Experimental results
References:
[1] M.J. Beal. Variational Algorithms for Approximate Bayesian Inference.
PhD thesis, Gatsby Computational Neuroscience Unit, University College
London, 2003.
[2] C.M. Bishop and M. E. Tipping. Variational relevance vector machines.
In 16th UAI, 2000.
[3] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul.
An introduction to variational methods in graphical models. In M.
I. Jordan, editor, Learning in Graphical Models, 1998.
[4] C. Liu, D. B. Rubin, and Y. N. Wu. Parameter expansion to accelerate
EM: the PX-EM algorithm. Biometrika, 85:755–770, 1998.
[5] Z. Q. Luo and P. Tseng. On the convergence of the coordinate
descent method for convex differentiable minimization. Journal of
Optimization Theory and Applications, 72(1):7–35, Jan. 1992.
[6] D. J. MacKay. Bayesian interpolation. Neural Computation, 4(3):415–447,
1992.
[7] M. E. Tipping. The relevance vector machine. In NIPS, volume
12, pages 652–658. The MIT Press, 2000.
[8] D. A. van Dyk and X. L. Meng. The art of data augmentation (with
discussion). Journal of Computational and Graphical Statistics, 10(1):1–111,
March 2001.