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Abstract

In this thesis I will be concerned with linking the observed speech signal
to the configuration of articulators.

Due to the potentially rapid motion of the articulators, the speech
signal can be highly non-stationary. The typical linear analysis tech-
niques that assume quasi-stationarity may not have sufficient time-
frequency resolution to determine the place of articulation.

I argue that the traditional low and high-level primitives of speech
processing, frequency and phonemes, are inadequate and should be re-
placed by a representation with three layers: 1. short pitch period reso-
nances and other spatio-temporal patterns 2. articulator configuration
trajectories 3. syllables. The patterns indicate articulator configura-
tion trajectories (how the tongue, jaws, etc. are moving), which are
interpreted as syllables and words.

My patterns are an alternative to frequency. I use short time-
domain features of the sound waveform, which can be extracted from
each vowel pitch period pattern, to identify the positions of the ar-
ticulators with high reliability. These features are important because
by capitalizing on detailed measurements within a single pitch period,
the rapid articulator movements can be tracked. No linear signal pro-
cessing approach can achieve the combination of sensitivity to short
term changes and measurement accuracy resulting from these nonlin-
ear techniques.

The measurements I use are neurophysiologically plausible: the au-
ditory system could be using similar methods.

I have demonstrated this approach by constructing a robust tech-
nique for categorizing the English voiced stops as the consonants B, D,



or G based on the vocalic portions of their releases. The classification
recognizes 93.5%, 81.8% and 86.1% of the b, d and g to ae transitions
with false positive rates 2.9%, 8.7% and 2.6% respectively.

Thesis Supervisor: Gerald J. Sussman
Title: Matsushita Professor of Electrical Engineering
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Chapter 1

Introduction

Signal processing front ends currently in use do a poor job of differen-
tiating phones. It is a testament to the quality of the high-level algo-
rithms that current speech recognition systems work at all. Without
the high level algorithms, speech recognizers have phone error rates
in the 10-20% range under perfect conditions, and 40-60% in noise.
Based on the front-end output, every second word of noiseless speech
and every word of noisy speech would be misunderstood. The recog-
nizers’ performance also breaks down when presented with previously
unheard speakers and dialects. The striking difference between ma-
chine and human performance [33] suggests that we have not yet fully
understood what really differentiates particular sounds, and how our
auditory system processes those sounds.

In this thesis we will challenge two core assumptions of the tradi-
tional speech processing approach: one is the use of frequency as the
primitive of the low level representation for speech. The other is that
speech can be segmented into phonemes and thus that phonemes are
useful high level representation units. We will argue instead that a
representation based on the following three layers of primitives is bet-
ter: syllables as high level units, articulator configuration as mid-level
primitives and pitch-period resonances or spatio-temporal patterns as
low-level primitives. In this more robust representation vowel pitch-
period resonance patterns are used to determine the current articula-
tor configuration. Trajectories of articulator configurations are then
interpreted as syllables and words.

To support some of the ideas above we have built a system that
extracts attributes of pitch-period patterns and uses them to robustly
differentiate between three articulator configurations: the ones that
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immediately follow the burst of English stop consonants b, d and g as
they are released into certain vowels. We will demonstrate how the
system performs on a subset of the TIMIT database.



Chapter 2

Problems With the
Traditional Way

2.1 Stationarity and Frequency Analysis

The current popular model of speech sound production is: glottal pulses
— F — sound, where F' is the transfer function of the vocal tract.
Frequency-domain analysis is based on the assumption that F' is semi-
stationary — changing so slowly that it can be regarded as constant for
short time segments. This is not true. The tongue may move rather
quickly and often assumes the position of a particular phone for only
one or two glottal pulses, or only “points” or gestures toward that
position. There have been reports on vowel recognition with accuracy
close to normal even when there is only one glottal pulse or a section
of a glottal pulse present [17, 37]. Frequency-domain analysis of such
short vowel segments is highly inaccurate; the resulting spectra contain
strong side-lobes depending on the exact placement (in time) of the
short time Fourier-transform windows.

To better understand how rigid and unreliable the Fourier-transform
based frequency analysis is in the face of the rapidly changing reso-
nances of the speech signal, look at figure 2.1! Here we can see the
band-pass filtered channels of three consecutive pitch periods. During
each pitch period of the higher frequency channels, short bursts of en-
ergy repeat. These bursts are reasonably close to and can be modeled as
pure amplitude modulated and phase shifted sinusoid segments of the
same frequency. If the phase shift between consecutive sinusoid bursts
is close to half their period then their combined contribution to a con-
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Figure 2.1: Time-aligned waveform and band-pass filtered chan-
nels. The center frequency of the bandpass channels is decreasing
towards the top.

volution with any sinusoid at their frequency will cancel out (see figure
2.2). Consequently, if the window of the discrete Fourier-transform
(DFT) covers the two sinusoid bursts in the signal their combined con-
tribution to their detected frequency may cancel out. In other words,
no matter how large the individual peaks of the energy bursts are, they
may be not detectable by the DFT. Due to the uncertainty principle
[40, chapter 8] we cannot arbitrarily shorten the window of the DFT
without corresponding loss of frequency resolution. In fact, the short-
est windows we can find applied in the literature are around 22 ms,
whereas the average pitch period length is somewhere around 9 ms for
male speakers. Thus the DFT window will not only cover neighbor-
ing sub-pitch-period bursts, but also whole neighboring pitch periods.
This means that waveforms f neighboring pitch periods may interfere
and cancel out due to phase shifts; that is, the exact frequency content
detected by the DFT is dependent on the local pitch period length and
the exact temporal placement of the DFT window. As both of the

10



Figure 2.2: An example setup of how two sinusoid bursts can com-
pletely cancel out their contributions to the discrete Fourier trans-
form at a certain w frequency. Top: DFT window (Gaussian); mid-
dle: w frequency sinusoid; bottom: two short w frequency sinusoid
bursts with half period phase shift. Note how the corresponding
peaks in the bursts coincide with opposite sign values of the sinu-
soid in the middle. As the window function is symmetrical for the
two sinusoid bursts, the convolutions of the sinusoid bursts with
the windowed sinusoid will add to zero.

latter are independent of what vowel sound we hear when we listen to
the signal, this is a highly undesirable dependence, and it shows that
frequency may indeed not be the ideal primitive in speech analysis.

2.2 Do We Really Hear Phonemes?

The second problem with stationarity is that it enforces the view that
the mid-level building blocks of speech perception are phonemes. Con-
sider the vowels in utterances lass and loss. In both cases the articu-
lators start from the [ configuration. Then the tongue moves down and
forward in lass and down and backward in loss, the lips round and the
jaws open to different degrees, then the articulators go into the s po-
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sition. If we pronounce these words extremely sloppily we usually just
move our tongue down a little from the [ position and open our jaws
slightly during both vowels (the position not far from the position of the
vowel in the word but). The preceding and the following positions are
identical. Thus in case of very lazy articulations the trajectories that
the articulators run through during the two vowels are virtually iden-
tical. This must mean that the acoustic signals that reach our ears are
very close to each other as well. The puzzling part is, however, that
even during these mumbled utterances of lass and loss we hear two
distinctly different vowels — the reader is encouraged to try this very
simple experiment with a partner! Such overlaps of the acoustic space
point to the importance of context and make it impossible to uniquely
define a mapping from the acoustic space to the set of phonemes. This
severely undermines the role of phonemes as high-level primitives of
speech perception.

Sound omissions, dialects and accents, non-time-aligned articulator
changes — such as nasalization starts (i.e. the velum is lowered) before
the closure for “m” — are all ubiquitous and hardly interfere with human
speech understanding. They, however, further complicate the much
sought-after mapping from the acoustic space to the set of phonemes.
Thus the potential role of phonemes in perceptual organization is rather
weak.

There is mounting evidence in the speech psychophysiology commu-
nity that the ability to differentiate phonemes is learned with alphabetic
reading and that the actual basic units of speech perception are sylla-
bles. Morais at. al. [26] showed that illiterate adults cannot segment
utterances phonetically. In [55] Warren demonstrated that phonemes
replaced by noise are indistinguishable from non-missing phonemes.
Savin and Bever [18] showed that the perception of syllables and words
takes place before listeners can identify phonemes and concluded that
access to syllables occurred first and identification of the phonemes fol-
lowed recognition of the syllable. In another set of experiments [42]
native speakers of English perceived sequences of short vowels as valid
syllabic units of English. These observations indicate that segmenta-
tion of speech into phonemes is preceded by recognition of syllables (see
a much more detailed review in [57, pages 166-177]).

Our underlying assumption in this thesis will be that the human au-
ditory pathway first maps the acoustic signal into articulator-configuration
trajectories and then interprets the trajectories as a sequence of sylla-
bles. Recovering the articulator trajectories first not only solves all the
problems listed at the beginning of this section but it also helps dealing
with noise. The physical continuity of the articulators movements can
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be used to constrain the number of possible interpretations when parts
of the signal are masked by noise.

2.3 Non-Linearity or A Priori Knowledge

Human perception breaks down the continuous and multi-dimensional
acoustic space that utterances occupy into a finite number of discrete
perceptual units. This phenomenon is called category theory in artifi-
cial intelligence or digital abstraction in engineering: we perceive firm
boundaries where there is a continuous transition from one pattern to
another. Putting an utterance into a category is a highly non-linear
jump that we can think of as finding the template that is closest to
some processed version of the observed signal. The templates repre-
sent expectations or a priori knowledge. They are another powerful
tool that helps interpret the utterance in noise.

Such non-linear jumps to discrete interpretations are successfully
applied in traditional speech recognizers in the higher level algorithms.
They rely on context to prune the possible options in top-down dictio-
nary searches using hidden Markov models and other elaborate statis-
tical learning algorithms [27]. The popular pre-processing algorithms
are, however, “dumb” in this sense: they apply either no or very little
a priori knowledge early in the processing chain. This is a problem
because by the time the powerful statistical techniques are applied, a
lot of the fine-grained information may be unrecoverably lost through
application of the discrete Fourier transform and other feature extrac-
tion steps, as we demonstrated in section 2.1. Another problem that
is introduced by applying the “smart”, non-linear statistical algorithm
late in the processing is that by that time the useful part of the audio
data is hopelessly mixed together with noise. Often in real life the noise
happens to be a second speaker’s voice. Any linear pre-processing al-
gorithm will produce a set of features in which the values are weighted
sums of the feature values that would result from processing the speech
of the individuals separately. This makes it rather hard to imagine that
an algorithm that applies non-linear steps relatively late could succeed
in realistic situations.

A preprocessing algorithm that maps acoustic signals to articulator
positions pitch period by pitch period in vowels would be highly ben-
eficial on several grounds. We could establish pitch-period-based cat-
egories for the various articulator configurations, and non-linear tem-
plate matching could be applied at a much earlier stage of processing
than present practice; before much of the information in the signal is
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destroyed by feature extraction. It would also make a second stage
of non-linear processing possible: one that uses the articulator tra-
jectories to find syllables. This second stage would disambiguate the
separation of the currently seemingly overlapping domain categories of
the (acoustic signal) — phoneme mapping by embedding them in the
much more sparse (acoustic signal trajectories) — syllables space. It
would also, in effect, double the benefits of such non-linear mappings:
we could rely on the continuity of the articulators’ movements, the finite
number of syllable articulator trajectory templates and the finite num-
ber of pitch-period templates corresponding to articulator positions to
enhance speech recognition.

The second stage — mapping articulator movements into syllables —
is certainly doable, as was shown by Sam Roweis [44]. In this thesis
we will focus on the first stage and make one step in the direction
of mapping pitch-period resonances to articulator configuration. First
we will describe the mammalian auditory physiology in some detail to
demonstrate that the measurements we use could be the processing
steps applied by the auditory system. Then we will define an energy
and a pattern concept and show observations that link the articulator
configurations that follow the English g, d and b stop consonants as they
are released into an ae sound (as in bad) to sub-pitch-period patterns of
the vowel. We will go on to describe an algorithm to find pitch periods
and extract certain attributes from the pitch-period resonances, and
present statistical results that support our claimed link between the
resonance patterns and the articulator configurations. Finally we will
summarize our findings and hypothesis and give future directions.
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Chapter 3

The Auditory System

We are going to give a dense and partial review of the mammalian
peripheral auditory system. Except for some basics on the auditory
nerve, we are going to skip the vast amount of knowledge about the
auditory pathway in the brain. Hopefully we will still attain the single
goal of this chapter: to show that the auditory system is capable of
utilizing very short, fine frequency and time resolution patterns when
it is dealing with vowel-like sounds.

Even though in this thesis we are trying to talk the reader out
of using frequency, here we will have to resort to frequency analysis
language in order to describe the auditory system simply because it has
been the language of discourse in practically all of hearing research.

3.1 The Outer and the Middle Ear

Our ears have three parts, the outer ear, the middle ear and inner ear.
The outer ear consists of the pinna, the ear canal and the eardrum
or tympanic membrane. The outer ear has two roles in transmitting
the sound to the eardrum. It helps sound localization by distorting
frequencies in a source direction-dependent way and it amplifies the
sound pressure at the eardrum by resonances.

Middle ear transmits vibration from the low impedance air to the
higher impedance cochlear fluid. It achieves this through a lever mech-
anism of three small bones, the ossicles (also called malleus, incus and
stapes). The ossicles are attached to the eardrum at one end and to
the oval window of the cochlea at the other. This coupling mechanism
reduces the energy of sound reflection that would be above 99% on
the air—fluid border. It also acts as a mechanical lever through three
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Figure 3.1: Outer, middle and inner ear. From Flanagan,1972 [11]
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principles: the area of the eardrum is larger than the area of the oval
window, thus the transmission of force from one to another will increase
pressure at the oval window. The lever action of the ossicles acts to
increase force and decrease velocity at the oval window, and likewise
the curvature of the eardrum causes it to buckle under pressure, which
increases the transmitted force and decreases speed.

Transmisson through the middle ear depends on frequency. It is also
affected by the middle ear muscles that can constrain the motion of the
ossicles. They may serve as automatic gain control of low frequency
sounds in some restricted intensity range, protecting the cochlea from
too loud stimuli and correcting the masking effects of low frequency
resonances on high frequency sounds. If we ignore the gain control
mechanism—which occurs only for either extremely intense sounds or
in limited frequency range—the combined tranformation that the outer
and middle ear perform on the signal can be modeled as a linear filter.

3.2 The Cochlea

The inner ear contains the cochlea, the organ of hearing. It is a coiled
tube divided lengthways into three scalae: the scala vestibuli, the scala
media and the scala tympani. The two outer scalae, the scala vestibuli
and scala tympani are filled with intracellular fluid called perilymph
and are separated along almost all the length of the cochlea by the
scala media; they communicate at the apex of the spiral through an
opening called the helicotrema. When the the oval window at the base
end of the scala vestibuli is moved inward by the stapes the almost
incompressible perilymph causes the round window at the base of the
scala tympani to flex outward. The scala media or cochlear duct is
seperated from the scala tympani by the basilar membrane, and from
the scala vestibuli by the Reissner’s membrane. Most of the volume
between these two membranes is filled with positively charged intra-
cellular fluid, endolymph. The scala media has a closed end at the
helicotrema, (at its apex). A third fluid called cortilymph is found in
the tunnel of Corti inside the scala media. Some of these fluids have
different electric potential which seems to play a role in activating the
processes that send signals to the auditory nerve.

The auditory transducer, the organ of Corti sits on the basilar mem-
brane within the scala media. It contains the transducing cells called
hair cells. There are two types of hair cells, the inner hair-cells and
the outer hair-cells. Each hair cell has many hairs or stereocilia pro-
truding from its apical surface. There are about 12500 outer hair-cells
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arranged in parallel rows and about 3500 inner hair cells forming a
single row, each having around 100-200 and 50 stereocilia respectively.
The stereocilia of a single hair cell are linked so that they tend to move
together as the their surrounding fluid moves. As sound waves send
pressure waves up the scala vestibuli through the transmission mecha-
nism of the middle ear, the pressure difference between scala tympani
and scala vestibuli moves the basilar membrane. Deflection of the basi-
lar membrane causes deflection of the fluids in the cochlear duct, which
leads to a shearing motion of the stereocilia of the hair cells. This causes
electromechanical changes within the hair cells, that lead to stimulation
of the auditory nerve fibres that are attached to the receptor cells.

The flexibility and width of the basilar membrane changes as we
advance up the spiral of the cochlea. It is stiffer (i.e. it is displaced less
by unit force) at its base, near the oval and round windows, and grows
gradually less stiff as we approach the apex. Its width is about 0.04
mm at the base and 0.5 mm at the apical and next to the helicotrema.
The widening basilar membrane results in larger and larger mass being
moved by vibrations. As we move apically along the spiral the inter-
action between mass and stiffness results in decreasing frequency value
for which the magnitude of the mechanical admittance peaks locally. In
other words, the further away we are from the base the lower the excita-
tion frequency for which the particular area will respond with maximal
amplitude fluctuations. For a particular frequency the place of maxi-
mum response on the basilar membrane is called the resonance point.
The mechanical admittance for a particular frequency increases up to
the resonance point and decreases beyond it. This frequency selectivity
along the basilar membrane resembles coarse resolution Fourier anal-
ysis and serves as the basis of frequency selectivity of the rest of the
auditory system.

When the cochlea is excited by a pure tone a travelling wave (figure
3.3) appears along a section around the resonance point of the tone.
The travelling wave advances along a segment of the basilar membrane
apically and moves the membrane points up and down with phase-
shifted identical frequency. It has a constant-amplitude envelope that
has a very sharp peak at the resonance point. The frequency response
of a point on the basilar membrane looks like that of a low-pass filter
with an incredibly steep fall-off at the cutoff frequency. Researchers
have had a hard time reproducing the sharp peak of the travelling
wave and the related steep cutoff frequencies as purely mechanical re-
sponses. When the blood supply of the cochlea is shut off temporarily,
the sharpness of the response quickly diminishes. The damage is re-
coverable if the oxygen shortage is not very long, but after a while it

18
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Figure 3.2: Straightened view of cochlea, showing the flow of acous-
tic energy. From Geisler 1998 [14]

becomes permanent and the peaks of frequency response of the basilar
membrane become flattened [48]; identical with the broad low-pass fil-
ter responses found by Békésy [54] in dead animals. This suggests that
there is active mechanical amplification that enhances the sharp peak
responses of the travelling wave and frequency tuning at the resonance
points. Although this process is not understood fully, it is widely be-
lieved that there is a non-linear feedback mechanism guiding the latter
frequency selective amplification that acts through the motility of outer
hair-cells. There are other phenomena that point to the existence of
active mechanical processes in the cochlea. The ear can emit narrow
band tone-like sounds. This “ringing of the ear” can be so loud that
people nearby can hear it [24]. Another is called two tone suppression:
when two tones whose frequencies are close to each other are presented
simultanously, the louder tone will reduce the maximal response am-
plitude of the softer tone. This effect is usually attributed to lateral
suppression through the mechanical constraints that arise because of
the closeness of the resonance points on the basilar membrane (see [14]
for more details).

There exist alternative theories about how frequency resolution is
achieved in the cochlea. A particularly interesting one is that the stere-
ocilia themselves act as fine tuned resonators in response to the sound
waves that travel through the fluids of the organ of Corti. Although
the inner hair-cells are uniform and thus cannot exhibit frequency se-
lectivity, the size of the outer hair-cells gets gradually larger toward the
apical end of the cochlea, yielding progressively lower resonant frequen-
cies near the apex [32]. Dancer [9] presented evidence involving time
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Figure 3.3: The travelling wave. The full lines show deflection of
the cochlear partition at successive moments, as numbered. The
waves are contained in an envelope which is static (dotted line).
From Békésy, 1960 [54]

Figure 3.4: Cross section of the cochlea. The arrows show direction
of fluid displacement. By Beth A. Hartwell, M.D., from website
medic.med.uth.tmc.edu/Lecture/Main/ear.htm#inner.
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delays and phase differences showing that the relatively slow motion of
the travelling wave could not stimulate hair cells. Braun [7] suggested
that the basilar membrane plays no role at low sound intensity levels,
and at higher intensities its travelling wave motion dampens the dis-
placements of the endolymph fluid and thus protects the rather fragile
stereocilia from damage. He also concluded that at low intensities the
outer hair-cells’ motility could amplify the resonances, and the induced
motion of the endolymph would excite the inner hair-cells, which in
turn would pass it on to the auditory nerve.

3.3 The Auditory Nerve

There is a relatively large potential difference between the endolymph,
that bathes the stereocilia, and inside the body of the stereocilia. When
the stereocilia are deformed ionic channels open up in the membrane
on its surface that cause a quick potential change in the receptor cell.
This eventually leads to stimulation of the auditory nerve fibers that
connect to the hair cell. The resulting neural discharges or spikes are
transmitted to the brain (cochlear nucleus) through the auditory nerve
fibers. There are approximately 30000 of these innervating each inner
ear in humans. 90% of these end on inner hair cells. The remaining 10%
of the fibers attach to outer hair cells. About 20 fibers innervate each
inner hair cell, and 6 each outer hair cell. Each fiber that connects to an
inner hair cell connects to one and only one, whereas those to outer hair
cells typically branch and attach to about 10 outer hair cells. All of the
fibers to inner hair cells are afferent fibers, that is they trasmit signals
to the brain, while some 5% of the fibers to the outer hair cells are
efferent, bringing signals from the brain. The latter, feedback-carrying
fibers are of a type that is much smaller than the afferent cells. As a
result they are much harder to observe and little is known about them.

When there is no stimulus individual auditory nerve fibers will fire
spikes at their spontanous firing rate. This rate varies from a few per
second to more than 100 per second. When the hair cell that the
nerve fiber innervates is stimulated, the firing rate increases. The rise
in the discharge rate depends on the intensity and frequency of the
stimulus, but cannot exceed about 1400 spikes per second. The latter
limit is related to the absolute refractory period, a period of about 700
microseconds of inactivity after every discharge that allows the haircell
and the auditory nerve to recover the physical conditions needed for
another discharge.

Auditory nerve fibers exhibit frequency selectivity closely related

21



00 1

ANE (dB)

K658

-20 T T T T T TTTTTT] —
0.1 1.0 10.0

FREQUENCY (kHz)

SOUND PRESSURE LEVEL AT TYMPANIC MEMBR
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to the place they innervate in the organ of Corti. The frequency that
a fiber is most sensitive to (i.e. the one it responds to with firing
rate increase above some threshold at the lowest stimulus intensity) is
called the fiber’s best or characteristic frequency. A fiber’s frequency
selectivity can be characterized by its frequency tuning curve that shows
for each frequency the intensity required for a fixed increase in firing
rate (see figure 3.5). Tuning curves greatly vary in shapes, but the vast
majority of them have a sharp dip at the fiber’s characteristic frequency
with a steep rise at the high frequency side and a much gentler rising
slope on the low frequency side. The typical tuning curve becomes
more symmetrical and the dip less finely tuned as we approach lower
frequency areas (towards the apex) in the organ of Corti [60]. Thus
the auditory nerve fibers can be considered low-pass or asymmetrical
band-pass filters. The filter characteristics of the nerve fibers coarsely
resemble those of the basilar membrane at the place of innervation; the
difference is that the nerve fibres are often far more finely tuned to
their characteristic frequency than the basilar membrane. This may be
caused by the earlier discussed filter characterstics of the stereocilia.
Another way to demonstrate frequency selectivity of the auditory
nerve fibers is called the isointensity contours. These graph the num-
ber of spikes per second discharged by the nerve fiber in response to
different tone stimuli at a fixed sound intensity. Rather interestingly,
not only do these isointensity curves shift vertically (in the spike rate
response) as we increase the intensity, but they also get deformed and
change their maximum response frequency. Thus just by looking at the
response rate of a single nerve fiber it is impossible to tell whether the
response is to a low intensity tone near the characteristic frequency or
to a high intensity tone further away from the best frequency of the
fiber. However, as long as the frequency that is exciting the fiber is un-
der 5 kHz, it is possible to identify it from the timing of the responses.

3.4 Temporal Attributes of Processing in
the Auditory Nerve

At frequencies below 4-5 kHz the responses of the auditory nerve are
locked to a particular phase of the cycle. A particular nerve does not
fire in each cycle, but when it does its firing always falls in one particular
part of the period. This phase-locking can be demonstrated by a period
histogram. In a period histogram we bin the firings of a single nerve
fiber, but every time we reach a given phase of the cycle we reset the
time. The resulting histogram is a half-wave rectified version of the
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stimulating tone. The phase locking is usually explained by the fact
that the nerve fibers are excited when the stereocilia is deflected only
in one direction. Another version of period histogram is called post
stimulus histogram, where we repeat the same stimulus over and over
and record the response up to a length of time.

While the temporal information encoded by phase locking is present
at all sound levels, the spatial frequency selectivity (i.e. fibers at which
resonance point have maximal average firing rate response) quickly van-
ishes as intensity rises. Sachs and Young [34] investigated the response
of the auditory nerve to steady state vowels. They observed that at
low intesities the average firing rate for fibers with different charac-
teristic frequencies showed clear, easily distinguishable peaks at the
formant frequencies of the vowels. As the stimulus intensity was raised
to relatively moderate intensity (68 dB SPL) or louder, the separate
peaks disappeared leaving no basis for spectral differentiation. They
explained the phenomenon as the combined effect of three factors: 1.
the flattening of the isointensity response curves (and the tuning curves)
of the nerve fibers as the intensity of the stimulus grows; 2. the non-
linear flattening of the rate-intensity function at higher intensity, so
that the firing-rate intensity is no longer responsive to small variations
in stimulus intensity; 3. two-tone suppression. The loss of spectral
discrimination in the average firing rate at normal sound levels points
to the importance of the temporal information encoded in the firing
pattern, and that possibly both spatial and temporal mechanisms are
used by the auditory system.

Due to the long, slowly rising tails of the tuning curves of the nerve
fibers on the low frequency side of their characteristic frequency, there
are a lot of nerve fibers that will respond to a pure tone in the 50 Hz
- 5 kHz frequency region. In response to stimuli that has a few well-
separated (but possibly changing) main frequency components (such as
vowels), the nerve fibers form clusters, with each cluster firing in phase
with its frequency component f;, as figures 3.6, 3.7, and 3.8 show.
By finding the elapsed time between successive peaks of the temporal
envelope of the pooled discharge pattern of the fibers in each phase-
locked cluster, the current frequencies of the frequency components
can be easily recovered. This is known as the wvolley principle. Let’s
ignore the non-linear nature of the processing up to the auditory nerves
and consider them as simple linear low-pass filters with sharp cut-off
frequencies! Then it can be shown that the length of time needed for
a nerve fiber to respond to the frequency of a tone burst is long if the
stimulus frequency is close to the cut-off frequency, and it gets shorter
and shorter as the stimulus frequency descends further away from the

24



Figure 3.6: The responses (poststimulus time histograms) of a large
group of auditory neurons evoked by two vowel pitch periods. Ver-
tical axis represents different cochlear territories, horizontal axis
stands for time. The areas F1, F2 and F3 span synchronized clus-
ters. (Figure reproduced from MIT course HST.725 website, 2003.)
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Figure 3.7: A: The responses (poststimulus time histograms) of a
large group of auditory neurons evoked by three vowel pitch periods
in syllable da. Vertical axis represents different cochlear territories
with decreasing characteristic frequencies toward the top; horizon-
tal axis stands for time. Various harmonics of the fundamental fre-
quency are indicated on the ordinate, as are the frequency ranges of
the vowel’s three formants F1, F2 and F3. Note the synchronized
clusters and the temporal structure within them (especially at the
seventh harmonic)! B: Time-aligned acoustic waveform of the same
vowel segment. (figure modified from [14, page 235], originally by
Miller, Sachs and Shamma)
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Figure 3.8: Auditory nerve post stimulus histogram in response to

the stimulus shown by the waveform above the histogram. (Figure
reproduced from MIT course HST.725 website, 2003.)
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cutoff frequency (see Appendix A for proof).

We can combine the above ideas to get, for a special group of sounds,
an interesting way around the frequency resolution versus time reso-
lution tradeoff described by the uncertainity principle for linear sys-
tems. If the stimulus is a sum of a few, possibly quickly changing, well-
seperated frequencies, the phase locked clusters of the auditory nerve
can provide almost instantaneous fine resolution frequency information
about the component frequencies. This is because the frequency com-
ponents are well-separated: in each cluster there will be nerve fibers
that are further away from the resonance point of stimulus frequency.
These fibers will phase lock with the new, changed frequency compo-
nent very rapidly. The period of their phase-locked temporal pattern
will determine the new frequency one period after they have settled
into their new discharge pattern.

It is reasonable to assume that the random processes that pick the
cycles, in which nerves from the same frequency selective area respond,
are identical and independent. In this case it does not matter wether
we sample one nerve’s firings over several cycles or many nerves from
the same area during one cycle - with high probability they should
yield the same distribution. This means that if the phase-locked clus-
ter has many auditory nerve fibers, then by pooling the firing history
of these fibers over one past period, the brain has almost immediate
access to the shape (not just the timing!) of the same half-wave rec-
tified version of the period hump of the frequency modulated signal
that we see in the period histograms. This also means that there is no
need for periodic repetition in the stimulus for it to be reconstructed.
When the stimulus is a speech vowel-like signal with well-separated
frequency components, the phase locked clusters are large. Also the
signals exciting the stereocilia are band-limited frequency and ampli-
tude modulated signals. Using the phase locked auditory nerve firings,
the brain can reconstruct the half-wave rectified version of the hump
shapes in the stimulus period-by-period! Thus it is conceivable that it
can follow frequency and amplitude modulation (or equivalently, what
we will later call temporal patterns) very closely, even at sub-pitch pe-
riod time range. As there is some jitter in the exact firing time of each
nerve fiber, phase locking becomes more and more smeared as the fre-
quency of the stimulus increases, crossing over to uselessness above 5
kHz. We will only deal with vowels, which are perfectly recognizable
from their frequency components under 3 kHz, so the latter limitation
of the auditory system should not concern us.

As we hinted at it earlier, there have been two parallel theories of the
auditory nerve representation of acoustic stimulus: 1. Spatial or rate
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representation: the auditory nerve fibers are tonotopically organized,
and they can convey spectral contents of the stimulus by their average
firing rate. 2. Temporal representation: the auditory nerve fibers are
capable of locking, or synchronizing, to harmonics of the stimuli that
correspond to formants of the speech signal. Many research papers
suggest that the average firing rate is insufficient to represent speech
information, and that the temporal information of the firing patterns
should be included [34, 35, 3].

There is evidence that mammalian central auditory systems are
sensitive to short amplitude and frequency modulated segments and
spatio-temporal combinations [12, chapter 5]. It is also well estab-
lished that envelope-based information with minimal frequency content
retained in the signal is adequate for understanding speech. In fact Ox-
enham et al. [61] show that while our auditory system relies on the fine
grained frequency content of the signal for sound localization and pitch
perception, speech recognition relies more on information encoded in
the envelope of band-pass channels of the signal. The latter provides a
strong argument against using frequency as the sole primitive of speech
processing. These findings, together with the temporal representation
theory and the periodicity theory of pitch (see review in [57, page 66]),
give some justification to our approach.

3.5 Time-Domain and Auditory Front Ends
in Automatic Speech Recognition

There have been a number of attempts to process speech in the time
domain. Baker examined statistical properties of zero crossings ex-
tracted directly from the waveform [4]. Seneff suggested a generalized
synchrony detector (GSD) [49, 50] to identify formant peaks and period-
icities of the speech signal. Hunt and Lefebvre showed noise-robustness
of the GSD in recognition experiments using dynamic time warping rec-
ognizer [36]. Perceptual linear predictive analysis method of Junqua et.
al. [21, 25, 28] is a perception-based technique in which the speech spec-
trum is transformed by several perceptually motivated relationships
before performing linear prediction analysis. Itakura and Kajita in the
subband-autocorrelation (SBCOR) analysis technique [45, 46] proposed
to extract periodicities in speech signals by computing autocorrelation
coefficients of sub-band signals at specific time-lags. SBCOR is shown
to outperform the smoothed group delay spectrum for speech recogni-
tion tasks under noisy environments. The ensemble interval histograms
of Ghitza [15] passes each element of an array of bandpass cochlear fil-
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ters through an array of level-crossing detectors. Intervals between
successive upward going level crossing points contribute to frequency
information. Louder frequency component of the signal will cross more
levels, and thus contribute more to its frequency. Kim created the zero
crossings with peak amplitudes method [8] consisting of cochlear band-
pass filters and nonlinear operations in which frequency information
of the signal is obtained by zero-crossing intervals. Intensity informa-
tion is incorporated by a peak detector and a compressive nonlinearity.
This model also outperforms cepstral and other traditional front ends
in noise.

Each of these techniques, one way or another, extracts frequency
information and proceeds to perform statistical analysis. Thus, even
though these methods start out in the time domain the output of their
front end is still frequency, and thus they are subject to the same
limitations as frequency-domain approaches.
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Chapter 4

Patterns

We can see in figure 4.1 some sort of pattern repeating in the band-pass
filtered channels of the signal during the pitch periods. Similarly, we
can consider the pitch periods themselves as a repeating pattern that is
slightly changing over time. In this chapter we will define patterns. Our
goal is to create a concept that is better suited to describe pitch-period
and other short resonances in speech than frequency.

4.1 Grouping Principles

From the observation above it is reasonable to postulate that pattern
should be a recursive concept; that is, we should, at times, be able to
consider a group of patterns as another pattern. Let’s call the pattern
that is atomic, that we cannot decompose into parts, a primitive pattern
or primitive. We are facing 3 problems:

1. What are the primitives of the speech signal?
2. How are they combined?

3. How do we extract attributes from patterns that capture the vocal
tract configurations across different utterances?

This is a very general set of questions that is highly relevant in almost
any domain of perception. In essence we are asking how to form the
representation or the vocabulary that is good for describing our domain.
A good domain description would make it easy to separate members
in the subsets of the domain that we want to differentiate (and only
those). For example it could tell apples from pears, or in our case

31



Bandpass channels

Time

Waveform

Figure 4.1: Pitch-period and sub—pitch-period patterns.

one articulatory configuration from another at mid-level, or syllables
or words at higher levels of processing.

In speech processing the traditional and almost uniformly applied
answer to question 1 is short frequency components that the discrete
Fourier transform happens to respond to. Because of the reasons we
spelled out in chapter 2, we consider the Fourier transform response too
restrictive and brittle, and thus a suboptimal choice for a primitive. It
would be fairly easy to find primitives and ways to combine the words of
our representation that lead to a richer vocabulary that is better suited
to our domain. The key problem to consider here is that we want a
representation that is richer and has more descriptive power in our
domain than the frequency based one, but at the same time restrictive
enough to avoid an explosive growth of the possible combinations as
we compile our subsequent layers of words.

4.1.1 The dot abstraction

We are going to demonstrate patterns via an abstraction that will hope-
fully help the reader visualize and better understand the pattern con-
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Figure 4.2: A sinusoid hump corresponds to a dot. The size of the
dot indicates the amplitude of the hump.

cept. In this abstraction dots represent sinusoid humps in the time
— sinusoid period-length space, as shown on figure 4.2. The abscissa
represents time, the ordinate the period length of the sinusoid, and the
size of the dot shows the amplitude of the sinusoid hump. Because this
abstraction clearly does not deal with phase, we shall use it only for
demonstration.

In this representation a sinusoid segment is a sequence of dots
equally placed along a horizontal line (figue (4.3)). Higher frequencies
would show up at a lower horizontal line and be placed more often.

If we try to represent what was going on in the smoothest channel
(defined in the experimental section) of the g — ae transition, we get
a configuration of dots depicted in figure 4.4. We shall soon define
sequences like the one circled as a time pattern. For now we say that
a time pattern is a group of varying sinusoid humps in a band-pass
channel if they group around a maximal energy hump and they repeat
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Figure 4.3: Dot represenation of a short sinusoid segment.

over time, as shown in figure 4.4. There are four things to remember
about the elements of time patterns: 1. they are close in time 2. they
are close in space, where the space dimension is defined as instantanous
period (or equivalently, frequency) - here the period length of the sinu-
soid hump; 3. they group around a salient (maximum energy) element;
4. they, as a group, repeat over time.

If we look at multiple band-pass channels of the pitch period in
the g — ae transition, the situation can be represented in our dot
abstraction as shown in figure 4.5. There three time-patterns are
grouped together to form a pattern. We will define a pattern as either
a time pattern or a combination of patterns that are close by in time
and space, group around a dominant pattern, and as a group repeat
over time. Thus a pattern’s components should

1. be close in time
2. be close in (frequency) space

3. group around a dominant (local maximum energy) component.
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Figure 4.4: Tllustration of the time pattern concept. The time axis
in the dot abstraction and in the smoothest channel are aligned.
(The smoothest channel will be defined in the experimental sec-
tion.)

4. as a group, repeat

Why do we require all these constrainsts for a cluster of patterns to
form a new pattern? We have started informally defining a language,
whose primitives are time-patterns, and whose words are formed by
recursively combining time patterns. If we just said that any local
spatio-temporal combination as circled in figure 4.5 can form a pat-
tern, than we would have an exponential explosion in the number of
possible patterns as we combined newer and newer layers of words —
practically every combination would qualify as a pattern. This situation
is very similar to what happens when we have an overcomplete wavelet
basis, which in practice often leads to computationally intractable NP-
complete problems [38]. To avoid this problem we constrain the rules of
combination by requiring that patterns always cluster around a domi-
nant pattern, be close in time and space, and repeat. The least natural
of these constraints, repetition, is ubiquitous in speech and turns out
to be fairly restrictive in practice. Our constraints are rooted in the
Gestalt theory of perception [31]. Before clarifying the pattern defini-
tion further, we need to define what we mean by energy.
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Figure 4.5: Tllustration of the pattern concept. The time axis in
the dot abstraction and in the smoothest and low channels are
aligned. (The smoothest and low channels will be defined in the
experimental section.)

4.2 Energy

We can think of the sound signal as the sum of one-dimensional oscilla-
tors. This collection of various oscillators are analogous to a primitive
cochlea model. Each oscillator corresponds to a section of the basilar
membrane. The one-dimensional oscillations are induced by the move-
ments of the endolymph (the liquid in the scala vestibuli), which are in
turn generated by a sequence of vibration transmissions: from sound
waves to the ear drum, the oscicles and the oval window. The combined
effect of all of these is a linear mapping, and we simply take it to be
the identity transformation. We further assume that there is hardly
any liquid motion through the helicotrema. As the liquids are non-
compressible, this means that the oscillations of the basilar membrane
should add up to approximately the oscillations of the liquid in the
scala vestibuli. Our last assumption is that the oscillators are band-
limited; that is the frequency of each oscillation has an upper and a
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lower bound.

Equivalently, we can think of two-dimensional band-limited oscil-
lators or phasors - unit weights that spin around a point in a plane,
and whose one-dimensional projected motions add up to the signal.
In a similar vein to how Teager defined energy [20], we would like a
concept that measures the amount of energy stored in the oscillator
at each moment. For example, the energy of a pure sinusoid should
be constant as pure spinning motion (or harmonic oscillation in one-
dimension) takes no external energy input to maintain. We define the
energy of each oscillator as the kinetic energy of the unit-weight two-
dimensional oscillator. Equivalently we could derive it as the sum of
kinetic and potential energy of the one-dimensional oscillators.

What energies we get depends on the oscillators; that is, on the
decomposition of the signal we choose. Which band-limited decom-
position to choose is a rather hairy question, and we will not provide
a computable answer here. When the system has no prior history of
listening, our preferred decomposition is the one that minimizes the ex-
ternal energy input required to maintain the motions of the oscillators.
When there is prior history — for example, a pattern that is repeating
in the signal, or a sound pattern we have previously encountered many
times before it is heard — the energy required to maintain the motion
should decrease. We can imagine that it is as if prior history dug a
hole under the pattern in a potential space that makes it easier for
the system to recognize, or “slide into”, that pattern. Since we do not
know how to calculate either of these two cases in a reasonable amount
of time, we shall abandon this idea. (We will return to the question of
decomposition and feedback in the summary section.)

Instead we use a crude approximation: our one-dimensional oscil-
lators will be defined by a fixed bandpass filterbank. We derive the
two-dimensional oscillators by replacing the sinusoid components in the
oscillation by complex exponentials. To do this we need to apply the
Hilbert transform to each channel and add it to the original channel.
This yields the analytic part or analytic continuation of the channels !.
Then, channel by channel we can calculate the energy from the speed
of the spinning point in the complex plane. Unfortunately the sum of
the energies of these channels depends on the bandpass filterbank used
— the total energy is not uniquely defined until we fix the oscillators.
The analytic extensions of the channels are not necessarily orthogonal
in the way complex exponentials are.

IThe analytic part of a narrow-band band-pass channel is often called phasor in
the literature.
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4.3 Time-Patterns

Now we are ready to define our primitive: a time-pattern is the two-
dimensional trajectory of an oscillator around an energy peak that re-
peats in time. Thus three things should hold for a time-pattern: (1) it
should be a section of the motion of one of the oscillators; that is, it
should be continuous in time and band-limited in frequency; (2) con-
tain a local energy maximum; and (3) repeat over time. Repetition of
a pattern means that either there is a similar trajectory soon after or
before this one or that the system has encountered the pattern many
times before. Finally two trajectories are similar if their normalized
complex autocorrelation is high.

Note that this definition of time-patterns is phase-shift invariant;
that is, a pattern may be repeating with phase shifts. Our similarity
measure will yield the same result for phase-shifted patterns because
the outcome of complex autocorrelation will rotate but its magnitude
remains the same when the relative phases of the patterns change!
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Figure 4.6: Tllustration of time-pattern terms on a pitch-period
time-pattern in a band-pass channel. The time patterns are circled
with dotted line.

At times we will need to associate a point in time with when the
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time-pattern occurred. To this end we define the anchor point of a time-
pattern as the maximal energy point across closest (in time) repetitions
of the time-pattern. The anchor point is the point that maximizes the
sum of the energies across the time aligned repeating time-patterns.
Usually a good first approximation of the anchor point is the maximum
energy point of the time-pattern itself. The size of a time-pattern is
its energy at the anchor point. The anchor frequency of a time-pattern
is the instantaneous frequency of spinning of its analytic part at the
anchor point. We can find this by calculating the angular velocity of
the time-pattern’s two-dimensional trajectory. The anchor period is
simply the inverse of the anchor frequency. The top-down period of
a time-pattern is either zero if it has no neighboring patterns, or the
time distance between its anchor point and the neighbor’s anchor point
to which it is most similar (see figure 4.3. Thus the top-down period
is non-zero only if both time-patterns are neighbors in a sequence of
locally repeating patterns. The top-down frequency of a time-pattern
is the inverse of its top-down period.

4.4 Patterns

A pattern is either a time-pattern or a repeating combination of non-
overlapping patterns around a maximal size pattern. Patterns are
non-overlapping if the two one-dimensional convex hulls of their time-
patterns in time are not intersecting; i.e. they occupy different time
intervals. A pattern is repeating if either there is a similar pattern close
by in time or the system has encountered similar patterns many times
before. The size of a pattern is its energy maximum if the pattern is a
time-pattern and the size of its maximal sub-pattern otherwise. If the
pattern has a subpattern then its anchor sub-pattern is the sub-pattern
that maximizes the sum of respective sub-pattern sizes across close (in
time) repetitions of the pattern. The anchor point of a pattern is the
anchor point of its anchor sub-pattern if it exists; otherwise, it is the
anchor point of the time-pattern. The anchor period or period of a
pattern is the top-down period of its anchor pattern if it has one; oth-
erwise, (when the pattern is a time-pattern) it is equal to its anchor
period. The anchor frequency is the inverse of the anchor period. The
top-down period of a pattern is either zero if it has no neighboring (in
time) patterns, or the time distance between its anchor point and the
neighbor’s anchor point (if there are two neighbors than the one to
which it is more similar). A pattern is similar to another pattern if
either both are time-patterns and they are similar or their sub-patterns
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are similar and the temporal and size distributions of their subpatterns
are close.

Pattern is a recursively defined concept, and we would have to clar-
ify three things to make the definition unambiguous; the exact meaning
of similar time-pattern trajectories and sub-pattern similarity, and the
meaning of encountering something “many times”. Two time-patterns
are similar if their normalized complex correlation is high (the exact
usage will be explained in the experimental chapter). The second, sub-
pattern similarity, we don not use in our algorithms so we leave it
unspecified for now and return to the issue in the last chapter.

The inclusion of the system’s history and recursion in our grouping
principles are an interesting extension of both the Gestalt principles
and memory-based parsing approaches (see for example [6]). It covers
phenomena, at all time-scales of our auditory experience starting at the
sub-pitch period level all the way up to words of a language, or similarly
from the short (3 — 10 ms) auditory percepts up to melody segments.

A tone burst is a time pattern, thus patterns can be considered
a generalization of frequency. They are also a lot more general than
wavelets [38] in that they are not tied to a fixed dyadic grid and they
are phase-shift invariant. Additionally, patterns are recursive and can
incorporate past experience, which give them a whole different level of
expressive power. For example, they can explain how we can recognize
the vowel in a syllable that has only one pitch period and would be
ambiguous based on context; or how gradual perceptual shifts may
occur during our adjustment to repeated stimuli [16, 43, 56]; or how
we understand whisper.
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Chapter 5

Observations

After laying out the rather general pattern framework we will probably
disappoint the reader by using only a fragment of its descriptive power.
We are going to present observations that link some vowel sub-pitch
period patterns to certain articulatory configurations.

During each pitch period we choose band-pass channels in which we
will look for time-patterns. The smoothest channel is the channel with
the least variation in amplitude and frequency during the pitch period
in a certain bandpass frequency range — intuitively the one that has the
smoothest tone-like signal in it. The low channel is a bandpass channel
close to the first maximal harmonic frequency. (We will describe how
to find these channels in the experimental section in greater detail.)

5.1 Sub-Pitch-Period Time-Patterns Follow-
ing Voiced Stops

The examples display the start of the vowel ae immediately after a
voiced stop consonant: g, d, and b respectively. Figures 5.1 to 5.3
show the smoothest channel time aligned with the waveform below and
the smoothest-channel energy above it. The hand-drawn humps in the
smoothest channel indicate the locations of the vowel sub-pitch-period
patterns.

Looking at a number of such examples, we have observed the fol-
lowing regularities following the voiced stop bursts in the pitch-periods
of the transition to vowel ae:

If the stop consonant is a g:

1. the sub—pitch—period time-patterns in the smoothest channel have
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Figure 5.1: Repeating time-patterns during the first three pitch
periods of the vowel in ¢ — ae transition.

at least four complete periods (i.e. at least four humps) thus the
ratio of the top-down pattern frequency and the pattern frequency
is at least four.

2. the pattern period is at least as long as the the period of the low
channel at the beginning of the pitch period; in other words, there
are at most two patterns starting during the first two low-channel
humps.

If the stop consonant is a d:

1. the sub-pitch-period time-patterns in the smoothest channel tends
to have approximately three complete periods.

2. there are usually three patterns starting during the first two low-
channel humps (i.e. from the start of the first low-channel hump
to the end of the second hump), and their sizes are monotonically
decreasing over time.

If the stop consonant is a b:
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Figure 5.2: Repeating time-patterns during the first three pitch
periods of the vowel in d — ae transition.

1. the sub-pitch-period time-patterns in the smoothest channel tends
to have two complete periods.

2. the pattern period is about a third of the period of the low channel
at the beginning of the pitch period. The sizes of the patterns
decay as we get further away from the pitch period onset.

Note how the time-patterns are time-aligned with the energy peaks.
In figure 5.2 and figure 5.3 depicting d — ae and b — ae transitions, we
can see time-patterns that are repeating with half-period phase shifts.
Perhaps this can be more clearly seen in the temporal fine structure
for time aligned waveforms. Appendix B lists three further examples
of sub-pitch-period time-patterns for each of the three configurations

examined here.

5.1.1 Aeroacoustic flow in the vocal tract

The typically employed linear one-dimensional concatenated tube model
of speech production [51] does not explain the presence of short quickly
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Figure 5.3: Repeating time-patterns during the first two pitch pe-
riods of the vowel in b — ae transition.

varying oscillations in either vowels or consonants. There is a growing
amount of evidence that aeroacoustic fluid motion (figure 5.5) can sig-
nificantly influence the sound field. Our understanding of this effect is
limited; we are going to give only a glimpse of what has been done on
the subject and a few references. Measurements done by the Teagers
[20, 19, 53] show that during steady-state vowels there is a jet-flow in
the vocal tract that travels much faster than the rest of the fluid. The
slowly moving part of the fluid has a tendency to curl up in little swirls
or vortices (see figure 5.4) - probably an effect of the viscous forces along
the surface of the vocal tract. The Teagers studied several vowels and
found that each of them had unique flow characterestics. Among the
observed patterns were a jet flapping accross the walls of the oral cav-
ity approximately at the pace of the first formant frequency, vortices
stuck in various cavities of the vocal tract, and high-speed jets shedding
vortices that keep moving slowly downstream towards the oral cavity.
Kaiser [29] hypothesized that the temporal fine structure of speech can
be explained by the interaction of the jet flow and the vortices. While
vortices themselves are not efficient sound radiators, when they reach
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Figure 5.4: Vortices. Drawing from Quatieri [41]

changing solid boundaries they can be significant sources of sound en-
ergy. In addition to this, the flapping motion of the jet flow in certain
vowels may act as excitation. Thus, depending on the vocal tract con-
figuration, there can be multiple aeroacoustic sound sources that have
different travel times and excite different cavities in the vocal tract.
These phenomena may be responsible for the short oscillation patterns
that we have observed. For a more complete review see [41, pages 562-
572], and for a thorough treatment of vortices and flow-induced sound
see Howe’s books [23] and [22] respectively.
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Chapter 6

Experiments

In this chapter we describe the system we have built and the exper-
iments we have run on it. First we review the algorithm, then the
experimental setup, and finally the statistical results that support our
earlier claims.

6.1 The algorithm

As shown in figure 6.1, the system starts with a linear pre-processing
stage. This is followed by a non-linear time and channel-space segmen-
tation algorithm that finds the vowel pitch period onsets, the vowel on-
set and certain special channels during each pitch period. The last two
parts of the algorithm extracts three sub-pitch period pattern attributes
and categorizes the samples as vowel release from alveolar closure (as
in d — ae), vowel release from velar closure (as in g — ae), or vowel
release from labial closure (as in b — ae). Figure 6.2 shows a more
detailed but still high level view of the four stages of the algorithm.

6.1.1 Linear Pre-Processing

We apply a simple linear preprocessing to the signal. First we upsample
the 16000 samples/sec signal three-fold to 48000 samples/sec using lin-
ear interpolation. Then we run the signal through the filterbank whose
structure is shown in figure 6.3. The high-pass filters (HPF) output is
subtracted from the input, and the resulting difference is fed to the next
high-pass filter. The cut-off frequency of the high-pass filters starts out
at a high level and gradually decreases as we step through the filter-
bank. Due to the difference operation in the filterbank, we can consider
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Figure 6.1: High level structure of the algorithm.

the input of each filter a low-pass filtered version of the original input.
Consequently the output of the cascade of high-pass filters is a set of
band-pass channels.

Figure 6.4 shows the structure of each high-pass filter with the fre-
quency response magnitudes of the various stages of processing (for
positive frequencies only). The input (1) is first convolved with the
Gaussian e * @ in the time domain yielding (2), then subtracted from
the original input (3). (3) is first run through a simple averaging op-
eration: we convolve it with a rectangular window of length 2G in the
time domain. The resulting smoothed signal (4) is subtracted from (3)
to yield the output (5).

The actual G parameter values used in the filters are shown in fig-
ure 6.5. We shall call the band-pass channels with G = 5,6,6,7,8,9,10,11
bands. The lowest frequency (G = 11) channel of the bands will be re-
ferred to as mid-channel, the one with the highest frequency (G = 5)
as high-channel. The channel with G = 25 will be called low-channel.

6.1.2 Time and channel-space segmentation

The second part of the algorithm finds the pitch period onsets and two
special channels in each pitch period. Before we sink into the details,

49



=
=

Figure 6.2: Flowchart of the main steps of the algorithm. Relative
frequency, pattern period and onset energy ratio are the pattern
attributes that the algorithm extracts from each pitch period.
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Figure 6.3: Structure of the filterbank.

let’s take a closer look at the time segmentation problem: locating the
pitch periods in vowels remains an unsolved, very complicated problem
[39]. Figure 6.6 shows a few surprising counterexamples to what we
may think vowel pitch periods should look like. Among the three shown
waveforms we find examples of sudden pitch period length doubling and
even tripling, pitch period onset time ambiguity, missed pitch period
beats and very dominant high frequency energy peaks that are not
synchronous with pitch period onsets.

Eventually we intend to use all this detail to differentiate between
articulatory configurations found in vowels immediately after stop con-
sonants. The articulators usually move fast during such releases, so
when trying to say something about their position based on the vowel
pitch periods, it’s imperative that we find the first few vowel pitch peri-
ods right after the release of the closure while the tongue and the jaws
are still close to their closure position. Incidentally, these first vowel
pitch periods tend to be the most deformed and irregular, and thus the
hardest to find. As a consequence, we need a really robust pitch period
finding technique, not just one that finds most of them.
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Figure 6.4: Top: structure of one high-pass filter. Bottom: fre-
quency response magnitudes for positive frequencies.

The algorithm first calculates the analytic continuation of each
band-pass channel using the following steps:

1. at each point in time find the Fourier transform using Hanning
window of 2.5 ms duration [1] (120 units in our lengthened signal)

2. replace the negative frequency response values with zero and dou-
ble the positive frequency response values

3. calculate the inverse Fourier transform of the output of 2.

The intuition here is that we calculate the analytic part for each
sinusoid component separately: decompose the signal into its sinusoid
components, then replace every sinusoid with the identical frequency
complex exponential, and finally add the exponentials to get the ana-
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Figure 6.5: Parameter values used in the filter bank. The output
of filters whose parameters are in brackets are not used in later
processing.
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Figure 6.7: A hump.
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lytic part of the original signal. The above steps indeed perform these
steps: the transform

Zy(t) = 2F(w)U(w) = F(w)(1 + sgn w)

is equivalent to our first two steps. If we take the inverse Fourier
transform of its response to f(t) = coswgt equals e/“°! as F(w) =
md(w — wo) + 7 (w + wp), hence Z¢(w) = 2md(w — wp). When we apply
our third step, the inverse Fourier transform, we get e/“ot.

Next, we use the analytic parts of the signals to find their energy
and magnitude values. Let’s denote the analytic part of signal s by
An(s); then the energy of s at time ¢ is simply its squared velocity
|An(s)(t) — An(s)(t + 1)|2, and the magnitude of s(t) is the complex
magnitude of An(s) at t.

We discretize the various continuous signals by peak picking: find
extrema, minimums and maximums (see figure 6.7). Each extremum
has an amplitude, a rise equal to the difference of the present ex-
tremum’s amplitude and the last extremum’s amplitude, and a length
denoting the elapsed time since the last extremum. A sequence of con-
secutive minimum-maximump-minimum forms a hump. The humpam-
plitude of a hump is the amplitude of its maximum, the humpabsrise
value of a hump is the sum of the absolute values of the two rise values
of the last two extrema of the hump.

Figure 6.8 shows the high-level structure of the pitch period finding
algorithm. The process alternates between finding better and better
candidates for pitch period starts and refining the dominant channel
location for each pitch period segment. The shaded steps on the left
are improving our pitch period temporal coordinate estimates, while
the steps on the right stand for improvements in the spatial coordinate
estimates. We start out using the mid-channel as our initial dominant-
channel estimate.

Finding Pitch Periods I: Locating Dominant Low-Channel
Peaks

In all of our pitch-period timing estimation steps our goal is to find the
energy burst at the onset of the pitch period. First we calculate the
integral of the mid-channel energy and low-channel energy during each
low-channel hump. The sum of the latter two quantities during each
low-channel hump (6.9) we will call LowMidE.

The difference of the present LowMidE and the previous LowMidE
values is LowMidEStep. LowMidE tends to peak at the beginning of
the pitch periods and smoothly decrease until the end of each pitch
period, as the acoustic energy content of vowel pitch period gradually
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start to end) yields LowMidE.
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falls off. As a result, LowMidEStep is negative for almost all its values
that are not at the start of a pitch period, thus it tends to have a
very strong local peak at the beginning of each pitch period. To get
our first pitch period onset estimates, we form two running averages:
the first, AvgMaz, is the average of three neighboring local maximums
of LowMidEStep; the second, AvgNonMaz, is the average value of
6 neighboring non-maximum values of LowMidEStep, as shown in
figure 6.10.

e ey e e LowMidEStep

Ewa L - w3
i T . ™ . r . e
° =1 - L0117 .2

© T LowMidE

[ Waveform

Figure 6.10: Averaging the three consecutive local maximum val-
ues in rectangles gives AvMaz, and averaging the circled, non-
maximum values yields AvNonMazx.

We designate a low-channel hump as a dominant peak if three con-
ditions hold: (1) it should be a local maximum of LowMidEStep, (2)
LowMidEStep > AvMax /5 and (3) LowMidEStep > AvNonMaz +
constant. Next we refine the time segmentation by picking the mid-
channel hump during the dominant low-channel humps that have the
biggest increase in their humpabsrise value from the previous mid-
channel hump (see figure 6.11).

The dominant peaks obtained this way serve as a crude first estimate
of the pitch period starts.

Finding the Dominant Channel

The dominant peaks segment the signal into disjoint intervals. We pro-
ceed by picking the maximal channel out of the bands for each of these
segments — this is the channel that has the maximum amplitude value
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during the segment. Then we splice these channel segments together
using a smooth linear transition between neighboring pitch periods.

Finding Pitch Periods II: Finding Pitch Periods in Dominant-
Channel

In the next round of pitch period start time refinement, we attempt to
capture the abrupt rise in dominant-channel energy and low-channel
amplitude at the beginning of each pitch period (see figure 6.13).

SR St B 5. V.. VPR SR . N, S -

waveform

Figure 6.13: We intend to find the points where there is an abrupt
rise in dominant-channel energy and low-channel amplitude.

To this end we define the steprise operator of a time series S: it is
the leaky backward integral of S up to a point, divided by the leaky
forward integral up to an earlier point in time as shown in figure 6.14.
The steprise operator is parametrized by three values: the forward
halving distance (the time distance by which the decay of the forward
integral reaches 50%), the backward halving distance, and the time-
gap between the start of the forward and backward leaky integrals.
In our system the forward halving distance is 80 units, the backward
halving distance is 50 units (one unit = m seconds), and the time
gap equals the distance between the dominant low-channel hump and
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Figure 6.14: Tllustration of the steprise operator parameters and
decay.

the hump preceding it. The steprise operator of a time series — like
the mid-channel energy that has an abrupt burst followed by gradual
decay until the next burst — will be maximal at the burst points.

The flow-chart 6.15 shows the steps that determine whether a dom-
inant peak can retain its pitch period candidacy. First we create the
low-channel humpabsrise values, then apply the steprise operator to
this time series, yielding the low-channel hump absrise steprise val-
ues. Second, we calculate the dominant-channel energy hump ampli-
tude time series, and map it by the steprise operator to get the dom-
inant channel energy amplitude steprise series. Third, we form the
humpabsrise values of the dominant-channel energy and add them to
the dominant channel hump amplitude steprise values. The resulting
sum we shall call EHAR. For a dominant peak to become a pitch pe-
riod candidate at this stage, two conditions should be met. First, either
the dominant-channel energy humpamplitude steprise values should be
larger than a threshold, or the low-channel hump absrise steprise values
should exceed another threshold value. Second, the EHAR value of the
dominant peak should be a local maximum in two ways: it should be
a local maximum in its 1/480 second neighborhood (about 2/3 of the
shortest pitch period length), and it should be a maximum over the
period which is defined by the hills that the low-channel hump peak
amplitudes form - as illustrated by figure 6.16. If both of these hold,
then the dominant peak is selected as a pitch period start candidate.

Next, we go through the same pitch-period by pitch-period dom-
inant channel selection and splice together steps previously demon-
strated in constructing the dominant channel.
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Finding Pitch Periods III

We filter the pitch period candidates again,but use only values ex-
tracted at the onset of each pitch period candidate. First, we form the
average dominant channel pitch period onset energy amplitude by aver-
aging five consecutive pitch period onset values of the dominant-channel
energy. Next, we find the vowelcenter by locating the maximum of the

st ] _'L_h«j IA_I*_JLL , {r An |qu | A NPT 8

Figure 6.17: Average dominant-channel pitch period onset energy
amplitude and the vowel center.

latter average (see figure 6.17). The vowelcenter is the location where
the vowel is loudest. It also has the convenient quality that it is usu-
ally the moment having the least pitch period irregularity of the vowel.
Starting from here and stepping backwards and forwards in time, we
filter the pitch period onset candidates by three very loose smoothness
constraints. The first constraint is that the next dominant-channel en-
ergy steprise value should be larger than 25% of the running average of
the last five such values. The second constraint is that the low hump
absrise value at the next pitch period onset should be at least 15% of
the running average of the last five. The third constraint states that
the next pitch period length should be within 2.5 and 0.4 times the
running average of the last four pitch period lengths. The pitch period
candidates that satisfy these constraints constitute the vowel pitch pe-
riod onsets. Note that this method also finds the start of the vowel
with high reliability.

6.1.3 Feature extraction

We have used three sub-pitch period attributes to differentiate between
articulatory configurations. FEach utilizes some quality of the pitch
period pattern that is characteristically different for the articulatory
configurations that we are trying to differentiate. We shall describe
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first how to extract each of them from a pitch period, then describe
who we combine them to make the actual decisions.

Onset Energy Ratio

Let us call the integral of the energy of a bandpass channel during the
first low hump in a pitch period the onset energy. The onset energy
ratio in a pitch period is simply the ratio of the sum of onset energies
in the four lowest band channels and the sum of the onset energies
in the two highest frequency band channels. This gives a measure
of how dominant the mid frequency channels are relative to the high
frequency channels. We will use this feature to differentiate the artic-
ulatory configuration at the b — ae transition from the d — ae and
g — ae transitions. Looking at the energy distribution strictly at the
vowel pitch period onset, the energy content is dominant, and thus has
more discriminating power than the discrete Fourier-transform-based
frequency band energy content measures because the latter blurs the
the pitch period onset with the rest of the pitch period. This is bad
because the energy content in each frequency band is falling over time,
but usually at different rates, and thus the channels’ relative energies
may depend on the length of the pitch period.

Pattern Period Length

We will try to describe the intuition behind what we are trying to do
and then discuss what we are actually doing to extract the feature.

We find the largest block of neighboring channels in the mid-frequency
range whose humps are synchronized during the pitch period. Then
find the smoothest channel, the one in this synchronized block whose
analytic part has the least magnitude variation in this pitch period.
Next, we try to find the pattern in the synchronized block of channels
that is repeating over time during the pitch period. Finally, we find
the top-down frequency of this pattern (or equivalently, the frequency
of the pattern of the pitch period); that is, measure the time distance
between the two largest neighboring patterns in the pitch period and
express this distance by how many extrema it covers in the smoothest
channel.

This is what we would like the algorithm to do; now consider what
actual steps we carry out to extract the relative distance of the patterns!
First of all, we are lazy and do not bother to find the synchronized
block of channels. This is because among the band channels, there are
at most two or three synchronized blocks, and the smoothest channel
always seems to fall in channels 0-6 (where 0 is the highest frequency),
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and it also happens to be the smoothest (minimal) as measured by
the magnitude variation of its complex part. Second, the pattern for
the synchronized channels almost always seems to be identical with the
pattern found in the second higher frequency neighbor of the smoothest
channel. So this is what we do to find it: 1. Calculate the magnitude
variation for channels 0-6 in bands up to 60 steps (1.25 ms) before the
next pitch period onset; 2. Find the channel with the minimum value.
Then we step down two channel indecies in bands to the sub-smoothest
channel; that is, to the channel that is two indecies below the smoothest
channel if the smoothest-channel index is at least 2, otherwise channel
0. Next, we try to find the patterns in the sub-smoothest channel.

To find the distance between repeating patterns in the sub-smoothest
channel, we do two things: make an approximate hypothesis about
where the first pattern is (i.e. where it starts and ends) and calculate
the complex correlation of the analytic part of the sub-smooth channel
between the segment defined by first pattern and its versions shifted to
the subsequent extrema in the sub-smoothest channel. These complex
correlation values will fluctuate; we find the maximal correlation value
out of the set [second, third and the fourth peak] (the first peak, of
course, corresponds to the pattern’s correlation value with itself, hence
we should leave it out). The shift that yields maximal peak value de-
termines the d distance between the first two dominant patterns of the
pitch period (which are invariably the dominant neighboring pair of the
pitch period). Finally, we find the vowel onset in the sub-smoothest
channel by finding the maximal HumpAbsRiseStep value in this chan-
nel during the first low channel hump of the pitch period, and simply
calculate the number of extrema between the start of the pitch period
onset in this channel and the point in time that is d distance from it.

We still need to explain how we try to pin down where the bound-
aries of the first pattern are. The situation is straightforward for the
b — ae and d — ae transitions since the patterns in these highly
correlate with the energy peaks; furthermore, the energy peaks are di-
minishing, at least through the first three peaks, as can be seen in
figures 5.2 and 5.3. So for these configurations, we could just find the
vowel onset in our channel and find the extremum sequence starting
here that includes the maximum energy of the pitch period and the
following energy minimum. The problem is that the energy maximums
and minimums will not occur at the same time as the extrema of the
sub-smoothest channel. To remedy this, we will use a smoothed ver-
sion of the energy at each extremum value: the energy of the channel
convolved with the e=2°¢ Gaussian where G = dominant period of the
channel during this pitch period. The pitch period dominant period of
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the channel is the reciprocal of the anchor frequency of the pitch period
pattern in this channel. We use its simplified version which is obtained
by calculating the dominant frequency and the dominant period from
the angular velocity of the complex part of the channel at its energy
peak point during the pitch period.
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Figure 6.18: Time aligned sub-smoothest channel and its energy
along with the waveform. The circled objects are sub-pitch period
patterns, their anchors are indicated by the arrows pointing at the
energy peaks above them. The little cups cover the subpatterns of
the patterns.

We will, in fact, do almost exactly what we have described so far,
with a slight modification to account for the much more complex situ-
ation at the g — ae transitions. According to our observations, figure
6.18 shows a typical sequence of pitch period pattern and energy land-
scape changes as the articulatory configuration goes from velar closure
to an ideal ae utterance. The vertical arrows show the anchor points
of the patterns that we would like to find. The patterns are circled by
ellipses in the sub-smoothest channel. The little hat-like curves cover
subpatterns within the circled patterns. The g — ae transition usually
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starts with a very long pattern that has a monotonically descending
energy profile. This often takes place during the burst (and thus our
system cannot see it). Next the long pattern breaks down into two
subpatterns, and the length of the pattern gradually decreases while
the prominence of its second sub pattern grows until we can no longer
regard it a subpattern: it becomes the second of three identical, de-
caying energy patterns, which is the typical ae pitch period pattern.
As can be observed in figure 6.18, the situation is complicated by the
fact that often the pitch period is so short relative to the pattern that
only part of the second pattern is observable. Other complications arise
from the varying levels of subpattern prominence in different channels,
which causes a lot of problems when our simple sub-smoothest chan-
nel picking method makes a mistake. Also, because the articulators’
position at the onset of voicing (where we start inspecting the signal)
depends on the speed of the articulators’ movement and on exactly
how long after the burst the voicing starts, we cannot really know for
sure in which of these positions our pitch period sequence will start.
Furthermore we cannot know how many pitch periods it will take for it
to get to the ae position (and if it goes all the way there or not). These
remarks should really make it clear for the reader that our primitive
peak picking algorithm works only because we are using it solely for a
binary decision. To actually follow the trajectory of the articulators,
we would have to model how the patterns change from place to place
with relatively fine resolution using a rich set of pattern templates.

Instead, we have exploited a characteristic difference between the
typical ae pitch period pattern and the pitch period patterns closer
to the velar release configuration: the first smoothed energy slump
minimum after the peak (which we identify with the end of the first
subpatterns) near the velar release tends to be very close to the en-
ergy peak of the subpattern. If the distance is less than that given
by three sub-smoothest channel extrema, then we will take the second
energy slump after the energy peak as the end of the first pattern. This
method will make mistakes (one can see counterexamples even in fig-
ure 6.18), but since the final decision is made based on the complex
autocorrelation values (which tend to give the correct answer even if
we take autocorrelation of segments longer than the first pattern), they
are usually not fatal. The second modification from the original peak
finding algorithm is that if there is no second peak during the pitch pe-
riod (i.e., the pattern is really long), we automatically return a preset,
long distance between the first and the (not seen) second pattern that
is characteristic of g — ae transitions.

There are still some details we skipped for clarity; now we will fill
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these in. The complex correlation we used is truncated if the shifted
pattern gets too close to the next pitch period onset. The part that
is closer than 30 steps is cut off. The autocorrelation value is normal-
ized with the truncated length of the pattern segment. This step is
important because if we allowed overlap with the very high energy first
pattern of the next pitch period, it would very often interfere with the
result.

Relative Frequency

Our next feature is much simpler to extract; it is the number of extrema,
from the onset of the vowel pitch period in the smoothest channel to
the peak in the waveform during the second low channel hump. One
can consider this a measure of relative frequency. It is more robust than
frequency since it will not be affected by small local perturbations in
the exact timing and shape of the sinusoid humps in the signal.

This and the previous feature (the relative peak period length and
the relative anchor pattern period length) will be used to separate velar
closure (i.e. g) to ae transitions from alveolar (d) and labial (b) to ae
transitions.

6.1.4 Categorization

The algorithm is presented only with voiced silence — stop burst —
vowel transitions from the signal, as they are segmented in the TIMIT
database. At the beginning of the vowel of each of these releases the
articulators tend to be in three distinct positions. After b they almost
instantly assume the ideal configuration for the ae sound: jaws wide
open and tongue in low frontal position. After d the tongue is high and
frontal and the jaws are semi-open, and the tongue is rapidly moving
down and the jaws are opening — everything is moving towards the
ae position. After g the tongue is usually in the high back position
moving forward and down, and the jaws are gradually opening as the
configuration moves into the ae setup.

Because of the swift articulatory configuration change after the
bursts in d-s and g-s, our algorithm needs to focus on the start of
the vowel: it finds the first three pitch periods of the vowel that come
after the vowel onset, and finds the above three feature values for each
pitch period. It proceeds to calculate the average onset energy ratio,
the maximum pattern period, the maximum of the relative frequency
features over the first three vowel pitch periods. The latter are used
in a simple binary decision tree that classifies the transition by making
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two decisions: 1. Is the input a labial release (b or not b)? 2. Is the
input a velar release (g or not g)?

6.2 Experiments and Statistical Results

Data

We used the recordings in the TIMIT database [13] to run our tests.
This database contains utterances from 630 speakers, covering 8 dialect
groups of American English. The speakers are male and female adults
with varied cultural backgrounds. They all say ten sentences; two of
these are the same for everyone (the two sa or dialect sentences: “She
had your dark suit in greasy wash water all year.”and “Don’t ask me to
carry an oily rag like that.”), 5 and 3 of the other eight are randomly
chosen from larger pools of 450 and 1890 sentences, respectively.

Our data set consisted of (b — closure) — b — ae; (d — closure) —
d — ae and (g — closure) — g — ae sequences of TIMIT that do not
contain word endings. Thus we excluded flaps (stop consonants that
have no burst) or stop consonants that were in word ending position.

Results
L
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Figure 6.19: The abcissa shows the distribution of the
average onset energy ratio feature values, the ordinate is 1 for
b — ae (crosses: x), 2 for d — ae (circles: 0), and 3 for g — ae
(plus signs: +) transitions. The superimposed grid indicates inte-
ger values with (0,0) in the bottom left corner.

We have not used any statistical learning or other type of training al-
gorithm. Instead we hand-picked the threshold values for the binary de-
cision tree based on our observations. In particular we used the follow-
ing decision thresholds for our features: if average energy onset > 6,
then it is a b — ae release; else if maximum pattern period > 14 and
mazximum relative frequency > 11, then it is a g — ae release; oth-
erwise a d — ae release. Table 6.1 shows the results for the three-way
decision.
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release type recognized false positive
b— ae 93.5% (87 out of 93) | 2.9% (3 out of 101)
d— ae 81.8% (18 out of 22) | 8.7% (15 out of 172)
g — ae 86.1% (68 out of 79) | 2.6% (3 out of 115)

Table 6.1: Recognition results for the three-way decision
between voiced stop — ae transitions

release type recognized Table 6.2: Recognition results

b — ae 93.5% (87 out of 93) |for binary decision between

dorg—ae | 97% (98 out of 101) |b — ae and d or g — ae tran-
sitions

We can also inspect the two binary decisions separately. Table
6.2 shows how the average energy onset feature fares in the binary
decision between b — ae and d or g — ae transitions. Finally table
6.3 shows the accuracy of the binary decision between g — ae and
d or b — ae transitions using features maximum pattern period and
maximum relative frequency.

Analysis

Because we came up with the features and their threshold values while
looking at the dataset (9 — ae, d — ae and b — ae transitions in
TIMIT), it is unclear how much these results generalize to fresh, for-
merly unseen data. Also, the sizes of voiced stop — ae transition sets in
TIMIT are 79 for g, 93 for b and 22 for b, which are too low to get over-
enthusiastic about our results. Nonetheless, the demonstrated cluster-
ing shows that there is some regularity worth further exploration. Here
we will attempt to give an idea what goes wrong when the algorithms
fail, and how the results compare to other current methods.

All three of the tested transitions have uncertainties that we have
not modeled and thus these are a source of error for the system even if
it works perfectly as planned in every respect. In a b — ae transition
the tongue may not go all the way to the low position; if the speaker’s

release type recognized Table 6.3: Recognition re-

g — ae 87.3% (69 out of 79) |sults for binary decision be-

dor b— ae | 93.9% (108 out of 115) |tween g — ae and d or b —
ae transitions
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utterance is lazy, his tongue may stop somewhere halfway down in the
eh position as described in the “lass” and “loss” example in the second
chapter. In the d — ae and g — ae transitions the tongue and the
jaws are already moving when the vowel starts. How much time passes
between the release of the stop burst — when we know the articulatory
configuration (at least the tongue and the jaw positions) with high
certainty — and the start of the vowel varies and so does the speed at
which the articulators move. Hence we have an inherent uncertainty
about the articulatory configuration at the onset of the vowel. Even
if our algorithm maps the sub-pitch period patterns to articulatory
configuration attributes correctly, we may be making mistakes due to
these phenomena.

We differentiate between three types of mistakes the system makes:
1. A time-segmentation mistake is when it gets either the vowel start
or one of the pitch period start timings wrong; 2. A space-segmentation
mistake is when it picks the wrong channels for inspection, and as a
result does not find the pattern or compares the energies across wrong
channels; 3. A pattern segmentation mistake is when it fails to find
the main repeating pattern within the pitch period correctly. Out of
the 21 misclassified samples (false positive plus false negative) in the
three-way decision tests, 10 are due to time-segmentation mistakes -
these are fairly easy to see by just looking at the individual samples.
Pattern- and space-segmentation mistakes can be harder to spot for
the naked eye, so we will not give an exact breakdown for the rest of
the mistakes the system made. In our subjective opinion, about half of
the remaining 11 mistakes are due to lack of proper modeling explained
in the previous paragraph (i.e. in this case the expected patterns are
simply not there), and the other half are pattern-segmentation and
space-segmentation mistakes.

How do our results compare to prior experiments? The closest and
best results we could find are in Suchato’s recent PhD thesis [52] (see
other work on stop consonants in the next section). He used knowl-
edge about the human speech production system to determine place
of articulation for stop consonants from the sound recording. In the
experiment that is closest to ours [voiced stop consonants — frontal
vowel transitions, testing data set is not identical with training data
set (cross validation technique is used), only the data from the vowel
following the stop burst is used] [52, table 4-5, page 111] he obtained
86.7%, 81.3% and 94.5% recognition accuracy for labial, alveolar and
velar stops respectively. These are practically identical with our results
after a permutation (93.5%, 81.8% and 86.1% for labial, alveolar and
velar stops respectively). The comparison, however, is not completely
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fair because there are factors that make each experiment simpler than
the other one in some respects. Suchato hand-picks the onsets of the
vowels after the stop consonants and thus avoids time-segmentation
type mistakes, which are responsible for half of our errors. He also
uses human help in finding one of the formant frequencies knowing the
transcription of the sample. An equivalent crutch for our system could
be pointing to the patterns in the pitch periods (i.e. specifying pattern
start times and channel coordinates). The latter would probably get
rid of another 30% that is practically all the errors except the ones due
to the lack of modeling the motion of the articulators during the burst.
Suchato uses 5 features and a statistical learning algorithm; we use
three features and simple hand picked thresholds. He uses a database
that has only four speakers, which is likely to result in fairly uniform
utterances. We use a subset of TIMIT database that has hundreds of
speakers with diverse cultural backgrounds and dialects. The size of
the subset is 177 speakers (21 different people say the 22 alveloar, 84
the 93 labial, and 72 the 79 velar utterances). On the other hand, our
data set is much smaller, and one could argue that we use the training
set as a test set, while Suchato employs cross validation testing method.
Also he allowed all frontal vowels in his transitions, not just ae, as we
did.

6.3 Prior work on stop consonants

Researchers have worked on stop consonant differentiation for decades.
Delattre, Liberman, and Cooper [10] claimed that the place of artic-
ulation in stop consonants could be determined based on the second
formant frequency transition but only showed such behaviour for d.
Winitz, Scheib, and Reeds [58] looked at cues in bursts of the stop
consonants to differentiate them. Zue [62] suggested the presence of
context independent properties. He investigated a number of tempo-
ral characteristics of stops, voicing onset time (duration of frication
and aspiration); and spectral characteristics such as frequency distri-
bution in the burst spectrum. Blumstein and Stevens [5] showed that
place of articulation could be determined based on a static snapshot
of the frequency distribution taken shortly after the stop release. 80%
recognition rate was achieved using short-time spectrum in the inter-
val 10-20 ms after the release. Searle, Jacobson, and Rayment [47]
obtained 77% classification accuracy by using features extracted from
wide-band spectrum. Kewley-Port suggested that in some cases snap-
shots of the spectrum was sufficient, but in others it did not contain
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enough information. She used time varying attributes extracted from
the beginning 20-40 ms interval of the stop-consonant — vowel transi-
tion, such as spectral tilt, existence of a sustained mid-frequency peak,
and a delayed F1 onset value. Most of the later work used cues based
on earlier publications — see a detailed and very recent review in [52].
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Figure 6.20: Scatter plot of features mazimum pattern period
(abcissa) and mazximum relative frequency (ordinate). For bet-
ter visibility of the individual samples, the figure shows slightly
perturbed versions of the integer feature values. Crosses (x) corre-
spond to b — ae transitions, circles (0) to d — ae, and plus signs
(+) to g — ae transitions. The superimposed grid indicates integer
values with (0,0) in the bottom left corner.
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Chapter 7

Summary

In this final chapter we will restate our views and elaborate on certain
aspects of the pattern concept. We will also critique our approach on
several accounts and thus give some idea about possible future direc-
tions of work.

We have argued that speech processing systems should rely on three
layers of primitives: 1. patterns 2. articulatory configuration trajec-
tories and 3. syllables. First, systems recover the articulatory con-
figuration during vowels from sub-pitch period patterns. Then, they
reconstruct the articulatory configuration trajectories using physical
continuity constraints. Finally, they use the trajectories to find the
most likely syllables that the speaker intended to utter.

Our pattern concept is a generalization of frequency. It is recursive
and more flexible, and thus more expressive, than the frequency concept
in several aspects. At the same time, patterns are constrained enough
to avoid combinatorial explosion as we glue them together to form new
patterns. By considering pitch periods as patterns, we treated vowels
as a time division muliplexed signals with each frame containing a two
dimensional image of the corresponding pitch period cropped at the
end to fit the local pitch period length. We used the pattern concept
to link the vowel pitch periods to articulatory configuration.

Now we would like to elaborate on one aspect of patterns that we
have not defined yet. The similarity of subpattern time and energy
distribution is a condition for pattern similarity. We have observed a
number of times that the subpatterns that are in distant channels in
pitch periods can show up with relative time shifts (the typical exam-
ple is when the pitch period onset is at very different times in the high
and low frequency channels). Thus we hypothesize that there should
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be flexibility in the relative timing and probably in the relative spatial
locations of subpatterns. One may consider this quality the extension
of the phase-shift invariance of temporal patterns. What is more, based
on our observations, we have come to believe that this flexibility should
extend to the similarity of subpatterns in the definition of pattern sim-
ilarity. In other words, if there is one pattern with several subpatterns
in the signal, then another pattern with similar spatio-temporal and
size distribution of subpatterns, but deformed subpatterns, then these
two should be recognized as similar. This means that, for example, in
the simple case of a pure tone, it does not matter what the exact shape
of the repeating humps are — as long as they are more or less follow-
ing the beat of the original tone and resemble each other, they should
be considered similar to the pure tone pattern. We, in fact, applied
this principle in features pattern period and relative frequency when
we paid attention to only very rough indicators of shape, such as how
many humps they covered in a certain channel.

We have still not defined pattern similarity (and thus, patterns)
fully. What is missing is an exact definition of how we decide the sim-
ilarity of the spatio-temporal and size distribution similarity of two
patterns’ subpattern structure. As we have used composite (i.e. not
temporal) patterns only in the most rudimentary way and cannot jus-
tify any choice with experimental results, we will leave this measuring
aspect ambiguous.

Although we have argued fiercely against using linear systems and
brought nonlinear processing to a much earlier stage than is common,
it is a valid observation that we are still using a linear pre-processing
stage. We believe that this is wrong and has been a source of many
of our problems. We do not know how to do this, but as we briefly
explained in the chapter on patterns, we imagine that ultimately there
should be nonlinear feedback even at the first stage of processing. The
history (and perhaps a short segment of the future) of the system should
affect how we break down the signal into channels. This decomposition
should favor previously memorized and currently repeating patterns.

We have not come up with an algorithm that finds general tempo-
ral patterns or higher level patterns recursively. We have also failed
to use the aspect of patterns that incorporate the history of the sys-
tem. Nonetheless, we consider the recursive nature and the ability to
form patterns based on non-local repetition crucial. These allow us
to account for phenomena such as recognizing very short fragments of
previously memorized patterns, recognizing non-locally repeating pat-
terns like stop consonant bursts, or adjusting to a speaker’s dialect as
he is speaking.
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We have pointed out several times how the repetitive nature of
patterns and the continuity of articulatory configurations should help
recognition in noise. In spite of this insight, we have failed to cre-
ate a general pattern template that could be trained on the whole
vowel space. If we had such a fine resolution (vowel pitch period) —
(articulatory con figuration) mapping template coverage, we could en-
force continuity and test the system under various noisy conditions.
Somewhat related is our lack of a model for non-vocalic sounds.

To demonstrate something about articulatory configuration, we would
have been better off using the Wisconsin x-ray microbeam speech pro-
duction database [59], which contains recorded speech and time-aligned
data on some of the articulators’ positions. Our decision to use voiced
stop consonant releases from TIMIT is a quick fix and is a consequence
of running out of funding.

Lastly, as reflected in our algorithm, we spent a lot of effort trying
to find vowel pitch period onsets. It would be worthwhile to compare
how well our algorithm works to other pitch period finding algorithms’
performance.
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Appendix A

Response time of
low-pass filter with
sharp cutoff frequency

We will prove informally that a linear time invariant (LTI) low-pass
filter with sharp cutoff frequency takes long to respond if it is excited
near its cutoff frequency in its pass-band, and that it responds quickly
if it is excited further away in the pass-band.

First let’s assume that there is an LTI low pass filter F' that has a
sharp cutoff frequency at w.; and it responds quickly to input frequen-
cies w, where (we1 — w) is small and positive. Then we can construct
another such filter, F2, whose cutoff frequency, w2, is slightly under
wer1. F2 will not respond to inputs at frequencies between w.; and
wez2- Thus by substracting F'2’s output from F'1’s, we can construct
a bandpass filter whose bandwith is very small and that responds to
its passband frequencies very quickly. This, however, contradicts the
uncertainty principle, so our initial assumption must be wrong.

It remains to show that if the input frequency is further away from
the cutoff frequency of the filter (but still in the pass-band), then
the filter will respond quickly. If the low-pass LTI filter F' has sharp
cutoff frequency w,, then it can be decomposed into two components
F = Figeai(we) + Foandpass(we), where Figeqr(w,) is the rectangle-shaped
ideal low-pass filter and Fyandpaess(we) is band-pass filter in a narrow
frequency band around w.. When the input frequency is further away
from the cutoff frequency, the sharp bandpass filter will not respond,
so it is sufficient to consider the response of the ideal low-pass filter.
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The latter’s impulse response is h(t) = % Let the input be a causal

sinusoid, z(t) = sin(wot)u(t), where u(t) is the step-function. Then the
output is

y(t) = (zxh)(t) _
= [ sin(wo (t — 7))u(t — T)wm—
: :
= /_ sin(wo(t — T))%Cﬁ

Using the identity sin Asin B = 1 (cos(A — B) —cos(A + B)), we can
rewrite the integrand as

sin(wo(t — 7)) sin(w,T)
= 1cos(wot — woT — weT) — cos(wot — WoT + weT)
= zcos(wot — wiT) — cos(wot + w_T)

where w; = w.+wp and w_ = w. —wy. Expanding the cosine terms
yields
sin(wo (t — 7)) sin(w,T) =

1
i(cos(wot) cos(w47) + sin(wot) sin(wy7)—

cos(wot) cos(w_7) + sin(wpt) sin(w_7))

thus the output

dr +

y(t) = ESin(th)/ sin(wy7) + sin(w_7)

—0 T

cos(w47) — cos(w_T)

1 t
§cos(w0t) /_ N — dr

or

y(t) = sin(wot)S(t) + cos(wot)C(¢) (A1)

The maximum amplitude of the output is limited by functions |S(¢)|
and |C(t)|. We want to show that |S(t)| + |C(t)| grows relatively fast
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Figure A.1: Graph of C(t) with w. = 500 and wy = 250.
if w, is slightly above wyp; that is, w_ = w, — wg is a small positive

number, and that it grows more slowly if w_ is larger.
We will show first that C(¢) is small for ¢ > 0.

2 J_» T

c) = l/t cos(w+7')—cos(w_7')d7_

1t -1 _r)—1
cos(w47) _ cos(w-7) ir

2 J_ o T T

Using wr = z substitution,

t
-1
/ cos(wT) i =

p
0 ¢
-1 -1
/ cos(wT) wdr +/ cos(wr) wdr =
— 00 wT 0 wT

0 _ wt _
/ cos(z) 1dz+/ cos(z) 1dz _
oo z 0 z

IThe lion’s share of the following derivation is from a handscript by Bertold K.
Horn.
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7+ C4(wt)

where « is a constant that is independent of w.

e Case 1: if 1 > t >= 0, then the Taylor series of cos converges and

Cy(z) = /Ow Mdz

z
_ /w(1_§+%_ )14,
0 z
T 3
- _/0 %—%+ dz
thus
|Cy(z)| < /Ow Edz: % < i
and
OO = lg-(r+ Calwst) =7~ C_(w 1)
= 5 (Chlort) = C ()]
< S (1Ck@sH] +1C (@ D)
< /a1 = L

e Case 2: if t > 1, then

Cy(z) = /Om Mdz

= Ci(z) - [log2]Z55

where Ci(z) = [y Coszﬁdz. Thus
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c) = i(7 + Cilwyt) — [log 2126*" — 7 — Ci(w-t) + [log 2325 ~")
2

- %(Ci (wyt) —log(wyt) + limy_glogx — Ci(w_t) + log(w_t) — limg_,ologx)

= L (Citwst) — Ciw 1) +10g =
W+t

27
therefore
1 w_t
COI = 5-(Ciluat)] +ICi(w-)] +|log =)
1 1 w_t
< = ; —|log —
< g max |Gile)] + 5ol log T

The absolute value of the log above will be large either if w_1 is
small or if wyt is large; that is, either if the input frequency is
very close to the cutoff frequency or if the cutoff is large. We are
interested in signals with frequency under 2 kH z and in the case
when the input frequency is not close to the cutoff frequency, thus
we may say that the absolute value of the log is under 7/2. To
get an upper bound for the first part we refer to figure A.2. The
maximum value max,~—1 |C;(z)| < 0.5, thus

1 1
<—+-<1 A.
06| < 1=+ <1/3 (A3)
Combining A.2 and A.3 yields for ¢ > 0
c(t) <1/3 (A4)

Next we will show that the peak of S(t) is approximately three times
larger than the above max for C(t), and that S(t) peaks close tot =0
if the input frequency is not close to the cutoff frequency (i.e. if w_ is
not close to zero and positive).

Since

-
0 . t .
/ sin(ar) dr+ sin(ar) ir

—00 T 0
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Figure A.2: Graphs of S;(z) = [ Si“zﬁdz and Cy(z) = [, %dz.
(Figure 5.6 from [2, page 232])

we can write

S(t)

/t sin(wy7) + sin(w_T) i

T

N | =

Si(wit) + 5 + Silw-1))

—~ 3

—_

(Si(wyt) + Si(w-1)))

MI»—A[\D|'_‘

Once again we refer to figure A.2 to get a feel for the shape of S;(x)
(see figure A.2). From this it is easy to see that S(t) is 0.5 at 0, it rises
relatively abruptly from 0.5 to about 0.75 at t = 1/w,, and is slowly
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Figure A.3: Graph of S(t) with w. = 500 and wy = 250. The
abscissa value where the function peaks is inversely proportional

t0 W_ = W, — wy-

increasing afterwards to reach 1 at t = 1/w_ (see figures A.3 A.4 A.5).
This means that the peak response of the ideal bandpass filter is deter-
mined by the peak of S(t) since this peak is much larger than the peak
of C(t). The timing of this peak response is exactly as we want it: the
peak’s distance from the start of the input is inversely proportional to
Wo =W, —w.
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Figure A.4: Graph of S(t) with w, = 500 and wp = 490. The
abscissa value of where the function peaks is inversely proportional
to w_ = w, — wp; the abscissa value of the first abrupt rise after
zero is inversely proportional to wy = w. + wg. See also the next
figure.
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Appendix B

Sub—pitch-period
time-pattern examples

Each of the following nine figures show the waveform, the low channel,
the smoothest channel and the smoothest channel energy time-aligned
with one another. The hand-drawn humps in the smoothest chan-
nel indicate the locations of the vowel sub—pitch-period patterns. The
examples display the first few (2-3) pitch periods of the vowel ae imme-
diately after a voiced stop consonant: g, d, and b respectively. The low
channel is the lowest frequency bandpass channel that we used. The
smoothest channel is a channel that is spliced together from bandpass
channels: during each vowel pitch-period we chose the channel that
“smoothest” (see full definition in the Experiments chapter; see more
detailed explanation of the figures in the Observations chapter).
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