no input lines); open, otherwise.

Treorem 7.2 If a closed, finite automaton is not reversible, then it does
not admit of a reversible realization that is both closed and finite.

Proof. Given a nonreversible automaton r: @ — Q, assume that ¢: P— P
be a reversible realization of 7. That is, we assume the existence of an invertible

finite function ¢ and of two maps u and v (respectively, the encoder and the
decoder) such that, for all + > 0,

ity = 1%, (7.2)

Since automaton £ is finite and reversible, for any p € P there exists an 1, > 0
« such that ¢*(p) = p. Thus, for any q € Q, vt*@Du(g) = vu(g). But, in view of
(7.2), vu(g) = ¢ and vt»@y(q) = r**)(g). As a consequence, 7%(9(g) = ¢ for
all g. On the other hand, since automaton r is finite and nonreversible, there

must be at least one § € Q such that 7(g) & 7 for all § > 0. Thus, the original
assumption leads to a cortradiction.|]

Remark. According to Theorem 4.1, noninvertible functions can be com-
puted by & reversible system provided that a supply of constants is made avail-
able. In an open system, this supply may come from some input lines. In a
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closed system, in order to perform a computation in one part of the system one
may draw constants from another part, for instance, the indefinitely extended
blank tape of a Turing machine (cf. Section 8). However, if the system is also
finite, this supply will eventually run out.

Thus, the interpretation that a finite, closed, and reversible system “is
modeling an irreversible process” can only be maintained for particular initial
conditions and on a space-time scale that is limited with respect to that of the
entire system.

Having discussed the realization of finite automata by means of reversible
finite automata, we turn now to the realization of finite automata by means of
reversible finite sequential networks based on given primitives.

It is clear that all the arguments of Sections 5 and 8 concerning finite func-
tions immediately apply to the transition function of any given finite automaton.
In particular, in analogy with Figure 5.5, every finite automaton can be realized
by a finite, reversible sequential network based on, say, the AND/NAND primitive
and having the following form (Figure 7.4)

source f
input —e—- reversible ——— output
finite '
old state new state
- network -
-==- temp. stor. channels---

stnk

———=——| delays —

—

- delays

I'1e. 7.4 Realization of a finite sutomaton by means of a finite, reversible
sequential network.

In order to insure the desired behavior, the state components represented by the
temporary-storage channels must be initialized once and for all with appropriate
values (typically, all 0's), while the source must be fed with appropriate constants
(typically, all 0's) at every sequential step.

In a conventional computer, power dissipation is proportional to the number
of logic gates. On the other hand, the number of constants/garbage lines in
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Figure 7.4 is at worst proportional to the number of input/output lines (cf.
Theorems 4.1 and 5.3). From the viewpoint of a physical implementation, where
signals are encoded in some form of energy, the above schema can be interpreted
as follows: Using invertible logic gates, it is ideally possible to build a sequential
computer with zero internal power dissipation. The only source of power dis-
sipation arises outside the circuit, typically at the input/output interface, if the
user chooses to connect input or output lines to nonreversible digital circuitry.
Even in this case, power dissipation is at most proportional to the number of
argument/result lines,® rather than to the number of logic gates (as in ordinary
computers), and is thus independent of the “complexity” of the function being
computed. This constitutes the central result of the present paper.

8. Reversible Turing machines

We shall assume the reader to be familiar with the concept of Turing machine.
From our viewpoint, a Turing machine is a closed, time-discrete dynamical
system having three state components, i.e., (a) an infinite tape, (b) the internal
state of a finite automaton called head, and (c) a counter whose content indicates
on which tape square the head will operate next. Let T, H, and C be the sets
of tape, head, and counter states, respectively. A Turing machine is reversible
if its transition function 7: T X H X C—= T X H X C is invertible.

It is well known that for every recursive function there exists a Turing
machine that computes it, and, in particular, that there exist computation-
universal Turing machines. Are these capabilities preserved if one restricts one's
attention to the class of reversible Turing machines?

The answer to the above question is positive. In fact, in [4] Bennett exhibits a
procedure for constructing, for any Turing machine and for certain quite general
computation formats, a reversible Turing machine that performs essentially the
same computations. (The concept of “reversibility” used by Bennett is weaker
than ours, insofar as the transition function and its inverse are defined only on
distinguished subsets of tape/head /counter states, and even among these states
there are some with no predecessors and others with no successors; however, the
transition rules of Bennett's machine can easily be augmented so as to satisfy

¥In Tact, the free energy that must be supplied is at most that in which the input
constants are encoded, and the thermal energy that must be removed is at most
that of the garbage outputs. According to Theorem 4.1, the number of constant
lines need not be greater than that of result lines, and the number of garbage lines
need not be greater than that of argument lines.
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our stronger definition. We shall assume this augmenting procedure to have
been carried out.)

In order to obtain the desired behavior, Bennett's machine is initialized so
that all of the tape is blank except for one connected portion representing the
computation’s argument, and the head is set to a distinguished “initial” state
and positioned by the argument's first symbol. At the end of the computation,
i.e., when the head enters a distinguished “terminal” state, the result will appear
on the tape alongside with the argument, and the rest of the tape will be blank.

Thus, a number of tape squares that are initially blank will eventually
contain the result. These squares fulfill a role similar to that played by the
constants/garbage lines in Section 5, in the sense that they provide a sufficient
supply of “predictable” input values (blanks) at the beginning of the computa-
tion, and collect the required amount of “random” output values (in this case, a
copy of the argument—cl. the first row of (4.2)) at the end of the computation.

Moreover, during the computation a number of originally blank tape squares
may be written over and eventually erased. These squares fulfill a role similar

to that played by the temporary-storage lines in Section 5 (cf. the discussion
centered on Figure 5.4).

It is clear that, like the constants in the reversible combinational networks
of Section 5, the blanks in Bennett's machine play an essential role in the com-
putation, since without their presence one could not achieve universality and
reversibility at the same time. Intuitively, computation in reversible systems
requires a higher degree of “predictability” about the environment’s initial con-
ditions than computation in nonreversible ones.

Owing to the “hybrid” nature of a Turing machine, which involves several
kinds of computing primitives (an active device, viz., the head, a passive device,
viz., the tape, and mechanisms for head-tape interaction and for head move-
ment), it is difficult to discuss the realizability of a Turing machine by means
of a reversible, distributed computing mechanism before having expressed the
. above primitives in terms of fewer and more elementary ones. For this reason,
we shall deal with this problem at the end of the next section, when suitable
tools will have been introduced.

9. Reversible cellular automata

We shall assume the reader to have some familiarity with the concept of cel-
lular automaton (cf. [21] for details and references). From a physical viewpoint,
cellular automata are in many respects more satisfactory models of computing



processes than Turing machines; in particular, they allow one to represent by

means of the same mathematical machinery and at the same level of abstraction
not only a computer proper but also its environment, the interface with its
“users,” and the “users” themselves[22]. A cellular automaton is in essence a k-
dimensional (k > 1) array of identical, uniformly interconnected finite automata,
and constitutes a closed, time-discrete dynamical system whose state set is a
countable Cartesian product of finite sets and whose transition function is con-
tinuous (in the topological sense) and commutes with the translations (i.e., with

the elements of the array's symmetry group). A cellular automaton is reversible
if its transition function is invertible.

It is well known that there exist cellular automata that are computation-
and construction-universal. Are these capabilities preserved if one restricts one's
attention to the class of reversible cellular automata? The answer to the above
question is positive. In fact, in [20] Toffoli exhibits a procedure for construct-
ing, for any cellular automaton (presented as an infinite, space-iterative sequen-
tial network), a reversible cellular automaton that realizes it. (Note that until
then the existence of computation- and construction-universal reversible cel-
lular automata—which is thus established—had been doubted or, by erroneous
arguments, outright denied.)

Assuming the original cellular automaton M to be one-dimensional and with
the von Neumann neighborhood (Figure 9.1a), with Toffoli's construction one
obtains a two-dimensional cellular automaton M in which the flow of informa-
tion between the elements of the array (or cells) can be visualized as in Figure

9.1b.
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Fic. 9.1 Information flow (a) in a given one-dimensional cellular

automaton M, and (b) in the corresponding two-dimensional, reversible
realization M.

Each row of M constitutes a reversible (infinite) automaton which is, of course,

open. Let us consider a particular row p. In analogy with Figure 7.3, let us
interpret the arrows entering a row from above (in Figure 9.1) as source lines,



and the ones leaving it from below as sink lines. By construction, when the
source lines are fed with particular constant values (all 0's) and the values on
the sink lines are ignored, the “row” automaton will behave as M. In order
for M to constitute a reversible realization of M, one must guarantee that p's
source lines are fed with 0's at all time steps ¢ > 0. But, by construction, if a
row is initialized to a distinguished blank state and its source lines are fed with
0’'s, then the row will remain in the blank state and its sink lines will produce
0's. Thus, if all of the rows that lie above p are initialized to the blank state
(Figure 9.2), an inexhaustible supply of 0's will “rain down" into p. At the same
time, p's sink lines will produce garbage that will spread down and sideways
through the rows below p, while p itselfl will reprodm M’s behavior.

F1c.9.2 With proper initialization, the remble two-dimensional cellular
automaton M realizes the one-dimensional sutomaton M, which may be
irreversible.

In Section 5, we saw that, starting from a fixed, finite set of invertible logic
primitives, one cannot obtain an isomorphic invertible realization for every in-
vertible finite function; rather, in general one must be allowed to use ad-hoc
primitives (possibly as “complex” as the [unction itself) or introduce temporary-
storage channels (thus giving up isomorphism). Similar considerations apply to
finite automata.

Consider now a reversible cellular automaton M. M can always be realized
as a reversible sequential network with temporary ataragc. Is it possible to con-
struct an isomorphic reversible realization of M if one is given a free hand in

the choice of primitives? Surprisingly, the answer to this question is negative
(Theorem 9.1 below).

Lemma 9.1. Let m be the number of binary state variables associated with
each cell of a cellular automaton M, and n the size of its neighborhood. A neces-
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sary condition for the isomorphic realizability of M as a reversible sequential
network is that m > n.

Proof. We shall sketch the proof for a one-dimensional cellular automaton
M with m == 1, n =2, and neighborhood index (0,—1) (i.c., the next state of
cell ¢ mlldtpendnnthecumnt state of cell ¢ itsell and of cell § — 1, that is,

its “left” neighbor . Assume that the required realization M exists; it will have
the form of Figure 8.3a.
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Fic. 8.3 (a) Overall structure of the (sssumed) isomorphic reversible
realization of M. Details of the combinational part of such realization: (b)
paths from each cell to itself, (c) paths from each cell to its right neighbor,
and (d) nodes implied by the existence of such paths.

Since each cell is “affected” by itsell, there will be paths in the combinational
part of M as in Figure 9.3b; similarly, since each cell is “affected” by its left
neighbor, there will be paths as in Figure 9.3¢c. Thus, there will be nodes as in
Figure 9.3d. These nodes cannot stand for invertible primitives (note fan-in at p
and fan-out at g) unless further arcs exist (namely, an additional arc entering p
and one leaving g). In turn, these arcs imply the existence of new nodes—and so
on ad infinifum—since connecting these arcs to one another would violate the
partial ordering (“causality”) associated with function composition). Clearly, it
is impossible to complete the construction without introducing either cycles or
pathe of infinite length.}

Tueorem 9.1. There exist reversible cellular automata that do not admit
of an isomorphic reversible realization.
Proof. In [2], Amoroso and Patt exhibit reversible cellular automata (more
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amply discussed in [21]) with m == 1 and n == 4, The thesis follows from Lemma
9.1.8

Finally, it is well known that any Turing machine can be embedded in a

suitable cellular automaton. Thus, according to the foregoing discussion, any
Turing machine can be realized by an infinite reversible sequential nework.

10. Conclusions and perspectives

What properties of an abstract computing system are critical in determining
whether or not it can carry out a given task? To give an example, it is known that
linearity is incompatible with computation universality[15]. Many other issues,
dealing, for instance, with monotonicity, finiteness of storage, availability of
constants, etc., have been discussed extensively in the past and are essentially
settled. On the other hand, only recently has some light been thrown on the
. question of to what extent the imposition of the reversibility constraint affects
the computing capabilities of a system. The sustained debate on this issue has
been fueled and at times confused by obvious connections with certain physical
questions.

In this paper, we have laid down the foundations for the theory of reversible
computing, i.e., a theory of computing based on invertible primitives and com-
position rules that preserve invertibility, and we have shown that this theory can
deal satisfactorily with both the functional and the structural aspects of com-
puting processes. In particular, those structures that constitute the traditional
paradigms of the theory of computing, such as combinational and sequential net-
works, finite automata, Turing machines, and cellular automata, have been as-
certained to have reversible counterparts of equal computing power. (Analogous
considerations apply to systems of difference equations, as will be shown in a later
paper.) Thus, the choice to use reversible mechanisms in describing computing
processes is a viable one. What can be gained from this choice?

In the synthesis of an abstract computing system for a given task, the re-
quirement that the system be reversible can in general be met only at the cost
of greater structural complexity. In other words, one may need more (but not
many more) gates and wires. However, the system's very reversibility promises
to be a key factor in leading to a more efficient physical realization, since, at
the microscopic level, the “primitives” and the “composition rules” available
in the physical world resemble much more closely those used in the theory of
reversible computing than those used in traditional logic design. For example,

it appears that conservative logic might be completely modeled by processes of
elastic collision between identical particles|7].
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Besides questions of efficient implementation of computing systems, there
are several other research lines to which the concepts of reversible computing
may give a substantial contribution. Here, we shall limit ourselves to naming
a few on which some preliminary investigations have been carried out, such
as error detection; numerical analysis and, in particular, the integration of
differential equations; number theory and the factoring of large integers; second-
order automata and state-reduction techniques; synchronization of computing
processes; and cellular automata and the modeling of fundamental physical laws.

The main reason why the concept of reversibility is so pervasive is the fol-
lowing. In every reversible system there are a number of quantities (functions of
the system's state) which are conserved, i.e., which are constant along each of the
system's trajectories (cf. the “integrals of the motion” of theoretical mechanics).
Both in mathematical and in physical research, experience has shown that many
interesting properties of a system can usually be expressed in terms of conserved
quantities, and on this basis one can often make nontrivial statements about the
behavior of a system or a class of systems without having to go into a detailed,
case-by-case analysis of their operation.

Thus, in the more abstract context of computing, the laws of “conservation

of information” may play a role analogous to those of conservation of energy
and momentum in physics.

11. Historical and bibliographical notes

The computing element known as the “Fredkin gate” was apparently first
described by Quine as an abstract primitive, and was known to Petri[10]. Some
conservative (but not reversible) circuits using complementary signal streams
were discussed by von Neumann|25] as early as 1952. More recently, Kinoshita
and associates[11] worked out a classification of logic elements that “conserve” 0's
and 1's; their work, motivated by research in magnetic-bubble circuitry, men-
tions the possibility of more energy-efficient computation, but has apparently
little concern for reversibility.

The AND/NAND element was known to Petri[10], and was mentioned en pas-
sant, in the context of reversibility arguments, by Landauer[12]. The generalized
AND/NAND functions were introduced by Toffoli[20] for proving the universality
of reversible cellular automata.

Doubts about the computational capabilities of reversible cellular automata
were first expressed by Moore[18], and more formally stated as a conjecture
by Burks[5]. Other parties in the debate were Smith{18], Amoroso and Patt[2],
Aladyev{l], and Di Gregorio and Trautteur|8].
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Distributed systems which are not reversible per se, but in which
computation-universal, reversible structures can be embedded by proper in-
itialization, were described by Priese[17).

The idea that universal computing capabilities could be obtained from re-
versible, dissipationless (and, of course, nonlinear) physical circuits apparently
first occurred to von Neumann, as reported in a posthumous paper[26]. This
idea was also aired by Bennett[4], with some support from his construction of
reversible Turing machines. A more formal proof of the physical realizability of
such circuits was given by Toffoli[23], and some concrete though not yet entirely
practical approaches are outlined in [8]. A much more promising approach, based
on the interaction gate, has been recently suggested by Fredkin[7).

Owing to the interdisciplinary nature of the subject, it is quite difficult to
locate, evaluate, and credit all research results that may somehow be relevant

to reversible computing. We shall appreciate any contributions to the above
bibliographical notes.
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